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Predicting oscillatory dynamics in the
movement of territorial animals
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Understanding ecological processes relies upon the knowledge of the dynamics of each indi-
vidual component. In the context of animal population ecology, the way animals move and
interact is of fundamental importance in explaining a variety of observed patterns. Here,
we present a theoretical investigation on the movement dynamics of interacting scent-mark-
ing animals. We study how the movement statistics of territorial animals is responsible for the
appearance of damped oscillations in the mean square displacement (MSD) of the animals.
This non-monotonicity is shown to depend on one dimensionless parameter, given by the
ratio of the correlation distance between successive steps to the size of the territory. As
that parameter increases, the time dependence of the animal’s MSD displays a transition
from monotonic, characteristic of Brownian walks, to non-monotonic, characteristic of
highly correlated walks. The results presented here represent a novel way of determining
the degree of persistence in animal movement processes within confined regions.

Keywords: animal territoriality; animal movement; correlated random walk;
anomalous diffusion

1. INTRODUCTION

To secure a habitat to forage and successfully repro-
duce, many animals display territorial behaviour by
excluding intruders from certain regions of space [1].
Depending on the species, territorial defence is accom-
plished in different modalities. One such modality,
which is common to most terrestrial mammals, is
scent-marking [2]. By depositing scent, an animal
ensures that its presence is broadcast to other individ-
uals, as scent marks, in particular, the non-volatile
components may persist in the environment and be per-
ceived as ‘fresh’ for prolonged periods. Within that
period, the so-called active scent time, animals need
to refresh their own scent to maintain an exclusive use
of their territories [3]. When a conspecific encounters
a foreign active scent mark at a given location, it recog-
nizes that location is claimed by another animal. To
avert potential costly confrontation, an intruder
responds by avoiding the areas where ‘fresh’ foreign
scent is present. When residents and intruders belong
to the same species, this response mechanism is called
conspecific avoidance. A recent theoretical study, vali-
dated with experimental observations on urban foxes,
has elucidated the role of conspecific avoidance and
scent-mediated interaction in the collective formation
of territorial patterns [4]. The study has shown that
conspecific avoidance at the level of the individual gen-
erates an exclusion process [5] at the level of the
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territories, making it apparent that territoriality is a
complex emergent phenomenon.

Since territories are exclusive, their dynamics are
subdiffusive and much slower than the movement rate
of an animal [4]. This disparity in movement rates has
made possible the construction of analytical expressions
describing animals moving within slowly fluctuating
territories [6], as well as a model representation of the
fine-scale dynamics of interacting territorial boundaries
[7]. In the above studies [6,7], the analysis was limited to
one dimension and, more importantly, the assumption
had been that an animal moves as a Brownian walker.
Although the representation of animal movement via
the diffusive hypothesis has been used since the 1950s
[8], there exist other more general representations of
movement statistics that reduce to the Brownian case
under appropriate limits. Two such examples are corre-
lated random walks [9-12] and Lévy walks [13,14].
Whereas the former has a long mathematical history
[15], the latter has been proposed more recently [16]
and only in the last decade has it been used as a
tool to analyse and interpret animal movement data
[17-19]; however, its use has not been immune to
criticisms [20—25]. Here, we are interested in explor-
ing the dynamics of a territorial animal in two
dimensions when its movement possesses some degree
of persistence.

Compared with a Brownian walker, a correlated
random walker possesses directional persistence, which
is well suited for animals moving within a familiar con-
fined area such as a territory. After some initial
wandering within its own territory, an animal acquires
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a good knowledge of its environment. Subsequent move-
ments owing to foraging needs or for border patrolling
are more likely directed towards well-known locations,
introducing a persistence in the movement statistics.
A correlated random walk gives a good phenomenologi-
cal representation of such persistence, as the movement
is the result of short displacement distances and a selec-
tion of turning angles from a distribution peaked
around zero, which controls the degree of bias of the
walk [10]. In one dimension, the continuum limit of a
random walk governed by such a bias (only 0 and + 7
‘turning angles’ are possible) has been shown to result
in a probability distribution function satisfying a tele-
grapher’s equation [15]. In dimensions higher than
one, although no continuum limit can be found that
reduces a persistent random walk exactly to the corre-
sponding higher dimensional telegrapher’s equation
[26,27], such an equation interpolates between a wave
equation and a diffusion equation, that is between bal-
listic and Brownian motion. We exploit this feature to
study the effects of persistence in the movement stat-
istics of territorial animals by using a telegrapher’s
equation within confined space. We obtain approximate
analytical solutions that represent a territorial animal
moving with a variable degree of correlation. We ana-
lyse the validity of the analytical results by comparing
them to stochastic simulations of many interacting
scent-marking animals that move as correlated
random walkers. We predict the appearance in certain
conditions of damped oscillations in the animal’s
mean square displacement (MSD), if the underlying
movement is that of a highly correlated random walker,
whereas no oscillatory dynamics exist if territorial
animals move as Brownian walkers.

2. MODEL

The starting point of the analysis is the reduction of
the non-Markovian problem of moving and scent-
marking animals to that of a single moving animal
within slowly fluctuating boundaries. Owing to terri-
torial exclusion, there is a time-scale disparity
between the movement of the animals, which are dif-
fusive, and the movement of the territorial
boundaries, which are subdiffusive, giving rise to an
MSD long-time dependence that increases in two
dimensions proportional to ¢/In(t) [4] as function of
time %, the expected result in two-dimensional exclu-
sion dynamics [28]. To find an approximate
expression and reduce the dimensionality of the pro-
blem, it is necessary to make a type of mean-field
approximation, as adopted in Giuggioli et al. [6], and
consider one individual animal moving within a terri-
tory whose boundary shape may fluctuate but whose
area is forced around a value equal to the inverse of
the population density. We describe this forcing by
connecting the boundaries with effective springs.
These spring-like dynamics of the territory size rep-
resent two competing effects: the acquisition of new
territory by the resident animal and the neighbours’
pressure for territorial takeover. This approximation
is represented pictorially in figure 1.
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Figure 1. (a) Pictorial representation of the territorial random
walk model, and (b) its mean-field approximation. (a) Each
shade denotes the area where a particular animal has depos-
ited fresh scent (its territory). The white areas are
interstitial regions, where there is no fresh scent from any
animal. Territory borders move when an animal travels into
the interstitial region and leaves scent cues, thus claiming
the region for its own territory. A territory’s size will tend
to fluctuate around an average value equal to the inverse of
the population density. The black line denotes a possible
path of an animal inhabiting the light grey territory. Panel
(b) shows a schematic of the reduced analytical model, dis-
played in one dimension for diagrammatic simplicity. The
borders move randomly and subdiffusively, but are joined
together by a spring whose rest distance is the average terri-
tory width. In two dimensions, the average territory size
corresponds to a rest ‘area’ enclosed by two springs along
two orthogonal axes, whose dimension is the inverse of the
population density. For circular geometry, the territory
radius fluctuates around a rest distance that encloses an
area whose dimension is the inverse of the population density.
The parameters controlling the animal movement vary
between the ballistic and the Brownian limit. In between
those two extremes, an animal moves with some degree of
persistence, e.g. as a correlated random walker.

