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If one gene regulates another, those two genes are likely to be involved in many of the same
biological functions. Conversely, shared biological function may be suggestive of the existence
and nature of a regulatory interaction. With this in mind, we develop a measure of functional
similarity between genes based on annotations made to the Gene Ontology in which the mag-
nitude of their functional relationship is also indicative of a regulatory relationship.
In contrast to other measures that have previously been used to quantify the functional simi-
larity between genes, our measure scales the strength of any shared functional annotation by
the frequency of that function’s appearance across the entire set of annotations. We apply our
method to both Escherichia coli and Saccharomyces cerevisiae gene annotations and find
that the strength of our scaled similarity measure is more predictive of known regulatory
interactions than previously published measures of functional similarity. In addition, we
observe that the strength of the scaled similarity measure is correlated with the structu-
ral importance of links in the known regulatory network. By contrast, other measures of
functional similarity are not indicative of any structural importance in the regulatory net-
work. We therefore conclude that adequately adjusting for the frequency of shared
biological functions is important in the construction of a functional similarity measure
aimed at elucidating the existence and nature of regulatory interactions. We also compare
the performance of the scaled similarity with a high-throughput method for determining
regulatory interactions from gene expression data and observe that the ontology-based
approach identifies a different subset of regulatory interactions compared with the gene
expression approach. We show that combining predictions from the scaled similarity with
those from the reconstruction algorithm leads to a significant improvement in the accuracy
of the reconstructed network.
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1. INTRODUCTION

1.1. Motivation

The Gene Ontology (GO) [1,2] provides a controlled
vocabulary that biologists use to annotate genes with
their functional properties. Since its inception, GO has
been applied in various ways, including the functional
analysis of sets of genes [3], predicting gene function
[4,5], and both confirming and predicting regulatory
interactions [6–9]. In this paper, we take a complex net-
works approach to the analysis of annotation data,
exploring how different types of network relationships
between genes and functions can be combined to give
new biological insights. In recent years, complex net-
works tools have been used alongside traditional
bioinformatics techniques to study many different kinds
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of biological networks [10], including, but not limited
to, gene regulatory networks [11,12], protein–protein
interaction networks [13,14] and metabolic networks
[15,16]. Here, we apply tools from the complex network
theory to networks derived from GO annotations.

In the GO, the relationships between terms (repre-
senting various biological functions) can be viewed as
a directed network in which more specific child terms
point to more general parent terms. A second network
linking genes to these terms can be built from annota-
tion data that uses the terminology laid out by the
ontology. This information can be used to build a
third network linking gene–gene pairs based on their
functional similarity. However, determining exactly
how to calculate this functional similarity is non-trivial.
Our goal is to construct a natural weighting scheme in
which the functional similarity of two genes is scaled
based on the properties of their shared functional anno-
tations and show that this scaled similarity is correlated
with that gene-pair’s likelihood to have a regulatory
This journal is q 2012 The Royal Society
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Figure 1. An outline of the approach taken in this paper. We use information from the Gene Ontology to construct a functional
gene network. We then compare the results to an experimentally derived gene regulatory network both to determine how well our
functional measure predicts known interactions and to investigate the implications of high functional similarity for regulatory
interactions. DAG, directed acyclic graph.
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relationship (as documented by an experimentally
derived network). We aim to develop a measure that
will not only accurately represent shared function, but
also provide new biological insights by offering a struc-
tural interpretation for strong link weights. Figure 1
illustrates our approach.

We focus our study on Escherichia coli, because
there exists a high-quality experimental gene regulatory
network published by RegulonDB [17] and it has been
used extensively in training network reconstruction
algorithms. In order to evaluate the predictive power
of our approach, we compare our functional gene net-
work with the experimentally determined RegulonDB
gene regulatory network. We then further compare
the predictive power of our scaled similarity score to
several currently established functional similarity
measurements as well as to a gene interaction network
derived solely from gene expression data. Specifically,
we focus our comparison on two contrasting functional
similarity methods, one of which relies on the semantic
similarity of terms in GO [18] and the other Kappa
statistics [19], as well as the well-established, context-
likelihood-of-relatedness (CLR) network reconstruction
algorithm [20].

In addition to demonstrating that the strength of the
links in our annotation-based network is correlated with
the existence of known regulatory interactions, we also
want to understand what the scaled similarity can tell
us about the structural importance of edges in the
true regulatory network. Therefore, we expand the com-
parison of our method to other measures of functional
similarity to include not only their relative ability
to predict true regulatory interactions but also the
J. R. Soc. Interface (2012)
extent to which high similarity indicates structural
importance in the experimental regulatory network.
1.2. Background

1.2.1. Properties of Gene Ontology annotations
The GO is represented as a directed acyclic graph (DAG)
in which nodes of the graph are identified with ‘terms’
representing the different physical and functional roles
of genes. Terms are organized hierarchically. For
example, a term broadly describing a class of functions
may be the ‘parent’ of several more specific ‘child’
terms representing functions belonging to the broad
class of the parent term, and these child terms may be
the parents of still more specific terms. Links on the
GO hierarchy connect child terms to parent terms and
are directed from child to parent through the relation-
ships ‘is a’ and ‘part of’. Note that child terms can have
more than one parent term. The three most general
terms in the GO hierarchy are ‘Biological Process’, ‘Mol-
ecular Function’ and ‘Cellular Component’, which are
the forebearers of all other terms and may be thought
of as the origins of three independent, main branches in
the GO hierarchy, formed from the descendants of each
of these main terms plus their connections.

