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We model trabecular bone as a nanocomposite material with hierarchical structure and pre-
dict its elastic properties at different structural scales. The analysis involves a bottom-up
multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up
the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (tra-
becular bone) levels. Continuum micromechanics methods, composite materials laminate
theory and finite-element methods are used in the analysis. Good agreement is found between
theoretical and experimental results.
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1. INTRODUCTION

Bone is a connective tissue made of a cortical (compact)
bone, forming a hard outer layer, and a trabecular
(spongy) bone, filling the interior spaces and ends of
long bones. Bone is a multi-phase composite material
consisting of organic phase (32–44% bone volume
(BV)), inorganic phase (33–43% BV) and water (15–
25% BV) [1]. The organic phase is composed of collagen
type I (approx. 90%) and non-collagenous proteins
(NCPs) (approx. 10%) [1]. The inorganic (mineral)
phase is made of calcium phosphate, which is similar to
hydroxyapatite (HA), Ca10(PO4)6(OH)2. The mineral
phase is stiff and strong but brittle, whereas the collagen
phase is soft and highly deformable [2]. Water plays an
important role in the bio-mineralization process and
serves as a plasticizer, enhancing the toughness of bone.
These components are arranged into a complex hierarch-
ical structure, which makes bone stiff, strong, tough and
yet lightweight.

We define five levels of hierarchical organization in
bone, which are described below with a focus on
trabecular bone (figure 1).

Nanoscale (mineralized collagen fibril), ranging from
few to several hundred nanometres, includes collagen mol-
ecules and HA crystals. Cross-linked collagen molecules,
which are triple helical protein chains about 1.5 nm in
diameter and 300 nm in length with 40 nm gaps between
ends, are staggered in parallel to form fibrils of about 50–
100 nm in diameter. Neighbouring collagen molecules are
shifted by 67 nm resulting in a banded structure with a
orrespondence (ijasiuk@illinois.edu).
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67 nm periodicity, as illustrated in the electron
microscopy images (figure 2a). Collagen is formed first,
followed by mineralization, which involves the filling up
of gaps and spaces in-between collagen molecules as well
as those outside with HA nanocrystals. HA minerals
have a plate-like shape with an average size of 50 � 25 �
3 nm3 [3,4]. Such mineralized collagen fibrils are the build-
ing blocks of both cortical and trabecular bone types.

Sub-microscale (single lamella), spanning from one to
few micrometres, contains mineralized collagen fibrils
which are aligned preferentially to form a single lamella
of thickness approximately 3–7 mm (figure 2b). Spaces
between the fibrils are filled with randomly arranged
minerals forming a porous foam-like structure. Each
lamella contains ellipsoidal cavities, typically 5–15 mm
in cross section and 25 mm in length, called lacunae,
which house osteocytes. Again, this scale has similar
features in cortical and trabecular bones.

Microscale (single trabecula), ranging from tens to
hundreds micrometres, represents a trabecular bone
tissue. It is made of trabecular bone packets [5] (consist-
ing of layers of lamellae oriented in different directions)
and cement lines, which form trabeculae, and an inter-
stitial bone at interconnects of trabeculae. A typical
trabecular packet, which is formed during bone remodel-
ling, has a crescent shape and is about 50 mm thick and
1 mm long (figure 2c). Trabeculae can be in the form of
rods or plates. In cortical bone, the microscale consists of
osteonal, interstitial and circumferential lamellae.

Mesoscale (trabecular bone), ranging from hundred
micrometres to several millimetres, or larger, depending
on the bone size, consists of a porous network of trabecu-
lae (figure 2d). The pores, typically in the order of 1 mm,
This journal is q 2012 The Royal Society
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Figure 2. Electron microscopy images of trabecular bone taken by us at (a) nanoscale level (10 000�), using transmission electron
microscopy (TEM), showing mineralized collagen fibrils, (b) sub-microscale (1000�) showing single lamella, (c) microscale
(700�) showing a trabecular strut and (d) mesoscale (20�) showing a porous cellular structure of trabecular bone, using
scanning electron microscopy (SEM).

Multi-scale modelling E. Hamed et al. 1655
are filled with bone marrow, fat and bone cells. In corti-
cal bone, this level represents randomly arranged osteons
embedded in an interstitial lamella, with some resorption
cavities, all surrounded by a circumferential bone.

Macroscale (whole bone level), spanning from sev-
eral millimetres to several centimetres or more,
depending on species, consists of both cortical and
trabecular bones.

Various analytical and computational models were
proposed to predict elastic properties of trabecular
bone at these different structural scales. At nanoscale,
bone was mainly modelled by using continuum mech-
anics approaches and was represented as a composite
material with collagen matrix and reinforcing HA
inclusions [6–8]. More recent studies incorporated the
effect of water and NCPs [9–12]. Computational
models, using a finite-element method (FEM), were
used in references Ji & Gao [13], Siegmund et al. [14]
and Yuan et al. [15]. Molecular dynamics (MD) simu-
lations were also used to study fibrillar collagen
[2,16] and collagen–crystal interactions [17–20]. At
sub-microscale, a single lamella was modelled computa-
tionally as a random network of preferentially oriented
mineralized collagen fibrils [21] and analytically as a
matrix-inclusion composite [9,10,12]. At microscale,
properties of trabecular bone tissue were mainly studied
experimentally using microtensile test [22–24], bending
test [25,26], ultrasound [23,27,28] and nanoindentation
[27,29–33]. Rice et al. [34] experimentally obtained
J. R. Soc. Interface (2012)
Young’s modulus of trabecular bone and used the data
together with Christensen’s model [35] for low-density
materials (LDM) to back-calculate tissue properties of
bone. Similarly, van Rietbergen et al. [36] used a three-
dimensional FEM model along with experimental data
for apparent modulus to back-calculate lower and upper
bounds for trabecular bone tissue modulus. At mesoscale,
elastic behaviour of trabecular bone was studied using
several different approaches, involving analytical and
computational techniques. Analytical studies represented
trabecular bone as a cellular solid and expressed its
Young’s modulus by power law relations in terms of
density [37–42]. Although density is a key parameter in
determining properties of trabecular bone, it alone
cannot fully capture the mechanical behaviour of bone.
Other researchers defined a fabric tensor, which charac-
terizes the textural or structural anisotropy of
trabecular bone, and found the relationships between
the elastic constants of trabecular bone and its fabric
tensor and density [43–45]. Trabecular bone’s architec-
ture, characterized by thickness, number and separation
distance of individual trabecula as well as their three-
dimensional connectivity, plays an important role in its
response. Thus, high-resolution imaging techniques,
such as micro-computed tomography (mCT), accounting
for actual trabecular bone architecture, were used in
combination with the FEM to predict elastic moduli of
trabecular bone [31,46–51]. Computational studies invol-
ving idealized periodic geometry included [52–57].
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In this paper, we present a multi-scale analytical and
computational approach to predict the elastic proper-
ties of trabecular bone. At the mesoscale, we account
for actual bone geometry. Results are compared with
our own experimental data at mesoscale and experimental
results reported in literature.
2. METHODS