In the reduced model dynamics, the mathematical
description is given by the joint probability distribution
P(X, L,t) of having an animal at location X and the
boundaries described by L, which represents either the
four-dimensional Cartesian coordinates for rectangular
territories or the three-dimensional vector for circular
territories with two coordinates related to the territorial
centroid position and one to the radius of the territory.
Furthermore, since the boundary locations move very
little during the time scale over which the walker dif-
fuses, one can invoke an adiabatic approximation [6]
and consider the joint probability distribution as P(X,
L,t) ~ QL, t) W(r, {{L), with Q(L, ¢) being the prob-
ability distribution of the boundaries’ location and
W(r, {|L) the probability distribution of the animal
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position for a given L. This decoupling allows us to treat
separately the dynamics of the boundaries from that of
the walker. The boundary dynamics are governed by a
Fokker—Planck equation (see equation (A 1) in appendix
A) with a time-dependent diffusion coefficient. The pres-
ence of this time dependence ensures that the MSD is not
that owing to Brownian statistics, but rather is subdiffu-
sive owing to territorial exclusion. The specific functional
dependence of ¢(t) is dictated by the expected and
observed territorial boundary MSD at long times.

2.1. The boundaries

In Cartesian coordinates, the probability distribution
for the boundaries being at locations L at time ¢ is
simply the product of the probability distribution
along each axis. We have in fact that Q(L,t) =
Qi L1y, Loy, t)Qy(Lyyy Loy, t) with Qup(Lig, Loo, t) given
by (see appendix A)

e*(AquU)Z/bv(ﬁ _|_ ef()‘U+LU)2/btr<t)

Qo(Agy Loy t) = H(Ay) —0

e—ﬁfz,/c(,(t)

X TCU(t)’ (2.1)

where A, = Lo,— L is the separation distance between
the right and left boundary along the positive direction
of the o axis, L, = (Lss+ L1,)/2 is the centroid of the
boundary locations along o, b,(t) =4(K,/vys){1l —
exp[—2y, [0 dse(s)]}, colt)=2K,[( dse(s), and
H(y) is the Heaviside function such that H(y)=1 if
y>0 and H(y) =0 if y<O0. Notice that the presence
of the Heaviside function and the sum of two Gaussians
centred at + L, are the result of having required the
separation distance between two boundaries to be
always positive. The rate at which territorial boundaries
return to their average distance is represented through
Yo, and the slow dynamics of the boundaries is due to
the time-dependent diffusion constant ¢(t), which gov-
erns how the Gaussian spreads over time through the
MSD of a single boundary as a function of time, given
by the term IS dse(s). If ¢(t) is independent of time,
the variance of the Gaussian distributions increases lin-
early with time, and the dynamics of the boundaries is
diffusive, whereas for a time-dependent ¢(¢), the diffu-
sion becomes anomalous.

For circular territories, we consider fluctuations both
for the centroid location and the radial extent of the ter-
ritory. To take into account the subdiffusive nature of
the fluctuations, the probability distribution for the
centroid coordinates (a.,y.) and the radius p of the
territory satisfy a Fokker—Planck equation with a
time-dependent diffusion coefficient (see appendix A),
whose solution is given by

o~ B1E/B() 4 o~ (p+R)*/H(1)

Q(ze, ye, p t) = H(p) =00

o (2.2)
o (a2 /(1)

ae(t)

where ¢(t) = 4K, Jo dse(s) and B(t) = 2(K,/y,)[1-
exp(—27, [y ds¢(s))]. Analogous to the rectangular

)
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territories, the dependence on the sum of two Gaussians
in the variable p is because p > 0 and the presence of a
time dependence in ¢(t) makes the boundary dynamics
anomalous.

2.2. The animal

For the animal, we represent the degree of persistence in
its two-dimensional walk as it moves within a confined
area through the two parameters of the telegrapher’s
equation: the speed v and the time constant 7. This
time constant is related to the time spent by an
animal moving along a straight line without turning.
It has been shown that such a random walker can be
described in the continuum limit by a radially
symmetric two-dimensional telegrapher’s equation
augmented by an inhomogeneous term [27,29]. This
inhomogeneous term decays exponentially to zero at a
rate proportional to 7 ~'. For our purpose, we neglect
this term and we describe approximately the animal
persistence through a telegrapher’s equation with
reflecting boundary conditions at the territorial
boundaries.

In Cartesian coordinates, the animal probability
distribution W(r,t|L) for a given location L of
the boundaries is simply the product of each prob-
ability  distribution along each axis and it
satisfies the telegrapher’s equation along each o~
axis, that is

PW(o,t) 10W(o,t) ,0°W(o,t) 93

or TR R

The analytical solution of equation (2.3) along each

axis with reflecting boundaries (see appendix B)
can be expressed as the infinite series

Ay Ay
Wo(o, t|As, 0) = H(a—i— 7)H(a'— 7)

1 2 ( 0'>
X {—+— cos| 2nm—
{AU Aa,; Ao
sin( @0t o= t/2T 7
2T@2n,rf

X |:COS( O ot) +

(2.4)

written here for the simple case in which the boundary cen-
troid is the origin. The subscript 0 for Win equation (2.4)
indicates that the initial position of the animal is the origin
and the 0, , parameters are given by

n2 a2 y? 1

@n(r: 9 T g
A2 4T?

(2.5)

For animals moving within circular territories, we
write the two-dimensional telegrapher’s equation in
polar coordinates as

O*W(r,6,t) 1oW(r,6,1)
ot? T Ot
”# 190 1 0
S R e T
=7 |5t g tagg| W6, (26)
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where, similarly to the Cartesian case, T is the average
time for which a walker keeps moving before changing
direction and v is the animal speed. The solution of
equation (2.6) with reflecting boundary conditions at
the territory boundaries can be computed exactly (see
appendix B) giving the result

Jo Om T
ZZ IU« /p))

P m= lu‘U m)

W[)(T’, 0, t|p) = H(p - T){

X [cos(t!)o,,,,) + 51;1;75;(22;:)} et/”},
(2.7)
where
u2 1
Q = 7"71 2.
nm p T2’ ( 8)

and with w,,, the mth zero of the derivative of the nth
Bessel function of the first kind J,,(2), i.e. the values of u
satisfied by the implicit equation J;, () = 0 [30].

The ballistic regime in equations (2.4) and (2.7) is
obtained by taking the limit 7" — +o00, whereas the dif-
fusive regime is obtained by taking the limits T'— 0
and v — 400 such that v*T= D with D representing
the animal diffusion constant. With the latter pro-
cedure in the Cartesian case 276,,, — 1 and the time
dependence in the series reduces to exp{—t¢/(2T)

1-— \/1 — 4T(2n)*m2D/A2]}, whose first-order expan-
sion in T gives exp[—(2n)*m7°Dt/AZ], thus recovering
the one-dimensional expression reported in equation
(C1) of Giuggioli et al. [6]. For the polar case, in the dif-
fusive limits, the time dependence exp[—t/
(27)][cos(t02,,) + sin(t20,,)/(2T€,,)] simplifies to
exp(— ugDt/p*) and equation (2.7) becomes the prob-
ability distribution of a Brownian walker confined in a
circular domain of radius p reported in Polyanin [31].
These limiting procedures, in both Cartesian and
polar geometries, are also valid in the more general
case, reported in appendix B in equations (B10) and
(B22), of off-centre initial conditions and off-centre
location of the territory centroid.