Using this structure, GO annotates each gene to a set
of ‘terms’ representing that gene’s biological functions.
Gene annotations are transitive, meaning a gene annota-
tion to a child term implies annotations to all the parent
terms of that child [21]. As a result, all genes contain an
annotation to one or more of the three most general
terms. The relationship between genes and terms can
be represented in the form of a gene-term network,
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Figure 2. Cumulative degree distribution in E. coli for (a) terms considering all gene-term annotations and just those in each
individual ontology, and (b) genes considering all gene-term annotations and just those in each individual ontology. Black
denotes all annotations; yellow, Biological Process; magenta, Molecular Function; cyan, Cellular Component.
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taking the form of a bipartite graph, where each gene is
connected to the set of terms to which it is annotated,
plus all the parents of those terms.

In order to construct our annotation-based gene
network, we used pairs of gene-term annotations down-
loaded from the GO website (geneontology.org) to first
construct a gene-term bipartite graph, represented as an
nG � nT adjacency matrix, where nG is the total number
of genes and nT is the total number of terms listed in the
annotation file. In this matrix, a value of one indicates a
known connection between the corresponding gene and
term, and a value of zero indicates that the gene is not
associated with that term. We will denote the nG � nT

adjacency matrix of this bipartite graph by B and its
nT � nG transpose by B0. Thus:

Bip ¼
1 if gene i is annotated to term p
0 if gene i is not annotated to term p:

�
ð1:1Þ

Many terms are associated with just a small handful
of genes, while some terms are associated with many
genes. A histogram of the ‘degree’ of terms (i.e. the
number of genes annotated to each term) in E. coli
reveals a heavy-tailed relationship (figure 2a). To see
whether this distribution follows a power law, we used
a Kolmogorov–Smirnov test [22]. Both the overall
term degree distribution and the distributions within
the individual ontologies approximate a power law
very well (pall , 0:001, pBP , 0:001, pMF ¼ 0:089,
pCC ¼ 0:002). Although there are several different
reasons for a term to have a large number of genes anno-
tated to it, in the majority of these instances the large
number of annotations merely indicates that the func-
tional term is very general and resides at the top
levels of the GO hierarchy. We will account for the
widely varying degrees of terms in determining the
strengths of the functional links between genes in our
gene network.

By contrast, a histogram of the ‘degree’ of genes (i.e.
the number of terms to which each gene is annotated)
shows that although some genes have many more anno-
tations than others, a large portion of genes in E. coli
have approximately the same number of annotations
(figure 2b). These properties of annotations are not
J. R. Soc. Interface (2012)
limited to the GO, but can be found in other functional
classification databases as well (electronic supple-
mentary material, figure S1), indicating that these
properties should not be ignored when evaluating the
functional relationship between genes.
1.2.2. Measures of functional similarity
Many measures have been developed that attempt to accu-
rately quantify the functional similarity between pairs of
genes [23]. Measures that involve the concept of semantic
similarity focus on the similarity of terms with regard to
their information content and relative placement in the
GO hierarchy, combining the subset of this information
that is also linked to two individual genes in order to
derive a gene–gene functional similarity measure. Many
standard statistical tools have also been adapted for use
on GO annotations. In contrast to the semantic similarity
measures, these approaches are often more focused on the
annotation properties of the given genes. For simplicity, in
this paper, we focus on two of these functional similarity
measures, which we believe are a representative sampling
of the most widely used and accepted measures. Results
for other measures are provided in the electronic
supplementary material. All measures were calculated
using the csbl.go package in R [24].

In 2003, Lord et al. [18] first applied the information
theory concept of semantic similarity to the GO, citing
the prior work of Resnik [25], Lin [26] and Jiang &
Conrath [27]. A few years later, Schlicker et al. [28] com-
bined the methods of Resnik and Lin in the Relevance
measure. Each measure has its own strengths and weak-
nesses (for previous comparisons and evaluations of
semantic similarity measures see [18,28–32]); however,
since all rely upon the same basic mathematical con-
cepts, we will choose only one (Resnik’s measure) to
explore in detail.

All semantic similarity measures begin by defining
the probability, p(t), of observing a term, t, as the
number of gene annotations (degree) made to that
term, divided by the number of gene annotations
made to the parent node of the branch to which that
term belongs. As a consequence, the parents of the
three main branches in GO, ‘Biological Process’,
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Figure 3. Venn diagram representing the overlap between the
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gene has, and N10 (N01) the number of annotations that gene
one (two) has that gene two (one) does not.
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‘Molecular Function’ and ‘Cellular Component’, will all
be given a probability of one. Following Resnik, the
semantic similarity between two terms, t1 and t2 , can
then be defined as:

SemSimðt1; t2Þ ¼ � log min
t[Tðt1;t2Þ

pðtÞ; ð1:2Þ

where Tðt1; t2Þ is the set of parent terms shared by the
two terms. In order to find the semantic similarity
between two genes, G1 and G2, one constructs an
nG1 � nG2 matrix, where nG1 (nG2 ) are the number of
terms annotated to G1 (G2), and populates it with
the semantic similarity values between all the pairs of
terms. The semantic similarity between the two genes
is then determined by taking the average of all values
in the matrix.