2.1. Experiments

2.1.1. Specimen preparation
Bone tissue was obtained from the Emory Body Donor
Program (Emory University, Atlanta, GA, USA).
Samples were extracted from proximal tibia (near
knee joint) of an 88-year-old male. The donor expired
due to a myocardial infarction and was otherwise a rela-
tively healthy individual with no discernable signs of
bone disease. The top portion, approximately 10 cm,
of tibia was obtained. The head of tibia was cut off,
about 3 cm from the top, exposing its greatest cross sec-
tion. Four samples were then cored out using a trephine
8 mm in diameter. The cylindrical samples were taken
such that their axis of symmetry was along tibia’s
long axis. These samples were next cut to a 1 : 1
aspect ratio using a metal mould and an irrigated
saw. Afterwards, the samples were kept in saline mois-
tened gauze wraps and stored at 2208C. Samples
were thawed in saline for 3 h before imaging and testing.
One bone sample was used for mCT imaging, while all
four samples were used for mechanical testing.

2.1.2. Micro-computed tomography imaging
A trabecular bone sample was imaged at the Georgia
Institute of Technology Orthopaedic Bioengineering
Laboratory (Atlanta, GA, USA) using a SCANCO
Medical Products (Basserdorf, Switzerland), MicroCT
40 unit. The cylindrical sample (8 mm in length and
diameter) was scanned with a 37 mm resolution and a
20 mm voxel size. A total of 173 two-dimensional
slices were taken of the sample. Contours were drawn
around the filled voxels to determine an outer boundary
of the sample and reconstructed into a three-
dimensional image. A mCT image captures the actual
trabecular bone architecture from which three-
dimensional connectivity, trabecular thickness, trabe-
cular number and trabecular spacing can be obtained.
The mCT imaging process discretizes a sample into
cubic elements called voxels. Thresholding distinguishes
bone voxels from pore voxels. The threshold value was
selected by choosing a middle point between the peak
corresponding to trabecular bone and the peak corre-
sponding to pores in the image spectrum, using the
procedure described in Basillais et al. [58] and Stock
[59]. The BV and total volume (TV) of the sample
are calculated, respectively, from the number of voxels
assigned to bone and the total number of voxels and,
then, the volume fraction (VF) of the sample can be
determined as BV/TV.

2.1.3. Compression test
Uniaxial compression test was used to obtain apparent
Young’s moduli of trabecular bone samples. The term
J. R. Soc. Interface (2012)
‘apparent’ is used because the sample size is smaller
than the representative volume element (RVE) [60].
Four cylindrical trabecular bone samples were placed
between polished steel plates at room temperature and
loaded in the direction of their axis of symmetry.
Specimens were not constrained at the platen from an
in-plane motion. An Instron Mini-Bionix testing
machine with a 1000 N load cell was used to apply a
compressive strain rate of 0.01 s21. The applied strain
rate was within the range of strain rates that occur in
vivo, which are between 0.01 and 0.08 s21 [61]. After
obtaining the stress–strain curves of trabecular bone
samples, their Young’s moduli were calculated by fitting
a linear regression through the initial linear portions of
the curves.
2.2. Multi-scale modelling of trabecular bone

The multi-scale modelling approach consists of succes-
sive homogenization steps. Elastic properties of
trabecular bone are calculated at each structural level,
from nanoscale to mesoscale (figure 1). In the analysis,
results from a lower level are used as inputs for a higher
level. Continuum micromechanics approaches, laminate
composite materials theory (LCMT) and FEMs are
used to account for structures of bone at these different
scales. Figure 3 summarizes all the modelling steps and
shows how they are linked together at different scales.
In the following sections E, n, C and F denote, respect-
ively, Young’s modulus, Poisson’s ratio, elastic stiffness
tensor and VF of a pertinent phase. We use the term
‘Young’s modulus’ when a material is isotropic and,
more generally, the term ‘elastic stiffness tensor’ when a
material may be anisotropic. Sr

0 is the fourth-order
Eshelby tensor accounting for the shape of phase r in a
matrix with stiffness tensor C0, where 0 is a generic
subscript.

Mechanical properties and VF of bone’s constituents
are the key parameters for determining its overall be-
haviour. Our choices of properties and VFs of bone’s
constituents, collagen, HA, water and NCPs, are listed
in table 1. A wide range of values for Young’s moduli
of collagen and HA are reported in literature (see
table 1 in Hamed et al. [10]). The reported values for
Young’s modulus of collagen range from less than
1 GPa [62] up to 12 GPa [63], depending on the state
of hydration, species and experimental technique used
to measure them. In order to assess the effect of collagen
properties on the overall properties of trabecular bone,
we select two values of collagen Young’s modulus: 1.5
[6,64–66] and 5.4 GPa [67], which are, respectively, on
lower and higher sides of the range. The Poisson ratio
of collagen is assumed to be 0.28, so that the overall
Poisson’s ratio of wet collagen composite becomes
about 0.35, as estimated by Katz [7] and used by
Nikolov & Raabe [11]. For HA crystals, Young’s mod-
ulus is chosen to be 114 GPa [68,69], while Poisson’s
ratio is set to be 0.23 based on the results of ab initio
calculations by Snyders et al. [70]. To our knowledge,
no data are available in the literature for the mechanical
properties of NCPs. Since they consist of flexible coiling
macromolecules, their Young’s modulus must be lower
compared with modulus of collagen with its relatively
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Figure 3. A schematic showing all the successive steps taken in the modelling of trabecular bone: (a) basic constituents of bone,
(b) a collagen–water composite formed by cross-linked collagen matrix containing some pores filled with water and NCPs, (c) a
HA–water composite built up by an HA crystal containing some intercrystalline pores within filled with water and NCPs, (d) a
mineralized collagen fibril made up from collagen–water and interfibrillar HA–water minerals, (e) an extrafibrillar HA foam
made up from HA minerals and some pores in-between them hosting water and NCPs, ( f ) a coated fibril formed through the
interaction of mineralized collagen fibrils and extrafibrillar HA foam, (g) a single lamella built up from the coated fibrils
matrix perforated by lacunar cavities, (h) several lamellae with different fibril orientation stacked together to form a single
trabecula and (i) a trabecular bone as a porous network of trabeculae.
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Table 1. Properties of bone’s constituents used in calculations.