3. RESULTS

In exploring the parameter dependence of the animal
MSD, it is convenient to start analysing the simpler
situation corresponding to when territories are immobile,
that is the boundary diffusion constant K = 0, which
corresponds to when the active scent time of a territorial
animal is infinitely large. We thus study first the time
dependence of the animal MSD for immobile boundaries
in §3.1, whereas the case with fluctuating boundaries is
dealt with in §3.2.

3.1. Damped oscillatory dependence of the
animal mean square displacement with
immobile boundaries

The general expression for the animal MSD in rectangular
confinement has been written explicitly in equation (C 1)

J. R. Soc. Interface (2012)

in appendix C. The square geometry is a simplification of
the rectangular geometry and can be easily derived from
equation (C1) by considering A,= A, = A*. When the
animal initial condition and the centroid of the territory
are placed at the origin, the MSD expression in an
immobile square territory of length A* centred at the
origin is equal to

2\ _ 3% A_* *+°° (_1)”
e

n=1

sin(@snt) —t/2T
X |:COS(@2nt) + 2T, }e , (3.1

where the symbol (--) represents an ensemble average,
that is, an average over the associated probability distri-
bution. At short times, the time-dependent term
[cos(@nt) +sin(0,,)/(2T76,)]exp[—t/(2T)] reduces to
11—t n27721) /(2A*%) giving a short time increase equal
to 20> (see appendix C for details).

In an immobile circular territory with initial
conditions centred at the origin, the MSD in equation
(C4) reduces to

(x) =" + 4p?
| | ;:1 /‘LOmJO(IJ’Om)
sin(tm)| _ijor

5T, ]e , (3.2)

which can be shown (see appendix C) to have the
appropriate 2v°t? short time dependence.

The exponential term exp[—t/(27T)] present in the
convergent series of equations (3.1) and (3.2) ensures
that at long times, the MSD saturates to a constant
value since each element of the series becomes identi-
cally zero. An inspection of equations (3.1) and (3.2)
shows that the animal MSD may display oscillatory
behaviour in time when the quantities 0, or (2,
defined, respectively, in equations (2.5) and (2.8),
are real. For a given dimensionless parameter (=
vT/X* or é€= vT/p, the suppression of the oscillatory
dependence owing to the cosine and sine terms of the
series in equation (3.1) or (3.2) increases as n or m
gets larger. As a result, the terms of the series that
contribute the most to the oscillations are the smal-
lest n and m that makes @, or (), real, which
occurs, respectively, when (> (477)7120.08 and
when &> (2uo;) '~ 0.13. These estimates are very
close to the transition values of ¢ and ¢ beyond
which non-monotonicity appears, determined numeri-
cally by plotting the MSD in figures 2 and 3 for,
respectively, the square and circular geometry (see
captions of the figures). The MATLAB code to plot
the analytical expressions (3.1) and (3.2) can be
found in the electronic supplementary material.

The appearance of a non-monotonic dependence in
the MSD as well as the eventual saturation have an
intuitive explanation. The parameters { and £ represent
the average distance an animal would travel without
turning (the term v7T') relative to the characteristic
length A* of the available space in the square geometry
and the radius p in the circular case. In the extreme
case, when ¢ or ¢ are infinitely large, the movement

X [COS(tQOM) +
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Figure 2. Mean square displacement (MSD) of an animal with tional persistence in immobile circular boundaries.

varying amount of directional persistence in immobile square
boundaries. Depending on the value of the parameter { = vT/
A*, by plotting equation (3.1), it is possible to observe three
qualitatively different time dependencies. For ¢ < 0.086, the
MSD appears monotonic, whereas it displays non-monotoni-
city for (>0.086. We distinguish two types of non-
monotonicity depending on the number of maxima above
the value at which the MSD saturates. When only one maxi-
mum is visible, using a numerical precision of 10~ %, we name
the time dependence as over-damped. If more than two or
more maxima are visible, we name the time dependence as
under-damped. Study of the parameter space shows that
when 0.086 < ¢ <<0.102, the dynamics are over-damped,
whereas they are under-damped when ¢ > 0.102. Solid line,
{=0.3; dashed line, = 0.1; dash-dotted line, { = 0.05.

becomes ballistic and the walker, starting at the origin,
would always return to the origin infinitely many times.
With £ or £ sufficiently large but finite, the chance that
a trajectory would not return to the origin would
increase over time, progressively reducing the height
of the maxima in the MSD. Eventually, the movement
would become diffusive and the probability of finding
the walker anywhere in the territory would become con-
stant. Similar reasoning applies when the animals start
off-centre, although the nature of the periodicity when ¢
or ¢ are infinitely large is owing to the movement paths
being like billiard trajectories [32].

A peculiar characteristic, which is evident from the
MSD plots, is the presence of very sharp maxima in
the underdamped regime for sufficiently large values
of { and & This feature can be readily explained in
the Cartesian case as follows. When ¢ is in the
underdamped regime, when n is sufficiently large
0,, ~ nw{ and the series in equation (3.1) can be writ-
ten as > o, (—1)"n"2{cos(2nm{t/ T) + sin(2nm(t) T)/
[An7{T]}. The dominant contribution in this infinite
series comes from the cosine terms, which displays
maxima at t/T=(k+1/2)/{ with k=0,1,2,....
These values correspond to the locations of the sharp
maxima in figure 2. To understand the presence of the
apparent discontinuous derivative of the MSD at the
maxima, one needs to differentiate the cosine series
above and realize that > o, (—1)"n"'sin(2nm¢t/T)
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Depending on the value of the parameter ¢ = vT/p, by plot-
ting equation (3.2), it is possible to observe three
qualitatively different time dependencies. For &< 0.12, the
MSD appears monotonic, whereas it displays non-monotoni-
city for £>0.12. By using the same definition for under-
and over-damped dynamics as in figure 2, we notice that
when 0.12 < £ < 0.20, the time dependence is over-damped,
whereas it is under-damped when &> 0.20. Solid line, {=
0.35; dashed line, &£ = 0.18; dash-dotted line, § = 0.1.

= —arctan{sin(27{t/ T)/[1 + cos(2w{t/ T)]},  which
indeed has discontinuous jumps at t/T= (k+1/2)/¢
with £=0,1,2,.... A similar argument helps explain
the appearance of sharp peaks in the circular case.
When ¢ is in the underdamped regime, when m is
sufficiently large (2, >~ &u,,, and the series in equation
(3.2) can be approximated by > o | mo2Jy " (Kom)
cos(2ug,, mét/ T). For large m, one may approximate
[30] o, =~ (m—1/4)7 as well as the Bessel function
for large values of its argument and rewrite the series as
S° (=1)™(m —1/4)"? cos|(m — 1/4)wét/ T).  This
series can be recast in terms of combination of Lerchphi
function [33] and shown to possess the first discontinu-
ous derivative at t/T=¢'. We have tested
numerically that indeed the location of the first maxi-
mum in the MSD follows this inverse proportionality
relation as function of & with greater accuracy as we
increase £ Sharp troughs also seem to appear whenever
t/T=ké ' with k odd, which are precisely the
non-smooth points of Y~ _, (=1)"(m— 1/4)7%?2
cos[(m — 1/4)mwét/ T], as long as k is small enough to
be in the oscillatory regime.