The use of Kappa statistics as a measure of func-
tional similarity between pairs of genes has recently
been popularized because of its inclusion alongside a
commonly used gene set enrichment analysis tool [19].
Although slightly different, statistical measures such
as a weighted Jaccard [32], cosine similarity [33] and
Czekanowski-Dice [34], are similar enough in form
that they rank the functional similarity between pairs
of genes in approximately the same order as Kappa stat-
istics. Since the following analysis will use rank rather
than raw significance, we discuss just the Kappa stat-
istic to illustrate how this type of statistical measure
captures functional similarity.

Kappa statistics calculates the agreement between
two sets of gene annotations by comparing the actual
agreement between the two sets (X ) to the average
agreement one would expect by chance (kXl), given
that the two sets are independent:

k ¼ X � kXl
1� kXl

: ð1:3Þ

k will be equal to one for perfect agreement (X ¼ 1)
and will be close to zero for an actual agreement close
to random (X � kXl). X and kXl can easily be under-
stood in terms of a Venn diagram (figure 3). The
observed agreement (X ) is the percentage of annota-
tions the two genes either share or do not share:

X ¼ N11 þ N00

NT
; ð1:4Þ

where NT, the total number of terms, is equal to
N11 þ N10 þ N01 þ N00. The agreement expected if the
two samples were independent is the sum of the percen-
tage of annotations one would expect the two genes to
share or not share, given how many total annotations
each gene has:

kXl ¼ N:1N1: þ N:0N0:

N 2
T

; ð1:5Þ

where Nx: implies a summation over the dotted entry
(e.g. N1: ¼ N11 þ N10).
1.2.3. Expression-based reconstruction methods
We also compare the predictive value of functional
similarity approaches to that of the commonly used
high-throughput gene expression approach. In the
J. R. Soc. Interface (2012)
latter, correlations in gene expression are used to
reverse-engineer a regulatory network [35]. Although we
note that the values calculated in these approaches do
not incorporate functional annotation data and thus
are not designed to capture functional similarity, we
propose that comparing our measure with the values
determined by network reconstruction algorithms will
be informative because these algorithms are specifically
designed to estimate the probability of a regulatory
relationship between two genes, something that we
wish to capture in our own functional measure.

Some of the most successful algorithms for generat-
ing gene regulatory networks involve the information
theory concept of mutual information (MI) [20,36,37].
MI describes the statistical dependence between two
variables. However, unlike correlation coefficients, MI
captures nonlinear relationships between the tested
pair of variables, and has been used to successfully
detect regulatory interactions that would have been
missed using a linear correlation metric. For comparison
with the results of our functional gene network, we
focus specifically on the CLR algorithm [20], which is
among the set of algorithms that rely on MI calcu-
lations. We choose the CLR approach for comparison
because of its large number of citations as well as its
demonstrated ability to predict edges in RegulonDB
[17]. We explore whether the interactions captured by
the functional similarity measures are the same as, or
different than, those captured by the CLR network.
2. METHODS

2.1. Calculating a scaled similarity
between genes

We centre our functional similarity measure around the
bipartite graph of gene annotations in order to capture
information about the types of annotations shared
between two genes. As opposed to semantic similarity
measures, this distances us from the hierarchical DAG
structure of the GO, which should help eliminate
issues associated with the DAG’s structure, such as its
lack of uniformity in depth and the possibility of dis-
junctive ancestors (i.e. when multiple ancestors of a
term can be found based on independent paths). On
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the other hand, by using the mathematical represen-
tation of the bipartite graph, we retain the ability to
easily integrate information about the functions (with
regard to their GO annotations) into our similarity
measure and therefore, as opposed to more gene-centred
measures, such as the Kappa statistic, which treat every
biological function equally, we are able to better inter-
pret the potential role of individual biological functions.

From the nG � nT adjacency matrix B of our bipar-
tite graph (see equation (1.1)), we can generate an
nG � nG adjacency matrix S ð0Þ that reflects the relation-
ships between annotated genes:

S ð0Þ ¼ BB0 and S ð0Þij ¼
XnT

p¼1

BipBjp: ð2:1Þ

In this projection, the value of Sij is equal to the total
number of functional annotations that are shared
between genes i and j (note that this is equal to N11 of
figure 3). However, as previously discussed, some terms
such as ‘Molecular Function’ are quite general and associ-
ated with many genes, while more specific terms are often
associated with very few genes. It would, therefore, seem
inappropriate to weight links between genes i and j
simply by the number of their co-associations with
terms (as done in the earlier mentioned definition of
S ð0Þij ). For example, one might want to count associations
through terms that have many gene annotations less
strongly than those associations that occur through
more specific terms. Previous works have addressed this
issue in several ways, such as weighting the terms by
their information content [32], or simply by removing
the highest degree terms from the similarity calculation
[38]. However, we choose instead to compensate for the
variation in the quantity of term annotations by intro-
ducing an nT � nT diagonal weighting matrix, wðaÞ,
with elements:

wðaÞpq ¼
d pq

ð
PnG

k¼1 BkpÞa
; ð2:2:Þ

where dpq ¼ 1 if p ¼ q and is zero otherwise. Note that the
denominator of w(a) is simply the ‘degree’ of term p, or
the number of genes k associated with term p, raised to
a power, a. Using the matrix w(a), we modify the strength
of our gene connections as given in equation (2.1) to
obtain a new gene connection matrix S(a) given by:

S ðaÞ ¼ BwðaÞB0 and S ðaÞij ¼
XnT

p¼1

BipB jp

ð
P

k BkpÞa
; ð2:3Þ

where a can be thought of as a weighting parameter such
that larger values of amore strongly suppress the weights
of terms that have connections to many different genes.
Note that for a ¼ 0, the weighting matrix, w(a) reduces
to the identity matrix (i.e. uniform weighting of terms).
In this case, equations (2.1) and (2.3) are equivalent.

Because the GO has three distinct branches, we will
also investigate the effects of considering the individual
ontologies represented by each of these branches. There-
fore, we will have four versions of S: (i) the reconstruction
considering all gene-term annotations (Sall), (ii) consider-
ing only gene-term annotations where the term is part of
the ‘Biological Process’ ontology (SBP), (iii) considering
J. R. Soc. Interface (2012)
only gene-term annotations where the term is part of
the ‘Molecular Function’ ontology (SMF), and (iv) con-
sidering only gene-term annotations where the term is
part of the ‘Cellular Component’ ontology (SCC).
Because SðaÞ in equation (2.3) is defined as a sum over
terms (i.e. the index p in equation (2.3)), for a given a:

Sall ¼ SBP þ SMF þ SCC: ð2:4Þ

2.2. Suppressing the role of common
genetic functions

There are two main limiting cases for a. For a ¼ 0 , the
weighting matrix reduces to the identity matrix and the
calculation is the same as it would have been had we not
considered any weighting. In this case, the entries in the
matrix S ð0Þ are the number of terms shared between two
genes. In the case of large a, the weights of S ðaÞ are such
that those genes connected through many low degree
terms have the highest weight and those connected
through only one high degree term have the lowest
weight. Low-degree terms (i.e. terms with few gene
annotations) are normally lower in the GO hierarchy
and in general represent more specific biological func-
tions. On the other hand, the majority of high-degree
terms (i.e. terms with many gene annotations) are at
the top of the GO hierarchy and are in general more
common and less specific, where common often, but
does not necessarily mean generic. We note that this
association of degree with specificity is an approxi-
mation, but believe it can still give a good first-order
approximation of whether the biological function rep-
resented by the GO term is more specific or more
generic. Therefore, by giving the greatest weight to
links between genes that share annotations to many
low-degree terms, our weights should correspond to a
measure of how much specific biological function is
shared between the two genes.

To determine the consequences of different weighting
parameter values, we used GO annotations for E. coli to
construct functional gene networks for various values of
a and compared these networks to the established regu-
latory network published by RegulonDB. RegulonDB
provides a high-quality TF-gene interaction network,
which contains 2341 genes and 6725 regulatory links.
Of these RegulonDB-listed genes, 77 per cent (1803)
also appear in the GO annotation files, and of the
RegulonDB-listed links, 75 per cent (5024) can be
assigned a non-zero value in our functional gene network.
We believe that this provides sufficient shared infor-
mation for us to usefully compare our projected gene
networks with the experimentally derived RegulonDB
gene regulatory network.

We note here that a small percentage of gene-gene pairs
are never annotated to a common biological function. In
this case, we set the value of their scaled similarity to
zero. In addition, when comparing to the experimental
regulatory network, we consider only a ‘putative’ set of
edges, defined as the set of all edges extending from a
transcription factor to a gene, because only these types
of edges can exist in a regulatory network.

In order to systematically evaluate the predictive
power of each S ðaÞ, we calculated the F-score, a
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statistical measure combining the concepts of precision
and recall, using the regulatory interactions provided by
RegulonDB as our ‘gold standard’. The F-score is
defined as:

F ¼ 2
P � R
P þ R

; ð2:5Þ

where P is the precision:

P ¼ true positives
true positivesþ false positives

ð2:6Þ

and R is the recall:

R ¼ true positives
true positivesþ false negatives

: ð2:7Þ

In these equations, the numerators (true positives)
are those edges above a particular similarity value
that are also experimentally verified by RegulonDB,
the denominator of P is the total number of edges
above that value and the denominator of R is the
number of edges that are in RegulonDB. The F-score
equals zero for complete lack of precision and recall,
and one for simultaneously perfect precision and
recall. For each S ðaÞ, we calculated the F-score for all
possible similarity cut-offs and took the maximum of
these values as a measure of the predictive power of that
S ðaÞ. As a control, we also calculated the maximum
F-score for 1000 random orderings of the putative set
of edges, taking the average over these randomizations
as the expected value of the maximum F-score.