material Young’s modulus (GPa) Poisson’s ratio volume fraction (%)

collagen 1.5, 5.4 0.28 41
hydroxyapatite 114 0.23 42
non-collagenous proteins 1 0.45 5

bulk modulus (GPa) Poisson’s ratio volume fraction (%)

water 2.3 0.49 12
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stiff triple-helical structure. Here, we assume that the
NCPs have isotropic properties with Young’s modulus
equal to 1 GPa [11] and Poisson’s ratio of 0.45 which
is a typical value for soft polymers with flexible mol-
ecules [11]. For water, the bulk modulus is chosen to
be 2.3 GPa with a Poisson’s ratio of 0.49 corresponding
to a nearly incompressible material. For simplicity, all
components are assumed to have linear elastic and
isotropic behaviour. This is an idealization. Many
researchers [68–70] reported the properties of a single
HA crystal to be anisotropic. Similarly, for collagen,
Cusack & Miller [63] reported a transversely isotropic
behaviour. However, while modelling bone as a
collagen–HA composite, almost all researchers used
isotropic behaviour for both collagen and HA crystals.
This was due to simplicity and, more importantly,
owing to lack of enough experimental data for anisotro-
pic properties of collagen and HA in bone. Most
references report isotropic properties of HA and col-
lagen (giving a wide range of values), while the data
on anisotropic constants are very limited (also showing
a wide range of values). Our model is set up in such a
way that it could easily handle anisotropic properties
of collagen and HA. However, owing to the uncertainty
of what the anisotropic constants are, we choose isotro-
pic properties for constituents of bone.

Furthermore, researchers used VFs for HA minerals
ranging from 32 to 52 per cent [10,11]. Here, we selected
an intermediate value between the lower and upper
bounds, 42 per cent which was also used by Jager &
Fratzl [71] for a fully mineralized bone. The collagen
VF is assumed to be 41 per cent [72]. Given that collagen
comprises approximately 90 per cent of the organic
matrix [1], the VF of NCPs is about 5 per cent. The
remaining phase is water with a VF of 12 per cent.
Moreover, table 2 presents the local VFs of phases
used as modelling inputs at each hierarchical level.

2.2.1. Nanoscale
Collagen molecules are assembled in a staggered array
with gap and overlap zones to form a collagen fibril [3].
Mineral crystals are located in gaps and spaces between
collagen molecules, as well as outside the collagen fibril,
while water and NCPs fill remaining open spaces [12].
This structure is called a mineralized collagen fibril. We
model collagen in its wet state as a collagen–water com-
posite and represent a mineral, which contains
intercrystalline pores within, filled with water and
NCPs, as a HA–water mixture. We consider two differ-
ent cases, using two assumptions about collagen–HA
interactions: interpenetrating phases versus matrix-
inclusion phases. The first one is motivated by the
J. R. Soc. Interface (2012)
recent experimental observations of Chen et al. [73]
which showed that HA crystals form a continuous
phase in bone, while the second one is included for com-
parison since most previous studies used this model.

Assumption 2.1. Both phases, namely collagen–water
and interfibrillar HA–water composites, interpenetrate
each other. In this case, we use a self-consistent (SC)
method [74,75], with two types of inclusions and no
matrix, to model bone at nanoscale. Cross-linked col-
lagen molecules are assumed to be cylindrical with an
aspect ratio of 1000 : 1 : 1 following the approximately
100 mm length [76] and approximately 100 nm diameter
of collagen fibrils [1,77], while HA crystals are rep-
resented as ellipsoids with an aspect ratio of 50 : 25 : 3
following [4]. Given the stiffness tensors of collagen–
water composite, Ccolw, and interfibrillar HA–water
mixture, CHAw, the effective elastic stiffness tensor of a
mineralized collagen fibril, Cfib, is obtained as

Cfib¼fFcolwCcolw : ½IþScyl
fib : C�1

fib : ðCcolw�CfibÞ��1

þFHAwCHAw : ½IþSellips
fib : C�1

fib : ðCHAw�CfibÞ��1g :

fFcolw½IþScyl
fib : C�1

fib : ðCcolw�CfibÞ��1

þFHAw½IþSellips
fib : C�1

fib : ðCHAw�CfibÞ��1g�1:

ð2:1Þ

Subscripts ‘colw’, ‘HAw’ and ‘fib’ denote collagen–
water mixture, interfibrillar HA–water composite and
mineralized collagen fibril, respectively. Superscripts
‘cyl’ and ‘ellips’ denote, respectively, cylindrical and
ellipsoidal shapes of two phases, namely collagen and
HA minerals. Since effective properties of a mineralized
collagen fibril, Cfib, are not isotropic, the components of
Eshelby tensor are evaluated numerically for an ellipsoi-
dal inclusion embedded in a general anisotropic matrix
using a Fortran code developed by Gavazzi & Lagoudas
[78]. Equation (2.1) is solved iteratively to obtain the
implicit unknown Cfib. Note that the Eshelby tensors
Scyl

fib and Sellips
fib , which are dependent on Cfib, must be

updated in each iteration.
Assumption 2.2. Cross-linked wet collagen molecules

play the role of a continuous matrix, while interfibrillar
HA–water minerals act as reinforcing inclusions. Here,
we use a Mori–Tanaka (MT) scheme [79,80] to obtain
Cfib as follows:

Cfib ¼ Ccolw þFHAwfðCHAw �CcolwÞ : ½I
þ Sellips

colw : C�1
colw : ðCHAw �CcolwÞ��1g : fFcolwI

þFHAw½Iþ Sellips
colw : C�1

colw : ðCHAw �CcolwÞ��1g�1;

ð2:2Þ
where subscripts and superscripts are as defined above.