3.2. Damped oscillatory dependence of the
animal mean square displacement with
fluctuating boundaries

When territorial boundaries fluctuate, the evaluation of
the animal MSD requires integration over all possible
values of the boundary locations, equivalently over all
possible values of the boundary separation A, and terri-
torial centroid L,. For the square geometry and when
the initial territory centroid and animal position are
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Figure 4. MSD of a walker starting at the origin inside a square territory with fluctuating boundaries. (a) The MSD as it varies
with time for three different values of { = vT/L. As { increases, we move from a regime where the MSD is monotonic to one where
oscillations occur. (b) The ¢ values separating the monotonic (upper region) from the non-montonic (lower region) regime, for

various choices of the dimensionless parameters K’ =
equation (3.3).

at the origin, one obtains (see appendix C)

) -
=220 4 ooy + |

0

2 8A%(=1)" sin(@s,t)
X 2{7772(2”)2 [COS(@znt) + 5T, }

n=1

dAZ (A, B)

8(—1)"
m(2n — 1)

Sin(@mﬂf)] 87(217,71)271'2(:(15)/4)\2 }et/QT (3.3)

X e*(?n)zﬂzc(t)/ﬁl/\z C(t) |:COS(@2n1t)

276y,

where the symbol ({---)) signifies that the average is
taken both over all possible animal locations as well
as territory size and locations, and with Z(A,t) =
2exp[— (A* + L?)/b(t)]cosh[ 2)\L/b 1//mb(t) defined
from equation (2.1), and valid for either of the two
orthogonal directions.

Aside from the actual value of the diffusion constant
and spring constant present in b(¢), the boundary move-
ment is controlled by the time dependence in ¢(t). As
animal territories undergo exclusion [4], we select

olt) = [In(1 + /8) " — [In(1 + 1/8) *(t/B)(1L + 1/B) "
with B being a characteristic time. This choice causes
the MSD of the boundary to be i dse(s)
t[n(1 + ¢/B)] " — B, which is an increasing function of
time, starting at zero when ¢=0 and having the same
long—time dependence as objects undergoing exclusion
in two dimensions [28]. With this version of ¢(t), we
plot in figure 4 the MSD dynamlcs for different par-
ameters, namely K'= KT/L? vy'=vyT and {. Since
the size of the territory is now changing, {= vT/L rep-
resents the average distance moved without turning
relative to the average territory length L.

Similarly, for the circular geometry, one can define the
quantlty R(p, t) = 2exp[—(p* + R?)/b(t)]cosh[2pR/

t)]/+/mb(t) in equation (2.2) and write, when the
1n1t1a1 condltlons for the animal and the territory
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KT/L? and y' = yT. The various plots have been constructed using

centre are at the origin, the animal MSD as

LU
4
+00 +00 4

p

[ s ( w

0 ( ) 7; M%mjo(/*l’(]m)

SICE0)] i et
2 TQ[]m

Wx) == +e(t)

2

X {cos(tQOm)

_ 2/"le
(/’L%m - 1) Ji (Mlm)

sin(t4) o Hnt(0)/25 | o—t/2T
2T, '

c(t) {cos(t!)lm)
(3.4)

With the earlier-described choice of ¢(t), we plot the
MSD dynamics for different parameters in figure 5,
namely K’ = KT/p®, y' = yT and &€= vT/R, where R
is the average territory radius.

From figures 4 and 5, one feature becomes evident. As
{ or ¢ diminishes, the walker becomes more and more
Brownian and monotonicity disappears. A comparison
between the immobile and the mobile boundary case
shows that the oscillations are also observable when
boundaries move slowly, as in the case considered here
of subdiffusing boundaries. We have wondered therefore
if the non-monotonic MSD would still be present if the
statistics of the boundary movement were to have an
MSD that increases superlinearly. Although this may
not be of direct relevance to territorial animals, since ter-
ritorial boundaries subdiffuse, we have examined whether
the analytical model still displays oscillations when the
rate of the boundary movement becomes comparable to
or larger than that of the walker. For this purpose, we
have selected a time-dependent diffusion constant ¢(t)
oc t7 ! with 1 < <2 and with different values of ¢
and & It turns out that oscillations always appear when
{ or £ are sufficiently larger than K’. The MATLAB code
to plot the analytical expressions (3.3) and (3.4) can be
found in the electronic supplementary material.
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Figure 5. MSD of a walker starting at the origin inside a circular territory with fluctuating boundaries. (@) The MSD as it varies
with time for three different values of £ = vT/R. As £ increases, we move from a regime where the MSD is monotonic to one where
oscillations occur. (b) The threshold ¢ values for passing from one regime into another, for different choices of the dimensionless
parameters K’ = KT/p® and vy’ = yT. The various plots have been constructed using equation (3.4).

4. COMPARISON WITH STOCHASTIC
SIMULATIONS OF TERRITORIAL
CORRELATED RANDOM WALKERS

To compare the analytical predictions of the previous
sections to the many-bodied system of territorial corre-
lated random walkers, we generalize the territorial
random walk model in Giuggioli et al. [4], so that ani-
mals move as correlated random walkers rather than
diffusive walkers. We implement stochastic simulations
of N animals whereby each animal moves as a correlated
random walker inside a square terrain of side S with per-
iodic boundary conditions. Step lengths are sampled
from an exponential distribution with mean step-
length a and turning angles sampled from a wrapped
double exponential (Laplace) distribution. In order to
model the scent depositing and conspecific avoidance,
the terrain contains an underlying grid of smaller
squares of side a, where S/a is an integer. Upon landing
on a square, a walker marks it with its own scent. This
square then becomes part of the walker’s territory. The
scent remains active for a time Thg and, in addition to
the described movement process, no walker is allowed to
move into a square that contains active scent of another
walker. Although the territory shape differs from
animal to animal, most of the territories acquire more
of a round rather than a square shape. It is natural
then to compare the stochastic simulations with the
results obtained for the circular geometry by determin-
ing the value £¢=vT/R. A correlated random walker
possesses a correlation time 7 related to the turning
angle distribution f(6) via the relation [34] 7= —1/
In[(cos(h))], where (cos()) = [" d@cos(6)f(6). The
average time for which an animal moves without turn-
ing in the simulation is thus 7= 7a/v. R is taken as
the mean radius of a territory assuming that territories
are circular and have an average size S°/ N. We can thus
report the output of the simulation as function of &
The fundamental dimensionless parameter that
characterizes the territorial random walk system is
Z = TASUaN/SQ, where v is the velocity of a single
walker. Previous work in one dimension [4,6] has
shown that the relative rate of displacement of a
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territory boundary compared with that of an animal
is solely controlled by the parameter Z. We thus
study the dynamics of the MSD of a territorial
random walker by varying not only ¢ but also Z as
well. The results are plotted in figure 6 showing a
non-monotonic MSD when both £ and Z are sufficiently
large. Compared with figure 5, the shape of the curve in
figure 60, separating the monotonic from the non-mono-
tonic regime in parameter space, appears to be inversely
proportional. This does not come as a surprise because
preliminary results for Brownian walkers have deter-
mined that the diffusion constant of the boundaries,
here called K. because the walkers are correlated,
decreases exponentially with Z [4]. In one dimension,
this exponential dependence has been shown to arise
from a similar exponential dependence in the prob-
ability of a territory to extend into interstitial range,
as opposed to shrinking further [7]. In turn, this prob-
ability turns out to be related to the first passage
time for an animal to cross its territory and thus
extend it, where possible, into previously interstitial
area [7].