Figure 4 plots the calculated maximum F-score as a
function of the weighting parameter, a. The scaled simi-
larity values for high a are the most predictive of true
regulatory interactions, in line with our hypothesis that
terms with many gene annotations should be suppressed
J. R. Soc. Interface (2012)
relative to those with only a few gene annotations. In
addition, the values for large a approach a steady
value. This might be expected since for large a the
weights of the edges will take a particular ordering.
As a consequence of this analysis, for the remainder of
our discussion, we will arbitrarily assign A ¼ 10 such
that S ðAÞ represents the scaled similarity in the case of
high a.
3. RESULTS

3.1. Comparing measures of functional
similarity

Before investigating our scaled similarity measure in
a regulatory network context, we wanted to see how
it compared with other common measures of functio-
nal similarity. Specifically, we compared the results of
scaled similarity to two other measures of functional
similarity—Resnik’s semantic similarity measure and
functional similarity as determined by Kappa statistics.
To determine whether the different measures were identi-
fying the same gene-pairs as the most functionally similar,
we selected the top 5000 most functionally similar pairs of
genes according to each measure, and created a Venn
diagram of those pairs (figure 5a).

Each measure of functional similarity selects fairly
a unique set of gene-pairs as the most functionally
related, with the greatest overlap between the scaled
similarity in the limit of high a and the semantic simi-
larity measure (1305 common gene-pairs). This is not
entirely surprising because both S ðAÞ and the semantic
similarity take into account some form of the degree
of the shared terms. The scaled similarity values S ð0Þ

and S ðAÞ also have a fairly high overlap with 516
common members. By contrast, the gene-pairs selected
by Kappa statistics have a relatively poor overlap with
the gene-pairs selected by the other three measures.
Because the values of S ð0Þ and the Kappa statistic
only vary by a normalization factor, much of this differ-
ence may be attributable to the gene-focused
normalization employed by the Kappa statistics.
In fact, the Kappa statistics has a higher overlap with
the semantic similarity measure (124 gene-pairs) and
S ðAÞ (41 gene-pairs) than S ð0Þ (36 gene-pairs).
3.2. Predicting regulatory interactions using
measures of functional similarity

We wish to explore how well other measures of functional
similarity can predict known regulatory interactions
and compare the results with our scaled similarity values,
S ðaÞ . With this in mind, we determined the predictive
ability of the semantic similarity and Kappa statistic
by calculating the maximum F-score for these two
measures, once again using edges in RegulonDB as a
‘gold standard’, and compared the results with those of
the predictive ability of the scaled similarity for the
two limiting cases of a. Comparisons with the other
measures mentioned in §1.2.2 are shown in the electronic
supplementary material, figure S2.

S ðAÞ, which fully accounts for the specificity of the
terms in GO, predicts real regulatory relationships
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better than either the semantic similarity or Kappa
statistics (figure 5b). These results are similar if an
F-score is calculated at a particular cut-off instead of
choosing the maximum (electronic supplementary
material, figure S3) and is also true in other functional
databases besides the GO (electronic supplementary
material, figure S1). Surprisingly, the Kappa statistic
predicts true regulatory interactions at a rate compar-
able to what one would expect by random chance,
doing a poorer job of predicting true regulatory inter-
actions than S ð0Þ, which represents a count of the
number of shared terms between the two genes, without
any additional analysis of the statistical significance of
this overlap. This suggests that, by failing to take into
account the hierarchical nature of the GO, Kappa stat-
istics can miss a large amount of the regulatory
information embedded in the functional annotations.
This may be owing to the type of normalization
employed, which considers the number of terms to
which the genes are annotated (the ‘degree’ of the
genes) rather than the number of genes annotated to
the shared terms (the ‘degree’ of the terms), essentially
penalizing the potential existence of an edge between
genes involved in many diverse biological functions. A
gene with many annotations is either most probably
involved in many pathways or is highly studied in the
biological community for other reasons. Either way,
the large number of annotations is probably indicative
of a higher probability that the gene is involved in mul-
tiple regulatory interactions, rather than few or none, as
suggested by the mathematics of the Kappa statistic.

It is important to note that neither the semantic
similarity measure nor the Kappa statistic was designed
with the intent of predicting regulatory interactions.
Their relatively poor ability to predict known regulat-
ory interactions compared with the scaled similarity
therefore should not necessarily indicate that they are
poor functional measures, but rather that the type of
shared function they are capturing between two genes
J. R. Soc. Interface (2012)
is not as important for the existence of a regulatory
link between those genes.
3.3. The informational importance of edges with
high-functional similarity

Having demonstrated that the weights of edges in our
ontology-based network are indicative of real regulatory
relationships, we further investigated the significance of
these weights for regulatory interactions. To address
this question, we considered a metric characterizing
how the connectivity of the established RegulonDB net-
work changes when edges are removed. Specifically, we
calculated the length of the new shortest path between
a pair of genes (A, B) upon the removal of the regulat-
ory link between A and B. We take this value as a
measure of the structural importance of the A 2 B
link. Edges whose removal causes little difference in
the length of the shortest path between the genes it con-
nects can be thought of as redundant, because the two
genes are still closely connected in the regulatory net-
work, and the edge removal may thus be thought to
have less effect on the network flow. On the other hand,
edges whose removal causes the regulatory path between
the two connected genes to increase substantially, or even
disappear, are deemed to be informationally important.