Table 2. Local volume fractions of different phases used as modelling inputs at different hierarchical levels.

hierarchical level phase (volume fraction)

nanoscale
(mineralized collagen fibril)

collagen–water (56.7%) interfibrillar HA-watera (43.3%)

sub-microscale
coated fibril mineralized collagen fibrils (87.4%) extrafibrillar HA foama (12.6%)
single lamella coated fibrils (97%) lacunar cavities (3%)

microscale (single trabecula) single lamellae (100)
mesoscale (trabecular bone) single trabeculae (8%) trabecular pores (92%)

aSeventy-five per cent of total HA are interfibrillar, while the remaining 25% are extrafibrillar.
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Effective stiffness tensor of collagen–water com-
posite, Ccolw, is obtained by using the MT method,
with the cross-linked collagen molecules being a
matrix and the voids filled with water and NCPs
being inclusions, as

Ccolw ¼ Ccol þFwfðCw �CcolÞ : ½I
þ Ssph

col : C�1
col : ðCw �CcolÞ��1g : fFcolI

þFw½Iþ Ssph
col : C�1

col : ðCw �CcolÞ��1g�1: ð2:3Þ

Moreover, a mineral interacting with water can
be represented as a porous solid with some inter-
crystalline voids within (internal defects), filled with
water and NCPs. We use the MT method to predict
the elastic stiffness tensor of HA–water mixture,
CHAw, as follows:

CHAw ¼ CHA þFwfðCw �CHAÞ : ½I
þ Ssph

HA : C�1
HA : ðCw �CHAÞ��1g : fFcolI

þFw½Iþ Ssph
HA : C�1

HA : ðCw �CHAÞ��1g�1: ð2:4Þ

In equations (2.3) and (2.4), ‘col’, ‘w’ and ‘HA’
denote, respectively, dry collagen, water and NCPs
and HA crystals. Also, superscript ‘sph’ denotes the
spherical shape of pores. We assume that water VFs
in collagen–water and HA–water composites are equal.

Note that HA minerals in bone are distributed non-
uniformly owing to stochastic nature of mineralization
process and owing to remodelling [81], leading to spatial
heterogeneity at different structural scales. We use
effective medium theories which allow us to specify
the alignment and shapes of phases but not their
specific arrangement. Our models assume that different
phases are distributed randomly but in a statistically
uniform way which enables us to obtain homogenized
properties of a mineralized collagen fibril. Alternatively,
one could assume a non-uniform distribution of min-
erals. However, since the exact distribution of minerals
in collagen fibrils is still not well understood (exper-
imental techniques are not yet available to make such
measurements), we choose the above described
approach for simplicity. Secondly, local mineral con-
tents vary spatially owing to remodelling. In this
paper, we assume a uniform spatial mineral distri-
bution, again for simplicity.
J. R. Soc. Interface (2012)
2.2.2. Sub-microscale
At sub-microscale, we use two different modelling steps
[10]: (i) combining mineralized collagen fibrils with an
extrafibrillar HA foam, and (ii) combining the compo-
site obtained in step (i) with lacunar cavities to form
a single lamella.

2.2.2.1. Mineralized collagen fibrils combined with an
extrafibrillar hydroxyapatite foam (coated fibrils).
X-ray diffraction, atomic force microscopy and
transmission electron microscopy (TEM) confirmed
the existence of randomly dispersed extrafibrillar min-
erals outside the fibrils [82–85]. Such HA crystals
with intercrystalline pores in-between, filled with
water and NCPs, can be thought of as an extrafibrillar
HA foam [86,87]. This structure motivates the use of SC
scheme with two interpenetrating phases, HA–water
minerals and pores filled with water and NCPs, to
determine the overall elastic stiffness of extrafibrillar
foam, CEfoam, as

CEfoam ¼ fFwCw : ½Iþ Ssph
Efoam : C�1

Efoam : ðCw

�CEfoamÞ��1 þFHAwCHAw : ½I

þ Ssph
Efoam : C�1

Efoam : ðCHAw

�CEfoamÞ��1g : fFw½I

þ Ssph
Efoam : C�1

Efoam : ðCw �CEfoamÞ��1

þFHAw½Iþ Ssph
Efoam : C�1

Efoam : ðCHAw

�CEfoamÞ��1g�1; ð2:5Þ

where subscript ‘Efoam’ refers to extrafibrillar HA
foam. Random orientation of extrafibrillar HA crystals
leads to isotropy of the homogenized material. There-
fore, for simplicity, both phases are assumed to be
spherical in shape, following [88].

We propose the following two methods to model the
interaction between mineralized collagen fibrils and
extrafibrillar HA foam:

Assumption 2.3. Mineralized collagen fibrils, having
elastic properties obtained in §2.1, and extrafibrillar
HA foam, with effective properties obtained from
equation (2.5), interpenetrate each other. Fibrils are
assumed to be cylindrical in shape and unidirectionally
aligned, while extrafibrillar HA foam is assumed to be
spherical. Subscript ‘cfib’ denotes mineralized collagen
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fibrils combined with extrafibrillar HA (coated fibrils).
The SC scheme is applied to obtain the effective elastic
tensor of coated fibrils, Ccfib, as

Ccfib ¼ fFfibCfib : ½Iþ Scyl
cfib : C�1

cfib : ðCfib

�CcfibÞ��1 þFEfoamCEfoam : ½I

þ Ssph
cfib : C�1

cfib : ðCEfoam �CcfibÞ��1g : fFfib½I

þ Scyl
cfib : C�1

cfib : ðCfib �CcfibÞ��1

þFEfoam½Iþ Ssph
cfib : C�1

cfib : ðCEfoam �CcfibÞ��1g�1:

ð2:6Þ

In equation (2.6), superscripts ‘cyl’ and ‘sph’
represent cylindrical and spherical shapes of
mineralized fibrils and extrafibrillar HA foam, res-
pectively, while Scyl

cfib and Ssph
cfib denote Eshelby tensors

for cylindrical (fibrils) and spherical (HA foam)
inclusions.

Assumption 2.4. Extrafibrillar HA foam and minera-
lized collagen fibrils are represented, respectively, as a
matrix and inclusions. This assumption motivates us
to use the MT method to predict Ccfib as

Ccfib ¼ CEfoam þFfibfðCfib �CEfoamÞ : ½I

þ Scyl
Efoam : C�1

Efoam : ðCfib

�CEfoamÞ��1g : fFEfoamI

þFfib½Iþ Scyl
Efoam : C�1

Efoam : ðCfib

�CEfoamÞ��1g�1;

ð2:7Þ

where subscripts ‘cfib’, ‘fib’ and ‘Efoam’ are as defined
above, and Scyl

Efoam denotes the Eshelby tensor corre-
sponding to cylindrical inclusions (fibrils) embedded
in the extrafibrillar HA foam.

2.2.2.2. Single lamella. The matrix obtained in
equations (2.6) or (2.7) is perforated by ellipsoidal cav-
ities (lacunae) to form a single lamella. Effective
stiffness tensor of a single lamella, Clamella, is obtained
by using the MT scheme as

Clamella¼CcfibþFlacfðClac�CcfibÞ : ½I

þSellips
cfib :C�1

cfib : ðClac�CcfibÞ��1g :fFcfibI

þFlac½IþSellips
cfib C�1

cfib : ðClac�CcfibÞ��1g�1: ð2:8Þ

Subscripts ‘lamella’ and ‘lac’ denote, respectively, a
single lamella and lacunae. Lacunae are represented
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by ellipsoids with a 5 : 2 : 1 aspect ratio, following
dimensions 25 � 10 � 5 mm3 [12,89], occupying 3 per
cent VF.
2.2.3. Microscale
Elastic properties of a single trabecula are obtained
by following the homogenization scheme of Sun & Li
[90] developed using LCMT. In their model, a thick
laminate was composed of several laminas with different
fibre orientations. In our problem, a single trabecula
plays the role of a thick laminate and it consists of k
lamellae, each having a preferential collagen fibril
orientation. In trabecular bone, the lamellae are
arranged into orthogonal, rotated and twisted motifs
[91,92], similarly as in cortical bone [93]. Since we do
not have enough information on the actual arrangement
of lamellae in each trabecula, we assume for simplicity
that the lamellae are oriented randomly, spanning
whole set of directions, which gives rise to an isotropic
response. In reality, trabeculae may be anisotropic
and their properties may change from one trabecula
to another.