The inset in figure 6a has been plotted to show that
the solid curve, corresponding to large Z and & values,
appears close to constant, whereas the other curves
show a clear increase at long times. Although we
would expect that an increase in & would generate
damped oscillations in the MSD, as ¢ becomes too
large, the animals move so quickly that they are on
average able to re-mark all or most of their territory
boundaries before the scent decays away. In such a scen-
ario, the territories move much less. As a consequence,
there is no set of parameters for which we obtain a
strongly oscillating MSD at intermediate times and a
rapidly increasing MSD at long times.

5. CONCLUSIONS

We have considered the dynamics of territorial animals
that deposit scent in each of the locations they visit. As
scent marks persist for some time even in the absence of
the signaller, an animal is able to broadcast to other
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Figure 6. (a) How the MSD varies with time for various different values of Z and & The solid line has &€= 1.51, Z = 15.56; the
dotted line £ =1.51, Z= 2.22; the dashed line £ = 0.80, Z = 2.22; the dot-dashed line £ = 0.34, Z = 2.22. Before beginning to
measure the animal MSD, the simulation was run until such a time as the borders have an MSD proportional to ¢/In(¢) and
each animal was placed in the centre of its territory. This mirrors the initial conditions used in figure 5. In the region where
the MSD is non-monotonic, the higher we make both Z and &, the more pronounced the oscillatory behaviour. The inset demon-
strates the long-time behaviour of the MSD, which is to increase proportional to K, t/In(t), where K., depends on both Zand &.
For the Z=15.56 case, K., is so low that the line looks flat, since K., decreases exponentially as Z increases. (b) The threshold
value of ¢ for various Z, below which the MSD is monotonic and above which it is not.

individuals where it has been in the recent past, and
thus claim a certain region of space as its own. Quanti-
fying the dynamics of such a system via interacting
random walkers is complicated by the intrinsic non-
Markovian nature of the processes. In that respect,
approximate models of such dynamics become useful
for data comparison and predictions. Here, we have
explored a two-dimensional one-body reduction of the
original many-body problem and we have compared
two animal movement statistics, Brownian and corre-
lated random walks. By focusing at intermediate time
scales, we predict the appearance of damped oscillations
in the animal MSD in certain regimes. Stochastic simu-
lations of territorial correlated random walkers have
confirmed that non-monotonicity may appear as the
distribution of turning angles is sufficiently narrow, or
alternatively as the correlation time is sufficiently large.

Damped oscillatory MSD dynamics owing to confine-
ment and correlations of a generic random process have
been predicted in granular materials in terms of the
stress variance as function of depth [35] and observed
in the context of charged balls constrained to move in
a circular channel [36]. Here, we predict damped oscil-
lations in the context of moving animals as function
of the movement characteristics and the size of the con-
fining region. Although non-monotonic MSDs appear
not to have been observed in the animal kingdom yet,
this may simply be owing to such processes being
ignored as noise. Furthermore, we believe that future
spatio-temporally resolved experimental data will be
routinely interpreted through models such as this one
since highly accurate tracking devices, e.g. GPS collars,
are becoming cheaper and more widespread. As the pre-
cision of these devices increases, it is important to
consider types of model where the movement statistics
are of different kinds. In that respect, we plan to
extend this model to situations where animals move
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as Lévy [13] or self-avoiding walkers [37] as well as
other forms of anomalous diffusion [38].

Our theoretical investigations extend previous
studies on the characterization of correlations in
animal movement data [34,39] to scenarios for which
an animal is observed within a confined space. This is
clearly important since the reconstruction of a turning
angle distribution from the observed animal trajectory
would include the turns owing to the boundaries of
the available space. In such a scenario, it becomes
more appropriate to interpret the data in terms of a cor-
relation distance or a correlation time, which does not
include the turns associated with the reflections at
boundaries. These quantities are precisely the par-
ameters vT and T, respectively, of our telegrapher’s
equation model. The value of T may then be related
to the persistence of the animal in an unbounded
domain via the mean cosine of the distribution of
turning angles [34].

Furthermore, the appearance or otherwise of oscil-
lations in the MSD may allow one to discern more
easily the processes underlying movement data, when
data have been collected with a relatively long sampling
rate. In such a case, examining turning angles between
fixes could result in the movement looking Brownian
when the process is in fact correlated. However, the
appearance of oscillations in the MSD could help dis-
cern whether the walk is correlated in this scenario,
without needing to gather further finer-grained move-
ment data.

Since the period of oscillations is approximately
equal to vT” /L in square territories and directly related
to vT%/R in circular territories, a measurement of the
speed and turning angles when the animal is unaffected
by foreign scent boundaries may provide a novel meth-
odology to estimate the dimensions of a territory. The
presence of sharp maxima (square territories) as well
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as sharp minima (circular territories) in the oscillations
may also help in the actual model fitting of experimen-
tal observations. In summary, besides the obvious
applicability to the dynamics of territorial animals,
our study provides a useful quantitative tool to charac-
terize animal movement in confined space and offers the
opportunity to differentiate between plausible
interpretations of the underlying movement statistics.
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APPENDIX A. PROBABILITY
DISTRIBUTION OF THE RANDOMLY
FLUCTUATING BOUNDARIES

A.1. Rectangular territories

To describe the time dependence of the probability dis-
tribution Q(L,t) of the fluctuating boundary positions
L = (Ly,, L1, Loy, Ly,) along the z and y coordinates,
we use the two-dimensional Fokker—Planck equation

8Q(le7 L217 L1y7 L2y7 t)
ot

0?2 0?
= ol {K (aL%z * aL%)

*? P
+E)| 575+ 575
Y (aLfy a;:g)

Yof O O
2 \ 0Ly, 0Ly,

Yy O 0
re — ar L1*L1*L1
4 (8L2y 6L1y>[ 2~ By J]}

X Q(lev LZza Llyy L2ya t),

where ¢(t) is the dimensionless time-dependent diffu-
sion, K is the boundary diffusion constant,
represents the rate with which the separation
between territory boundaries returns to the value
L, per unit length squared, and L, is the average
separation distance between the right and left
boundaries along the o-axis. Equation (A1) is the
extension in two dimensions of the approximate
model used to study the dynamics of one dimension
territorial walkers [6].