The informational importance of an edge is depen-
dent on the direction of regulation of the immediate
neighbourhood of the two genes that edge connects.
For example, consider a network of only three genes,
A, B and C, in which gene A regulates genes B and C,
and gene C also regulates gene B. In this network, the
regulatory link from gene A to gene B has low informa-
tional importance since removing that interaction only
increases the shortest path from A to B to two (from
A to C to B). On the other hand, removing either the
link from A to C or from C to B completely disrupts
the information flow. In both cases, the shortest path
will increase to infinity, and the edges will be deemed
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of high informational importance, because there is no
longer any way for information to flow from gene A to
gene C, or from gene C to gene B in the absence of
those regulatory links.

In order to determine whether high annotation
weight edges tend to be either redundant or essential
to information flow, we ordered the edges in RegulonDB
according to their weight in the projected gene network
and then calculated the harmonic mean of the new
shortest path for edges at or above each indexed
value. The results are striking. Those edges with the
highest scaled similarity values are of great importance
to the information flow in the regulatory network
(figure 5c). In contrast to S ðAÞ, other measures of
functional similarity are not informationally important.

This result is curious because one might initially sus-
pect that genes which share many low-level annotations
should be in locally dense regions of the regulatory net-
work and hence exhibit redundancy. It is worthwhile to
note that any gene interaction that forms a ‘leaf’ in the
regulatory network, i.e. a gene that is only regulated by
a single transcription factor, will have high structural
importance. Intuitively, we expect the genes in this
type of regulatory relationship to have a high functional
similarity. A more interesting scenario is when high
functional similarity is indicative of multiple regulatory
pathways flowing between a pair of genes, for example
when both genes are transcription factors. In this
case, these pathways may connect communities of
genes that are independently involved in only a subset
of functions, but which at times must be combined to
perform higher order biological tasks.
3.4. Ontology-specific contributions to scaled
similarity

In addition to applying our approach to the entire GO
hierarchy, we also used it to determine separate func-
tional gene networks for each of the three main
branches of the GO hierarchy (see equation (2.4)).
Here, we use this information to better understand
what type of functional information is contributing to
the predictive power and informational importance of
J. R. Soc. Interface (2012)
our edges. The following analysis is performed only in
the case of high a.

We considered the weight contributions from each
ontology separately and determined the maximum
F-score for the network predicted using annotations
unique to that ontology (figure 6a). Edges that have a
high weight contribution from the ‘Biological Process’
ontology are more predictive of known regulatory inter-
actions than edges with high weight contributions from
either the ‘Molecular Function’ ontology or the ‘Cellu-
lar Component’ ontology. A large part of this has to do
with the types of functional terms assigned to each ontol-
ogy, with regulatory terms such as ‘transcription’, ‘gene
expression’, and ‘DNA replication’ all belonging to the
‘Biological Process’ ontology. Another more subtle issue
is the size of the three ontologies. ‘Biological Process’
and ‘Molecular Function’ contain roughly the same
number of annotated terms in E. coli with 1894 and
1784 members, respectively. One reason why the ‘Cellular
Component’ ontology does a poorer job in predicting
regulatory interactions may not only be owing to the
types of functions it describes, but also because E. coli
genes are only annotated to 204 terms in this branch of
the hierarchy, leading to a sparser and less informational
measure of functional similarity.

We also examined the role of the three ontologies in
determining the informational importance of an edge in
the true regulatory network (figure 6b). Again, the ‘Bio-
logical Process’ carries the bulk, if not all of the
information. In the light of the strong role of the ‘Bio-
logical Process’ ontology, one might question the need
to include the other ontologies in calculating the
scaled similarity between genes. However, given that
both SMF and SCC still predict regulatory interactions
at a rate greater than random, the authors suggest
that including these ontologies in the functional
measure has the potential to reveal information about
the relationships between genes.
3.5. Regulatory interactions in yeast

To determine whether the scaled similarity measure
is predictive of regulatory interactions in organisms
other than E. coli, we used GO annotations made to



500 1000 1500 20000

20

40

60

80

rank of edge in functional measure

in
fo

rm
at

io
na

l i
m

po
rt

an
ce

0

0.02

0.04

0.06

0.08

0.10(a) (b)

m
ax

im
um

 F
-s

co
re

SemSim k

Figure 7. The predictive power of functional similarity measures and their relationship to the informational importance of the
edges in the yeast regulatory network. (a) Comparison of the predictive power of the functional similarity measures in yeast,
estimated by calculating the maximum F-score. (b) A plot of the informational importance of edges in the yeast regulatory
network, ordered by the functional similarity values estimated by each measure. Blue denotes scaled similarity ða ¼ 0Þ; black,
scaled similarity (high a); green, semantic similarity; red, Kappa statistic.