Three vectors V1, V2 and V3 are used to define a pre-
ferential orientation of the kth lamella. The vector V1 is
obtained through the following equations:

wðkÞ ¼Rp;
uðkÞ ¼ 2Rp

and V ðkÞ1 ¼ k sinwðkÞ cosuðkÞ sinwðkÞ sinuðkÞ coswðkÞ l;

9=
;

ð2:9Þ

where R is a random number, with values 0 � R � 1,
generating a randomly oriented pattern of lamellae.
Since vectors V2 and V3 are contingent on vector V1,
they can be obtained as follows:

X ðkÞ3 ¼ 2R� 1;

Y ðkÞ3 ¼ 2R� 1;

Z ðkÞ3 ¼�
X ðkÞ3 sinwðkÞ cosuðkÞ þY ðkÞ3 sinwðkÞ sinuðkÞ

coswðkÞ
;

V ðkÞ3 ¼
kX ðkÞ3 Y ðkÞ3 Z ðkÞ3 lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX ðkÞ3 Þ
2þðY ðkÞ3 Þ

2þðZ ðkÞ3 Þ
2

q ,

and V ðkÞ2 ¼V ðkÞ3 �V ðkÞ1 :

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
ð2:10Þ

A transformation matrix, Tij, is used to account for
different fibril orientation in each lamella [94]
[Tij ] ¼

m2
1 n2

1 p2
1 2n1p1 2p1m1 2m1n1

m2
2 n2

2 p2
1 2n2p2 2p2m2 2m2n2

m2
3 n2

3 p2
3 2n3p3 2p3m3 2m3n3

m2m3 n2n3 p2p3 n2p3 þ n3p2 p2m3 þ p3m2 m2n3 þm3n2

m3m1 n3n1 p3p1 n3p1 þ n1p3 p3m1 þ p1m3 m3n1 þm1n3

m1m2 n1n2 p1p2 n1p2 þ n2p1 p1m2 þ p2m1 m1n2 þm2n1

2
6666664

3
7777775
; ð2:11Þ



(a) (b)

Figure 4. (a) Side view of the entire meshed specimen and (b) a detailed view of the finite-element mesh composed of tetrahedral
elements.
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where mi, ni and pi are direction cosines of axis i (i ¼
1, 2, 3), that is,

m1 n1 p1

m2 n2 p2

m3 n3 p3

2
4

3
5 ¼

V ðkÞ1

V ðkÞ2

V ðkÞ3

2
664

3
775: ð2:12Þ

After transformation, the stiffness tensor of the kth
lamella, C (k), is obtained as

CðkÞ ¼ TðkÞ�1CTðkÞ, ð2:13Þ

whereC is the stiffnesstensorof a single lamella asobtained
in equation (2.8). These k lamellae are then stacked
together, according to Sun & Li’s formulation [90], to
build a single strut. A nearly isotropic response is obtained
using a large number of randomly oriented lamellae.

2.2.4. Mesoscale
We use the mCT-based FEM to study the elastic behav-
iour of trabecular bone. To create the FEM model from
the digitized geometry, first the surfaces are exported
from the mCT data into a file (.stl format) consisting
of nodes and two-dimensional tetrahedral surfaces.
These two-dimensional surface elements are then
meshed into three-dimensional tetrahedral elements
using HyperMesh v. 6.0 (Altair Engineering, Inc.).
The mCT data are originally in the form of voxels
giving rise to pixellated edges in the structure. However,
after meshing with tetrahedral elements, the edges and
boundaries become smooth. HyperMesh uses two types
of smoothing algorithms (which are specially designed
to smooth jagged edges of structures created from top-
ology optimization): a modified Laplacian over-
relaxation algorithm for size-correcting smoothing and
a modified isoparametric-centroidal over-relaxation
algorithm for shape-correcting smoothing. The FEM
mesh, illustrated in figure 4a, is made of 6 063 971
elements and 1 558 400 nodes. After meshing, the qual-
ity of elements is checked, and for the elements that fail
the quality criteria, node locations or element edges are
swapped in order to improve quality. Detailed section of
the tetrahedral mesh is shown in figure 4b.

After the mesh is constructed, linear elastic FEM
analysis is conducted using OptiStruct v.11.0 (Altair
Engineering, Inc.) to compute the apparent Young’s
J. R. Soc. Interface (2012)
modulus of trabecular bone in the direction of loading.
The bone tissue is assumed to be linear elastic and iso-
tropic with properties obtained in §2.2.3. Boundary
conditions for the FEM model idealize those of a uniax-
ial compression test: a uniaxial displacement (uniform
strain) is applied to the top surface of the cylindrical
bone sample, the bottom surface is kept fixed, while
the sides are taken to be traction-free. Rough surfaces
at the top and bottom of the cylindrical sample are
trimmed to obtain straight surfaces to facilitate the
application of displacement boundary conditions. The
FEM run for a single case takes about 20 min on a com-
puter with CPU AMD Athlon 64 X2 5200 at 2.6 MHz,
8 GB RAM, Linux Fedora 14. The run requires 3.5 GB
RAM and 20 GB disk space.

An energy approach is used to calculate the apparent
Young’s modulus of the bone sample, Ebone. Elastic
strain energy density is defined as

W
V
¼ 1

2
�s �1; ð2:14Þ

where W is the total elastic strain energy of the system
and V its volume. �s and �1 are, respectively, average
stress and strain in the direction of loading, which are
related to each other through equation �s ¼ Ebone�1.
According to the average strain theorem, the volume
average of strain is equal to the applied strain, 1applied,
i.e. �1 ¼ 1applied. Thus, the bone apparent Young’s
modulus is

Ebone ¼
2W

V ð1appliedÞ2
: ð2:15Þ

Alternatively, one could use a direct method, instead
of the energy approach, to obtain the apparent modulus
as Ebone ¼ �s=1applied.