When ¢(¢) is time-independent, equation (A 1) reduces
to a diffusive process for the four boundary locations
along the o axes (0= =z or o= y). The separation dis-
tance along each axis Ly, — L1, is also a random
Gaussian process. When ¢(t) is time-dependent,
Q(L1g, Loy, L1y, Loy, t) represents a Gaussian random pro-
cess whose probability broadens in time along each of the
four components proportionally to fg dse(s) [6,40]. To

> [Loy — Ly — Ly

(A1)
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ensure that Lo, — L1, always remains positive, equation
(A1) needs to be supplemented by the boundary
conditions 0Qu (Lo, Log, t) /0 L15—0Qu(Ligy Loy, t)/
OLasly, 1, = 0. For a generic ¢(t), one can solve
equation (A 1) with the above-mentioned boundary
condition through separation of variables [6] by seeking
solutions of the partial differential equation of the form
Q(Llwv L?z'> L1y7L2y7 t) = Qw(Llwa L2x7 t)Qy(Llya L2y7 t)~
For initial conditions of the type Q,(L2g, L1s,0) =
8(Lig + Ly/2)6(Lay — Ly/2), with 8(2) a Dirac delta
function, that is, §(2) = 0 if z # 0 and [~ d28(z) = 1,
equation (A1), when initially Ly, = —L1, = Ly/2, is
exactly solved by the expression reported in equation
(2.1) of the main text.

A.2. Circular territories

For animal territories of circular rather than rectangu-
lar shape, we construct a Fokker—Planck equation for
the boundary, which is equivalent to (A 1). In Cartesian
coordinates, the fluctuations of the boundaries are
decomposed into a centroid location and a separation
term. In keeping with this analogy, the probability dis-
tribution is defined in terms of a centroid with
coordinates (z., y.) and a radial extent of the territory
p. A spring force constrains the radial variations to be
around the value R and the subdiffusive nature of the
fluctuations are taken into account with the time-
dependent function ¢(t), giving a Fokker—Planck
equation of the form

aQ(:ECa Yey Py t) _ 82 82 62
gD = ()] Ke o T o) T K

2 - WfQp . (A2
Equation (A 3) is supplemented with the boundary con-
dition 9Q(e, Ye, p, 1) /0pl,,_o = 0 because p must remain
positive at all times. Similar to the case of rectangular
territories, the presence of the time-dependent diffusion
constant ¢(t) that multiplies the right-hand side of the
equation describes a Gaussian process whose time
dependence is subordinated to ¢(t). The functional
dependence of ¢(t) is chosen in such a way that the
boundary MSD reproduces the observed long-time
behaviour of the MSD in the territorial random
walk system. Equation (A 3) is decomposable along
each direction and thus one can straightforwardly
write the solution as the product of the dynamics for
the territory radius and the territory centroid. For
localized initial conditions of the type Q(z., ¥, p, 0) =
&(p — R)8(x.)8(y.), the exact analytical solution has
been reported in equation (2.2) of the main text.

APPENDIX B. PROBABILITY
DISTRIBUTION OF THE RANDOMLY
MOVING ANIMAL

B.1. Cartesian coordinates

Through separation of variables, equation (2.3) with
the reflective boundary condition at the territorial
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boundaries can be solved exactly. The simplest way to
proceed is to derive a probability distribution W*(o,
t) for the case when the boundaries are at position
—X/2 and A/2, where A is the length of the territory.
The final result in equation (B10) will then be
obtained by shifting values of o and oy by the centroid
location. By seeking solutions of the form W*(o,t) =
g(t)g(o) and substituting in equation (2.3) one can
write

d*g(t) | 1dg(2)

2
——t= t B1
w T =¥ (B 1)
and
d*q(0)

2 _ 2
v W = q(O’)7 (B 2)
where o is a real constant to be defined. The only

allowed solutions of equation (B2) satisfying the
boundary condition and normalized to 1 are those
for which «®<0, ie if a=ila] with i=+v—I,
giving

q(a)zglcos(|j| >+B bm<| o )

The imposition of the boundary conditions dg(z)/
dal, = £ /2 = 0 requires either

(B3)

2n—1
Bi=0 and |a|y, ;= M
’ A

or

2

By, =0 and |af,, = (2n) v
A

Equation (B1) has the general solution
g(t) = Crexp(s;t) + C_exp(s_t), Where sS4 =

—(1/27T) + i®,, with 0, = /a2 —1/4T?. Further

imposing the condition dW*(O' t=0)/dt=0 one
can write the time dependence as

2

B sin(0,1)
9(t) =1 1/270,

+T@n} (B 4)

By making a linear superposition of all the possible
solutions satisfying the boundary and initial conditions
one can write the general solution of W*(o, t) in the
interval —A/2, A/2 as

[cos(@nt)

—+00
W*(a,1) = Ag+e 7>~ Agu{cos(Oaat)

n=1

sin( Oy, t

+— 5T @,, }COS(QHWG)

+00
4 e t2T Z A2n_1{ cos( Bz, _1t)

sin(@s,_1t)
o } m[2n—1 7701

where the constants A, (containing the term 476,/
(270,,— 1)) need to be determined based on the
initial condition W*(o, 0) and the fact that W*(o,
t) is normalized at all times. Normalization makes
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Ag=1/A, whereas the other A, constants depend
explicitly on the choice of the initial conditions. We
will consider in particular the case when W*(o,
0) = 8(o — oy), where & is a Dirac delta dlstrlbutlon
whose representation in a finite domain can be
expressed as

|0-_ 0-0‘ < B/Qa
’ (B 6)

|0'—0'()| >§7

W*(c,0) =

o W

in the limit 8 — 0.
Equation (B5) is a Fourier series representation of
W* (o, t) and the coefficients A,, can be computed via

9 (A2
—J dO’COS(Q?MTg> W*(a,0)
Mo )

AZn =

and

9 (M2
Aoy = —J dosin [(277, . 1)73} W*(0,0). (B7)
Yy A

Using equation (B 6), the Green function becomes

W*(o,t) = i‘l’)\eitﬂTZCOS(Q’ﬂ/]T/\)

—1
X COS <2nw%) { cos( Oy, t)

sin( Oy, t) 2 _yor
576, }+Ae

X 2 sin [(271 - 1)77%1
X sin [(Qn — 1)77%} { cos( Oy, _1t)

+ Sin(@2n,1 t) } :

2 T@2n71 (B 8)

which can also be written in the more compact form

32 (e )

+(—1)" COS(MTO-—;UO)]

M e_t/QT.
276, ,

W*

>~IH
>,|»—l

X {cos(@,wt) + (B9)

By shifting the coordinates o and oy by the amount
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equal to —(Ags + A1) /2 one then obtains whose solution is
Ay
Wi (0, t|Ag, Lo) :H(a—c,,+2> g(r) = Ell( >+E2K( ) (B 14)
v

A
H(lo—L;——
<n(o-t,-3)
1 1 -
X {A_U+A_g; {cos(nwo-)\:ro)

+(=1)" cos(mr“o-;i%ﬂ

Sin( @mo—t> eit/Q T
2 T@n,a' ’

X [COS( 0,.t)+

(B 10)
with 0, defined in equation (2.5) of the main text and
where the subscript oy and the symbols A, and L, on
the left-hand side make explicit the dependence in W
on the animal initial position and boundary locations,
respectively.