Implications of functional similarity K. Glass et al. 1633
genes in Saccharomyces cerevisiae (bakers yeast)
to calculate functional similarity scores. As a ‘gold-
standard’, we took interactions predicted by ChIP-chip
[39] with a p-value of less than 10�4. The results for all
the measures mentioned in §1.2.2 are shown in the
electronic supplementary material, figure S2.

The results in yeast are very similar to E. coli. The
scaled similarity (S ðAÞ) predicts real regulatory relation-
ships better than either the semantic similarity or
Kappa statistics (figure 7a). The latter once again pre-
dicts true regulatory interactions at a rate comparable
to chance and slightly worse than S ð0Þ, which represents
a count of the number of shared terms between two
genes. Similarly, edges with the highest scaled similarity
values are of great importance to the information
flow in the regulatory network (figure 7b). Semantic
similarity is slightly correlated with informational
importance. Neither the Kappa statistic nor S ð0Þ is
predictive of the informational importance of an edge.
3.6. Comparison to expression-based network
reconstruction methods

We also compared the predictive ability of our scaled
similarity measure to that of the widely cited CLR net-
work reconstruction algorithm [20], which returns a
Z-score value for each gene-gene pair. In their paper,
Faith et al. applied their approach to a compendium
of expression profiles in E. coli. We downloaded the
results from their paper to use as our comparison
against the scaled similarity measure. Only a subset of
regulatory edges can be assigned a positive Z-score in
the CLR approach. Of the 2341 RegulonDB listed
genes, 85 per cent (1979) exist in the CLR recon-
structed network and of the 6725 RegulonDB
regulatory interactions, 55 per cent (3696) have a
non-negative reported Z-score.

According to our analysis, the maximum F-score for
the CLR network occurs at the Z-score cut-off of 4.78,
slightly lower but similar to the 5.78 cut-off used to
define the regulatory network in the original paper
[20]. It out-performs our functional measure in its abil-
ity to predict true regulatory interactions (figure 8a).
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However, CLR relies on the collection of many high-
throughput experiments, whereas our scaled similarity
measure is derived strictly from annotations. With
this in mind, we propose that the scaled similarity
measure could be used to cheaply reconstruct approxi-
mate gene regulatory networks in species that have
gene annotations but for which a high-quality collection
of experimental expression data does not yet exist.

In order to better estimate the quality of a gene net-
work predicted by our functional score compared with
reconstruction approaches using gene expression data,
we directly compared the values of the edges as deter-
mined by the scaled similarity to the Z-score values
reported by the CLR reconstruction algorithm [20].
A little over half (1.2 million) of the edges that can be
assigned a non-zero scaled similarity value in our pro-
jected gene network also have non-zero Z-score values
reported by CLR. We determined the rank order of
these edges based on their scaled similarity and also
based on their Z-score values. We further identified
which of these edges are listed as true regulatory inter-
actions by RegulonDB and used this information to
calculate the F-score of edges as a function of both
their Z-score and scaled similarity, defining true positives
as those edges above both the Z-score and similarity
thresholds, which are also experimentally verified by
RegulonDB. The results of the F-score calculation are
illustrated in figure 8b. Both the scaled similarity
ðS ðAÞÞ and the Z-score from CLR have similar patterns
in their F-score. Curiously, the algorithms are most pre-
dictive for independent sets of edges, indicating that if
one wished to use functional similarity to improve net-
work reconstruction, it would be most beneficial to
take edges predicted by either algorithm, rather than
edges predicted by both.

Our method relies upon the assumption that two genes
which share many common functions should be involved
in a regulatory relationship. Expression-based reconstruc-
tion methods, such as CLR, also often rely upon a similar
assumption that when two genes are co-expressed one
regulates the other. Although these are good first-order
approximations, these assumptions can both miss true
interactions (false negatives) as well as predict false
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Table 1. Properties of the most functionally similar edges
ranked according to the scaled similarity measure. (Equal rank
indicates a tie in the similarity score. For edges that appear in
RegulonDB the direction of positive versus negative regulation
is indicated by an up (b) or down (d) arrow, respectively. For
all other edges arrows indicate regulation from a transcription
factor to a gene. Regulation between two transcription factors
is indicated by a bi-directional ($) arrow. To determine the
ontology that contributed most highly to the final score, edges
weights were broken into their corresponding ontologies (see
equation (2.4)). The percentage annotations from this
ontology contributed to the final edge weight is noted in
parentheses. BP, Biological Process; CC, Cellular Component;
MF, Molecular Function.)

rank
edge
(TF! gene)

in
CLR

in
RegDB

ontology
(%)