For comparison, we use the analytical model pro-
posed by Gibson [40] to predict Young’s modulus of
trabecular bone, Ebone, as a function of its relative
density:

Ebone

Estrut
¼ A

rbone

rstrut

� �n

; ð2:16Þ

where Estrut is Young’s modulus of a single trabecular
strut as obtained in the previous level, rbone and rstrut

are, respectively, the density of trabecular bone and



Table 3. Different modelling approaches and methods applied at each scale (SC, self-consistent method, MT, Mori–Tanaka
method, LCMT, laminated composite materials theory and mCT-based FEM, micro-computed tomography-based finite-
element method).

hierarchical level

modelling approaches and methods

approach I approach II approach III approach IV

nanoscale interpenetrating
phases (SC)

interpenetrating
phases (SC)

matrix-
inclusion (MT)

matrix-
inclusion (MT)

sub-microscale
coated fibril interpenetrating

phases (SC)
matrix-

inclusion (MT)
interpenetrating

phases (SC)
matrix-

inclusion (MT)
single lamella matrix-

inclusion (MT)
matrix-

inclusion (MT)
matrix-

inclusion (MT)
matrix-

inclusion (MT)
microscale LCMT LCMT LCMT LCMT
mesoscale mCT-based FEM mCT-based FEM mCT-based FEM mCT-based FEM

1662 Multi-scale modelling E. Hamed et al.
the density of solid bone (struts), and A is a constant of
proportionality. Gibson [40] developed two types of
structures for trabecular bone: a network of rod-like
elements at low relative densities (less than 0.2) and a
network of plate-like elements at higher relative den-
sities (greater than 0.2). The first structure forms an
open cell, while the later one forms a closed cell. Here,
n was determined to be equal to 2 for an open cell
and 3 for a closed cell [40]. The relative density, rbone/
rstrut, is equal to bone volume fraction determined
by mCT.

We also evaluate effective Young’s modulus of trabe-
cular bone, Ebone, by using Christensen’s result [35] for
isotropic low-density materials (LDMs), which is given as

Ebone ¼
2ð7� 5nstrutÞ

3ð1� nstrutÞð9þ 5nstrutÞ
FboneEstrut; ð2:17Þ

where nstrut is the Poisson ratio of a single trabecular
strut, obtained in §2.2.3, and Fbone is the VF of bone
material, which is the same as VF parameter obtained
by mCT.

Finally, as an alternative approach, we use the MT
method with trabecular struts being a matrix and tra-
becular pores being inclusions. The effective stiffness
tensor of trabecular bone, Cbone, is then found as

Cbone ¼ Cstrut þFporefðCpore �CstrutÞ : ½I
þ Ssph

strut : C�1
strut : ðCpore �CstrutÞ��1g : fFstrutI

þFpore½Iþ Ssph
strut : C�1

strut : ðCpore �Cstrut��1g�1;

ð2:18Þ

where subscripts ‘strut’ and ‘pore’ denote, respectively,
trabecular struts and pores. Properties of a single trabe-
cula, Cstrut, are taken from §2.2.3 and the pores are
assumed to be spherical with VF as obtained from
mCT imaging.

2.2.5. Summary of modelling approaches
In §2.2.1, we introduced two different methods to model
collagen–HA interactions: one using SC scheme for
modelling interpenetrating phases and the other using
MT scheme based on matrix-inclusion geometry. Simi-
larly, two modelling methods were discussed in §2.2.2
accounting for different types of interactions between
fibrils and extrafibrillar HA foam. These, altogether,
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give rise to four sets of approaches to model bone at
nano- and sub-microscale and, subsequently, at higher
scales. Such approaches, called as approaches I, II, III,
and IV, are summarized in table 3.
3. RESULTS

3.1. Experiments

A trabecular bone specimen was imaged using mCT to
provide an input for FEM analysis. Bone volume frac-
tion was determined to be approximately 8.1 per cent.
Other material characteristics calculated from mCT
imaging are listed in table 4.

Compression test was used to obtain the stress–
strain curves of four trabecular bone samples and,
then, their Young’s moduli were calculated. Results
are tabulated in table 5. The first sample was digitized
and used to create the mCT-based FEM model.

3.2. Modelling

3.2.1. Nanoscale
We assume that 75 per cent of total HA crystals are
interfibrillar and the remaining crystals (25%) form an
extrafibrillar HA foam. Cylindrical collagen molecules
as well as ellipsoidal mineral crystals are aligned along
the axis 1 of the Cartesian coordinate system. Effective
stiffness tensor of a mineralized collagen fibril, obtained
using approaches I–IV, are listed in tables 6–9. The
results are reported for both values of collagen modulus:
1.5 and 5.4 GPa (shown inside the parentheses). The
corresponding engineering elastic constants, namely
Young’s moduli, shear moduli and Poisson’s ratios,
are also given in tables 10–13.

3.2.2. Sub-microscale
3.2.2.1. Mineralized collagen fibrils combined with an
extrafibrillar hydroxyapatite foam. Cylindrical minera-
lized collagen fibrils, with the elastic constants given
in tables 6–9, are combined with extrafibrillar HA
foam to form coated fibrils. We assume that extrafibril-
lar mineral crystals comprise 25 per cent of the total
HA. Again, four different approaches are used to find
effective elastic constants of coated fibrils and the
results are tabulated in tables 6–9 for both values of



Table 4. mCT outputs obtained for the trabecular bone sample used in the modelling procedure.

TV (mm3) BV (mm3) VF (%) Conn. D.a (1/mm3) SMIb Tb.Nc (1/mm) Tb.Thd (mm) Tb.SPe (mm)

364.9387 29.5258 8.09 1.8332 2.4959 1.2504 0.1267 0.7852

aThree-dimensional connectivity.
bStructural model index.
cTrabecular number.
dTrabecular thickness.
eTrabecular separation.

Table 5. Experimental results for Young’s modulus of
trabecular bone samples in the loading direction.

sample Young’s modulus (MPa)

1a 27.2
2 30.2
3 78.3
4 38.1

mean 43.5
s.d. 23.7

aSample used to create mCT-based FEM.
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collagen Young’s modulus. Tables 10–13 list the
corresponding engineering moduli.

3.2.2.2. Single lamella. Components of stiffness tensor of
a single lamella are given in tables 6–9 for different
modelling approaches I–IV. The results corresponding
to collagen Young’s modulus of 1.5 and 5.4 GPa are
listed, respectively, outside and inside parentheses.
Equivalently, the engineering elastic parameters of a
single lamella are given in tables 10–13.