Equation (B10) when the left boundary is at the
origin has been derived in the past in Masoliver et al.
[41] and can also be found in Polyanin [31]. The simpli-
fied expression when oy=0 and L,=0 has been
reported in equation (2.1) of the main text.

B.2. Polar coordinates

The Green function solution of equation (2.6) with
reflective boundary condition at 7= p can also be
found by the method of separation of variables. By
seeking solutions of the form W(r, 6, t) = ¢(r)©(6)g(t),
one obtains the equation

P00 20 2O
q(r) a(r) * 1* 6(6)
9@ 14®)
=0 T B
and separately solve the equations
d? 1d )
2
and
v’ r? q(r) + v2rdq(r) + [V*o — &?r?lq(r) =0, (B12)

dr? dr

where the constants o and w need to be determined.

Since the probability distribution W(r, 0,t) must

be single-valued, we require that O(6+ 2m) = O(6).

From the general form of the solution in 6, i.e.

Bie"? + Bye™? one realizes that there exist solutions
only if @ = —n?, where n is an integer. We thus have

O(6) = By, cos(nb) + By, sin(nb).
The radial dependence then becomes

2La(r) - dg(r)
dr? dr

o2
[nz +FT2] q(r) =0,

(B13)

J. R. Soc. Interface (2012)

where I,(z) and K,(z) are, respectively, modified Bessel
functions of order n of the first and second kind [42].
Since the modified Bessel functions are monotonic increas-
ing functions, the only way to satisfy the reflective
boundary condition at r= p is that a” < 0, i.e. a = 1al.
We thus have that the radial solution is of the form

a(r) = B, (),

where J,,(2) is a Bessel function of the first kind and E» = 0
since Y, (z) oc K, (iz) possess a divergence at r=0. For
convenience, one can define now the constant = a/v
whose units are the inverse length. To satisfy the bound-
ary condition dg(r)/dr|,_, =0, we then require that
J1(Bp) = 0, which occurs m correspondence of the zeros
of the derivative of the Bessel function J7,(z) [30]. We
can thus write the general form of the radial solution as

q(r) =E Jll(ﬁnmr)7

where B,,, is the mth positive zeros of the trascendental
equation J;,(Bp) = 0. If B = 0, then a non-trivial solution
is only possible if n = 0 and it gives a constant value. Sol-
ution of the time-dependent part follows the same
derivation as in the previous section, giving a constant
when B=0, and ¢(¢) = cos(t2,,) + sin(t2,,,)/

(27102,,,), where now Q,, = \/Bnm —(1/4T?). The

linear superposition of all the possible solutions then gives

(B15)

(B16)

400 +oo0

AO +e t/2TZ Z AnmJ Bnm

n=0 m=
X [Bn1 cos(n8) + By sin(nb)]

sin(t2,,,)
270, |’

W(r,0,t) =

X [cos(t.(lnm) + (B17)

To determine the various constants, we first use
the fact that W(r 0, t) is normalized at all times. Comput-
ing jp drrfo de W(r 6, t) = 1 one reduces the infinite
n-series to just the n = 0 term, while all the terms in the
m-series are identically zero because f(f dr rJo(By,,T)
= le (B()mp)/lBOm =P ‘]/0 (B()mp)/BOm = 0. For normali-
zation purposes, we thus have that Ay = 1/(mp?).
For the other constants, we exploit the fact that
equation (B17) is a Bessel series in r, which implies
that [30]

JO dr T‘J (Bnp ) (Bnmr) = 617-,77”

for all B>0 satisfying J,(Bp) =0 with §,,, a
Kronecker delta. Furthermore, since

{J’2(Bnp )

+ (B, 0" — )

J: dr 7‘J2(,Bnp r)=
T2 (Bp)/1B2,P°1}
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we obtain

Jp dr rJu(B,,r) W(r, 6,0)

+00 2
np npp )J (Bnpp)
Z(J QBnp
[

B cos(nb) + Bpg sin(nb)],
which gives us the relation
262,

A, =
T(B e — ),

JdMme) W (r, 6, 0).

(B18)

(Bnp )

Analogous to the calculations for the radial variable,
one can exploit the fact that equation (B 17) is also a
Fourier series in . By multiplying equation (B 17) by
cos(n#) and sin(nh), one gets the n-coefficients of the
Fourier series in 0 as

1 21T
B, = —J d# cos(nb)P(r, 6,0),
0

1 2
Bys = —J d6 sin(n6) P(r, 6,0)
mJo

1 21T
and By = —J de P(r, 6,0).

B19
o), (B19)

For localized initial conditions of the form W(r, 6, 0) =

h(r)f(0) with

1 | |<£‘
- r—"Tl >3,
1 2
A)="4° 5 (B20)
0 |r—r0|>2,
in the limit &€ — 0 and
1 _
~ lo-al <3,
a
£(0) = o (B21)
0 |6—(90|>§7

in the limit & — 0, one obtains the following expression:

1 e t2TE® &

2

mm@o(ra 0, t‘P) = H(p— ’f’) {77P2+777)

n=0 m=1
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(W = 1) T3 (M)

X COS[TL( 0— 00)} |:COS( thm) +

sin(t42,,,)
270, |’

(B22)

where C,=1if n=0 and C,=2 if n> 1, and where
the subscript 1y, 6y and the symbol p make explicit
the dependence on, respectively, the initial animal pos-
ition and the radial extent of the territory. The
parameters B, in equation (B17) have been rewritten
in equation (B22) as a dimensionless quantity such
that B,,.r, Bumto and B,.p are expressed, respectively,
as /‘Lmnr/ p l-'LmnTO/ P and Monm with Monm the mth zero of
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the trascendental equation J;(u) =0, and where (2,
has been written in equation (2.8) of the main text.
Equation (B22) and its diffusive limit coincides with
the expressions reported in Polyanin [31]. With the
initial condition 7y=0, the expression above reduces
to equation (2.7) reported in the main text.

APPENDIX C. ANIMAL MEAN SQUARE
DISPLACEMENT

C.1. Rectangular territories

In rectangular coordinates, the expression for
the MSD is obtained by calculating the integral
J7 da [7r dy[(x—x0)*+(y—y0)] W(=, y, {|L), where
W(z,y, t|L§ = Wiz, t|Ls, Ay) W(y, | Ly, Ay). The result-
ing expression is given by

o AN
MRS TRET

+ n 2 . —
2: D° )2 cos |21 — )
2’[7, ’IT2 v AJ

-1
+)\§ cos [—27”1-([):5/ — yo)] }

Yy
i 7Lt —
SlIl< 6, ) } t/2T

(Ix —xo*) = (Lo — m)* + (L,

X {cos(@gnt) + 5T0,,

+82 2n—1

X{wawmmf%_ngg_%q

+/\'y(£y - ?/O) sin |:(2n — 1):(£y — ?JO):| }

sin(6h,11) o t/2T
2 T@anl .

X {cos(@gn_lt) +
(C1)

At short times, equation (C 1) can be evaluated by noti-
cing that >/ (—1)"cos(2nmz) = —1/2,3°% (=1)"
sin[(2n — 1)z] = 0 and that for —1/2 < 2<1/2, where
=/ or 2= /A SIS (C1) cos(2nm2)/
(2n) = w22 /4 — 72/48  and 3" (—1)"sin[(2n
—1)72]/(2n — 1)* = —72z/4. With simple algebra, one
can then show that the MSD increases as 2v*t>. The
expression in equation (3.1) of the main text is derived
from equation (C1) when the territories are square and
centred at the origin with the walker starting from the
origin as well.