1 FabR! AccC — — BP (100)
2 AlpAbIntA — 3 CC (100)
2 Lrp$ AsnC — — BP (100)
4 FadRdFadD — 3 MF (100
5 Ada! Ogt — — MF (100)
6 BetldBetB 3 3 BP (100)
6 BetldBetA 3 3 BP (100)
8 FlhCbFliT 3 3 BP (100)
8 FlhC! YdeH — — BP (100)
10 FadR! AccC — — BP (97)
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interactions (false positives). To better understand how
these assumptions might effect our predicted regulatory
network, we specifically investigated the top edges
predicted by our scaled similarity score to see what
kinds of regulatory interactions our measure predicts
(table 1). Of the top 10 edges by functional weight, half
are found in the RegulonDB database. Several edges pre-
dicted by the scaled similarity that are not in RegulonDB
are annotated with functions related to gene regulation.
Interestingly, of the true positives, only three can attri-
bute the majority of their similarity weight to
annotations from the Biological Process ontology and
these same edges have statistically significant Z-scores
ðZ . 4:78Þ in the CLR algorithm. Edges correctly pre-
dicted by the scaled similarity measure that are missed
by CLR are predicted based on annotations in the
Molecular Function or Cellular Component ontologies.
J. R. Soc. Interface (2012)
Because the scaled similarity and CLR are identify-
ing a unique subset of true regulatory interactions, we
are able to combine them in order to take advantage
of the strengths of both approaches. As a simple
model, we consider the same fraction of top edges in
both CLR and our projected gene network and deter-
mined what percentage of this combined set is also in
RegulonDB. In other words, we ordered the edges
such that in the top N edges, N/2 of the edges are the
N/2 edges with the highest scaled similarity value and
N/2 of the edges are those with the highest Z-score
values in CLR. Using this ranking, we determined the
maximum F-score for the combination of the scaled
similarity and Z-score values. This combined model
outperforms the predictive power of either individual
algorithm (figure 8a).

Previous groups have mentioned the power of combin-
ing functional and experimental measures in order to
improve network reconstruction [7–9]. For example,
Marcotte et al. calculated a log-likelihood score to evalu-
ate an experiment’s ability to correctly predict shared
annotations between gene-pairs and then used this
score to more accurately integrate many experiments
together into one coherent network. In our case, the
GO provides a unique addition to the set of predicted
edges because those added are known to be functionally
related, and, furthermore, as we demonstrated in §3.3,
they are now also known to be links essential to the
flow of information within the regulatory network.
4. DISCUSSION

Although using the GO to evaluate the regulatory
relationships between genes has many limitations, the
method we describe here is inexpensive, computationally
simple and takes advantage of a large amount of data
that has already been accumulated. Compared with net-
work reconstruction algorithms such as CLR, which
focus on one type of biological data, GO annotations
include results from many types of experiments. Further-
more, because the annotations are publicly accessible, the
wealth of information in GO will continue to grow and be
refined as researchers in the community use them for
their wide variety of applications.
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One advantage of using GO annotations to predict a
functional network is that biological meaning can more
easily be assigned to a predicted interaction. Although
there are many different ways to ascribe functional simi-
larity values to gene-pairs, the fact that the strength of
the scaled similarity between two genes is correlated
with the likelihood for those genes to be linked by a
regulatory relationship and, furthermore, is predictive
of that link’s importance for information flow through
the regulatory network, gives a much wider range of
implications for the GO’s use not only in constructing,
but also in evaluating, regulatory networks.

One potential weakness of using the GO to interpret
biological data, especially in the context of a regulatory
network, is that there may be subjective biases in its con-
struction. It is possible that a large number of shared
specific annotations between two genes is merely a conse-
quence of a large amount of research focused on those
genes and/or shared functions. In these cases, the
scaled similarity measure results in an overestimate of
the ‘true’ functional similarity of the gene-pair. Further-
more, it is likely that many of the annotations in the GO
are derived from known regulatory interactions. There-
fore, it is virtually impossible to choose an unbiased
gold standard with which to evaluate how well various
functional measures can predict known regulatory inter-
actions. Fortunately, when functional measures are based
in the same database, any bias in their evaluation should
effect the measures equally, such that their relative
performance can still be used as a guide. We also point
out that even if the correlation between known regula-
tory network interactions and the scaled similarity is a
consequence of human bias in annotation (e.g. when it
is witnessed that two genes are related in a regulatory
fashion, they may be given a common annotation),
it does not follow that these regulatory edges must
also be the most important for information flow in the
established experimental regulatory network, unless
the experimental network itself is biased. In addition,
biased construction of the experimental network is also
possible, as the most informationally important edges
may also be the easiest to experimentally verify. However,
given the wide acceptance of RegulonDB as a ‘gold stan-
dard’, we do not wish to dwell on these possibilities in this
analysis. Instead, we look forward to seeing if these strik-
ing results continue to manifest themselves as the quality
of the network continues to improve, as well as in the
experimental regulatory networks of other species as
they become available at increasing quality.

Although other measures have previously been propo-
sed to assess the functional similarity between genes,
these measures, despite biological intuition, are not as
well correlated with the existence of regulatory relation-
ships as the scaled similarity introduced here. We
demonstrate that, at least within a regulatory network
context, it is critical to consider the specificity of a bio-
logical function. Although previously it was unclear
how to interpret the meaning of shared annotations
between pairs of genes in a regulatory network context,
a measure that correlates functional similarity with
known regulatory interactions allows us to more accu-
rately assign functional meaning to links in a regulatory
context. In particular, we witness that links between
J. R. Soc. Interface (2012)
genes with high scaled similarity should be more impor-
tant to information flow in the regulatory network.

The code for calculating the scaled similarity as well
as other additional files pertaining to this work can be
found at www.networks.umd.edu.
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