3.2.3. Microscale
A large number of lamellae, with the elastic properties
given in tables 6–9, are randomly oriented to form a
single trabecula. Isotropic elastic stiffness components
of a single strut (trabecula) are found for such lamellar
arrangement, following the modelling procedure
mentioned in §2.2.3, and are tabulated in tables 6–9
for different modelling approaches and two different
values of collagen Young’s modulus. Also, tables 10–13
list Young’s modulus and Poisson’s ratio of a trabecula.

3.2.4. Mesoscale
The mCT-based finite-element model is used to deter-
mine the apparent Young’s modulus of trabecular
bone by using as inputs the material properties
obtained at the previous level and the mesostructural
geometry obtained from the mCT images. Computed
elastic constants of trabecular bone are given in tables
6–9 for different modelling approaches and collagen
Young’s moduli. Young’s modulus and Poisson’s
ratio of trabecular bone for different modelling
approaches are also listed in tables 10–13. Figures 5
and 6 illustrate, respectively, FEM results for a

displacement magnitude, u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y þ u2

z

q
, and

a displacement component in the direction of loading,
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uz. The displacement magnitude, which captures both
axial and lateral displacement components, tends to
increase spatially towards the centre of cylinder and
goes to zero at the fixed bottom edge. The axial displa-
cement is non-uniform, as seen in figure 6, which means
that the bone structure behaves like a loose collection of
weakly connected pieces of bone. Also, figure 7 shows an
elastic strain energy density distribution. In this figure,
localized hot spots indicate bending as opposed to uni-
form tension/compression. Furthermore, most of the
elastic strain energy is concentrated at thin strut con-
nections. These imply that bending is a primary
deformation mode for low-density trabecular bone and
show that trabecular connectivity has a large effect on
the elastic properties of trabecular bone [95–98].

Moreover, to understand how trabecular bone archi-
tecture affects its elastic behaviour at mesoscale, we
compare the results of our mCT-based FEM with some
simpler models such as the Gibson model, the Christen-
sen’s LDM method and the MT scheme. The results are
listed in table 14 for different modelling approaches I–
IV and both values of collagen Young’s modulus.
4. DISCUSSION

We defined four distinct hierarchical levels in trabecular
bone, namely the mineralized collagen fibril, single
lamella, single trabecula and trabecular bone levels,
and used several micromechanics methods, LCMT and
FEM to obtain the elastic constants of trabecular
bone at these different structural scales. Alternative
methods could be used at each scale.

Table 15 lists Young’s modulus of a single trabecula
obtained by using our different modelling approaches
and compares the results with those obtained by exper-
iments. As mentioned before, different experimental
techniques were used to measure the mechanical
properties of individual trabeculae including the micro-
tensile test [22–24], bending test [25,26], ultrasound
[23,27,28] and nanoindentation [27,29–32,99]. Because
of the complex geometry of a single trabecula, which
has a curved shape and a varying cross section, machin-
ing bone samples for tensile and bending tests may
cause significant surface defects [42]. Furthermore, the
deformations are typically so small that any artefactual
displacement, such as slipping at loading points, results
in an underestimation of the measured value [42].
Therefore, the results of microtensile and bending
tests of trabecular struts are lower than the true
values [42]. That is the reason why the experimental
data for a single trabecula listed in table 15 exclude



Table 6. Non-vanishing elastic stiffness components of trabecular bone at different structural levels for the collagen Young’s
moduli of 1.5 and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach I.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

C11 33.05 (36.93) 37.26 (41.23) 35.98 (39.81) 18.88 (26.46) 0.357 (0.485)
C12 4.75 (7.16) 5.78 (8.33) 5.61 (8.06) 3.09 (5.63) 0.153 (0.208)
C13 2.13 (4.48) 2.82 (5.46) 2.83 (5.31) 3.09 (5.63) 0.153 (0.208)
C22 15.27 (23.22) 18.63 (27.21) 17.8 (25.96) 18.88 (26.46) 0.357 (0.485)
C23 2.24 (4.68) 2.91 (5.67) 2.94 (5.57) 3.09 (5.63) 0.153 (0.208)
C33 4.31 (11.31) 6.15 (14.38) 5.95 (13.50) 18.88 (26.46) 0.357 (0.485)
C44 5.00 (7.82) 6.73 (9.77) 6.43 (9.33) 7.9 (10.42) 0.102 (0.139)
C55 7.04 (9.13) 8.92 (11.12) 8.55 (10.65) 7.9 (10.42) 0.102 (0.139)
C66 12.47 (13.80) 14.32 (15.63) 13.79 (15.06) 7.9 (10.42) 0.102 (0.139)

Table 7. Non-vanishing elastic stiffness components of trabecular bone at different structural levels for the collagen Young’s
moduli of 1.5 and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach II.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

C11 33.05 (36.93) 39.55 (43.12) 38.19 (41.63) 21.38 (27.89) 0.4 (0.509)
C12 4.75 (7.16) 6.20 (8.59) 6.03 (8.31) 3.79 (6.05) 0.171 (0.218)
C13 2.13 (4.48) 3.56 (5.92) 3.54 (5.73) 3.79 (6.05) 0.171 (0.218)
C22 15.27 (23.22) 20.16 (28.09) 19.27 (26.8) 21.38 (27.89) 0.4 (0.509)
C23 2.24 (4.68) 3.73 (6.18) 3.72 (6.04) 3.79 (6.05) 0.171 (0.218)
C33 4.31 (11.31) 9.04 (16.17) 8.63 (15.12) 21.38 (27.89) 0.4 (0.509)
C44 5.00 (7.82) 7.63 (10.26) 7.29 (9.8) 8.79 (10.92) 0.115 (0.146)
C55 7.04 (9.13) 9.74 (11.65) 9.33 (11.16) 8.79 (10.92) 0.115 (0.146)
C66 12.47 (13.80) 14.69 (15.90) 14.15 (15.32) 8.79 (10.92) 0.115 (0.146)

Table 8. Non-vanishing elastic stiffness components of trabecular bone at different structural levels for the collagen Young’s
moduli of 1.5 and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach III.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