When territorial boundaries fluctuate, to obtain
the animal MSD, one needs to integrate over L, and
Ao along the two directions. For the case of square
territories, one first multiplies equation (C1) by
Qu(Ag, L4, 1) Qy(Ay, Ly, 1), given in equation (2.1), and
then simplifies the resulting expression by setting

Ao = L, with L the inverse square

Lo=1L, Ay =A, A
root of the population density, b,(t) = b(t) and
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co(t) = c(t) for o= x or y. After integration over the By  repetitive use of the relations J(z)=
variable £, one can write the animal MSD as —Jn1(2)+ndn(2)/2,J,(2) = Jpo1(2) —ndn(2) /2,  and

2o 2J!(2) = Jy—1(2) — Jns1(2), one can show that [ drr?
Ux —xo|) = 22 + 1 +—+ =L+ ¢(t) Jo(m)mr/p) (202 (Kom) — Hom 3 (Rom) 0"/ 6 = ,
6 12 200(kom)P" M5 Jy A7 do(ptr/p) =0, [T drr
+e R 4)\2(_1)71 Jl(/"‘“lmr/p) = JQ(Mlm)p //*‘le and JQ(MIm)/Jl(I*le) =
+ J dAZ(A, 1) Z — 5 pi,) thus reducing equation (C 3) to
0 n=1 772(2n)
Sin(@mt)] —t)2T\ P ? Jo(om(10/P))
X San (10, Oy t) + ——2— ([x—x0 >——+7“ +4e —
ol ) [cos( B, 1) + T peoft = e 2y R
—(2n) w2 c(t) /402 4(_1)” Sin(tﬂom)
xe P r— X |cos(tdy;,) +72 T,
X |:C(t)82n—1(1307 yo) 71‘/2TZPTU‘]1 M1m To/p))
m=1 /“le )Jl(/*l‘lm)
+L TQn—l(xo %) Sin(tﬂlm>
7T(2n — 1) ) X COS(thm)-f—m . (04)
Sin(@gnflt)
% [COS(@Q"’_lt) + 2760, 1 } Equation (C 4) simplifies to equation (3.2) reported in
the main text, when the animal initial condition
wo—@n—1 me(t)/ax | —t/27 coincides with the origin. At short times, one has that
’ [cos(£2,t) + sin(2,t)/(2T,)]exp[—t/(2T)] reduces to
(C2) 1— 22 v’ /(2p?). As with Cartesian coordinates,

wherein Z has been defined in §3.2 of the main
text,  Su(zo, ) = cos(nmry/A) + cos(nmyg/A)  and
T (20, 90) = xpsin(nmzg/A) + yosin(nayg/A). In the
simpler case, when (zp, %) = (0,0), S,(0,0) =2 and
T »(0,0) =0 and expression (C 2) reduces to equation
(3.3), as shown in the main text.

C.2. Circular territories

The calculation of the MSD in polar coordinates is car-
ried forward by realizing that |x — xo|* = r2 + T8 — 2179
cos(6— 6y), where 7, 1y and 6, 6, are measured
Wlth respect to a chosen origin. Given that
fo d6 cos[n(6—6y)] =278, and [" dfcos[n(0— 6))]
cos(@—6y) = md,1 one obtains

p 27T
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0 0
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one can now insert the short time expansion and
evaluate the series given that [30] S°°% Jo(mom?)/
[/‘LngO(MOm)] = Z2/4 - 1/8 and that Zmo:ol Jl(l“(’lmz)/
(i, — D)) = 2/2  with  z=mn/p. In
addition, twice differentiation with respect to 2z of
these two 1dent1tleb allows us to show that,
rebpectwely, T Jo(Rom?) o (Rom) = —1/2 and

Zm 1 /‘lejl(/"(‘lm )/[(/‘le B l)Jl(Mlm)} = 0. With
some simple algebra, one then deduces that the MSD in

equation (C 4) at short times grows as 2v*¢2.

To find the MSD expression when boundaries fluctu-
ate, one first needs to rewrite equation (C4) with
respect to a fixed origin, which we choose as (., y.),
and obtain the expression

P

(I = x0*) =%+ (20— 2)” + (90 — %)

|,

| fet/2T Z

m=1 l"(’Orn

V(@ — )+ (5 - )
p

sin(t02y,,)
2T o

(/"L()m

X JO Mo,

X {cos(tﬂgm) +

_ fet2T Z p\/ w0 — %)’

—1 Mlm - 1)‘] (Mlm)
V(@ — )+ (5 — )
X Ji M1,
p
] sin(t(,,)
X |:COb(thm) + T%} . (C 5)
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To average over all possible territory sizes and territory cen-
troid locations, one needs to multiply equation (C 5) by
equation (2.2) and integrate over the lengths ., y. between
—o0 and 400 and over the length p between 0 and 4. The
resulting expression can be simplified by changing the vari-
able of integration for the centroid location from (1, y.) to
the shifted polar coordinates z. = ap + recos(¢,) and
Yo = Yo + 7 sin(¢,) and performing a polar integration in
7. and ¢,. By using the shifted polar coordinates, one can
rewrite the weighting function exp[—(z> + y?)/
¢(t)]/[me(t)] in equation (2.2) as exp{—[r? + r? — 2ry7e
cos(d. — ¢y)]/c(t)} /[7e(t)], where ap and yo have been
written, respectively, as rycos(¢y) and 71qysin(dy).
The integration over ¢, can now be simplified by recog-
nizing that fg”d¢cexp[i2mrc cos(p, — by)/c(t)] =
2l (2rgme /¢(t)), where Iy(2) is the modified Bessel func-
tion of the first kind of order 0. Finally, integrating over
both the radius 7. and the length p gives the equation
R? (1)

{lx = x| = 72 + 5t et + g~ t/2T

+00 +00
gm(p7 70, t)

x| dpR(p,t)p* Y  —5-——"%
JO ( ) mzzl /“L(%m‘jo(/J“Om)
sin(ty,y,

X |:COS(tQ()m) + Z;T(?m)}

+o0

— de™"/ QTJ dpR(p, t)p

0
400
X Z fm(Pa 7’0,15)

m=1
(I“(‘%m - I)Jl(lu‘l?'n>

where G,(p, 10, t) = 2exp[—13/e(t)] [ drere exp[—12/
(O 2rore/e(t)) Jo(omre/ )/ E(F), where
Fm(p, 10, t)=2exp|—17/c(t)] J"Jeo drer?exp[—r2/e(1)]
]0(27”07”C/E(t)),]1 (/\le’f’c/p)/ﬁ(t), and where R(f’v t) has
been defined in the main text before equation (3.4).
In the simpler case, when 15=0, G,(p,0,t) =
eXp[_M(Z)mE(t)/(4p2)] and fm(pv Oa t) = E(t)lu‘lm
exp[—ui, c(t)/(4p*)]/(2p), one obtains the expression
(3.4) reported in the main text.
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