C11 12.33 (26.47) 15.17 (30.59) 14.69 (29.55) 8.75 (20.03) 0.155 (0.354)
C12 2.29 (5.66) 2.95 (6.72) 2.92 (6.53) 2.23 (5.21) 0.066 (0.152)
C13 1.53 (3.84) 1.92 (4.73) 1.91 (4.51) 2.23 (5.21) 0.066 (0.152)
C22 7.35 (19.15) 9.29 (22.71) 8.92 (21.64) 8.75 (20.03) 0.155 (0.354)
C23 1.56 (3.98) 1.94 (4.77) 1.93 (4.71) 2.23 (5.21) 0.066 (0.152)
C33 3.19 (9.48) 4.25 (11.97) 4.16 (11.27) 8.75 (20.03) 0.155 (0.354)
C44 1.29 (4.09) 2.23 (5.8) 2.14 (5.55) 3.26 (7.41) 0.045 (0.101)
C55 1.28 (4.07) 2.31 (5.84) 2.22 (5.62) 3.26 (7.41) 0.045 (0.101)
C66 5.18 (10.76) 6.76 (12.65) 6.50 (12.18) 3.26 (7.41) 0.045 (0.101)
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the tensile and bending results, while includes the more
reliable results of ultrasound and nanoindentation tech-
niques. Note that most of the nanoindentation data on
trabecular bone reported in literature are obtained
using embedded samples in dry condition. Our analyti-
cal results for Young’s modulus of a single strut are in a
good agreement with experimental data. Gibson et al.
[42] discussed different methods for measuring Young’s
modulus of wet human trabeculae in the longitudinal
direction and concluded that 18 GPa is the best esti-
mation for Young’s modulus of solid trabeculae, which
J. R. Soc. Interface (2012)
is the same as our modelling prediction for approach I
and collagen Young’s modulus of 1.5 GPa.

Also, the second part of table 15 compares the results
of our mCT-based FEM analysis for different modelling
approaches with experimental data. Since trabecular
bone volume fraction significantly affects its Young’s
modulus, the values of bone volume fraction for exper-
imental data are also included. The experimental data
clearly show an increase in bone modulus with bone
volume fraction. Our experimental results compare
well with the experimental values reported in literature



Table 9. Non-vanishing elastic stiffness components of trabecular bone at different structural levels for the collagen Young’s
moduli of 1.5 and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach IV.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

C11 12.33 (26.47) 21.02 (33.78) 20.34 (32.62) 12.92 (22.27) 0.232 (0.393)
C12 2.29 (5.66) 3.78 (7.14) 3.73 (6.93) 3.11 (5.76) 0.099 (0.168)
C13 1.53 (3.84) 2.99 (5.29) 2.97 (5.12) 3.11 (5.76) 0.099 (0.168)
C22 7.35 (19.15) 12.15 (24.05) 11.67 (22.93) 12.92 (22.27) 0.232 (0.393)
C23 1.56 (3.98) 3.05 (5.48) 3.05 (5.37) 3.11 (5.76) 0.099 (0.168)
C33 3.19 (9.48) 7.89 (14.31) 7.53 (13.38) 12.92 (22.27) 0.232 (0.393)
C44 1.29 (4.09) 4.13 (6.77) 3.95 (6.48) 4.91 (8.26) 0.067 (0.113)
C55 1.28 (4.07) 4.43 (7.00) 4.25 (6.71) 4.91 (8.26) 0.067 (0.113)
C66 5.18 (10.76) 8.03 (13.14) 7.73 (12.65) 4.91 (8.26) 0.067 (0.113)

Table 10. Engineering elastic constants of trabecular bone at different structural levels for the collagen Young’s moduli of 1.5
and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach I.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

E1 31.06 (33.77) 34.82 (37.63) 33.55 (36.26) 18.01 (24.48) 0.265 (0.36)
E2 13.69 (19.47) 16.7 (24.00) 15.83 (22.75) 18.01 (24.48) 0.265 (0.36)
E3 3.92 (10.07) 5.59 (12.84) 5.36 (11.96) 18.01 (24.48) 0.265 (0.36)
G12 12.47 (13.80) 14.32 (15.63) 13.79 (15.06) 7.9 (10.42) 0.102 (0.139)
G13 7.04 (9.13) 8.92 (11.12) 8.55 (10.65) 7.9 (10.42) 0.102 (0.139)
G23 5.00 (7.82) 6.73 (9.77) 6.43 (9.33) 7.9 (10.42) 0.102 (0.139)
n12 0.258 (0.262) 0.258 (0.247) 0.258 (0.248) 0.141 (0.175) 0.3 (0.3)
n21 0.114 (0.151) 0.124 (0.158) 0.122 (0.156) 0.141 (0.175) 0.3 (0.3)
n13 0.36 (0.288) 0.337 (0.282) 0.348 (0.291) 0.141 (0.175) 0.3 (0.3)
n31 0.045 (0.086) 0.054 (0.096) 0.056 (0.096) 0.141 (0.175) 0.3 (0.3)
n23 0.463 (0.354) 0.416 (0.334) 0.436 (0.351) 0.141 (0.175) 0.3 (0.3)
n32 0.133 (0.183) 0.139 (0.179) 0.148 (0.185) 0.141 (0.175) 0.3 (0.3)

Table 11. Engineering elastic constants of trabecular bone at different structural levels for the collagen Young’s moduli of 1.5
and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach II.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

E1 31.06 (33.77) 36.95 (39.4) 35.59 (37.97) 20.4 (25.73) 0.298 (0.3678)
E2 13.69 (19.47) 18.03 (24.75) 17.11 (23.47) 20.24 (25.73) 0.298 (0.378)
E3 3.92 (10.07) 8.2 (14.41) 7.76 (13.38) 20.24 (25.73) 0.298 (0.378)
G12 12.47 (13.80) 14.69 (15.9) 14.15 (15.32) 8.79 (10.92) 0.115 (0.146)
G13 7.04 (9.13) 9.74 (11.65) 9.33 (11.16) 8.79 (10.92) 0.115 (0.146)
G23 5.00 (7.82) 7.63 (10.26) 7.29 (9.8) 8.79 (10.92) 0.115 (0.146)
n12 0.258 (0.262) 0.254 (0.246) 0.255 (0.247) 0.151 (0.178) 0.299 (0.3)
n21 0.114 (0.151) 0.124 (0.155) 0.123 (0.153) 0.151 (0.178) 0.299 (0.3)
n13 0.36 (0.288) 0.289 (0.272) 0.300 (0.28) 0.151 (0.178) 0.299 (0.3)
n31 0.045 (0.086) 0.064 (0.099) 0.065 (0.099) 0.151 (0.178) 0.299 (0.3)
n23 0.463 (0.354) 0.364 (0.326) 0.381 (0.343) 0.151 (0.178) 0.299 (0.3)
n32 0.133 (0.183) 0.165 (0.190) 0.1 73(0.195) 0.151 (0.178) 0.299 (0.3)
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for trabecular bone of comparable porosity [102]. How-
ever, both our modelling and experimental results for
Young’s modulus of trabecular bone are on the lower
side of the values reported in literature. This might be
due to the fact that the specific bone samples used to
create the FEM model and to do compression testing
J. R. Soc. Interface (2012)
were from an old (88-year-old) donor and, consequently,
were very porous. Another reason for the poor results of
our experimental data may be the systematic errors in
the platen compression test of trabecular bone, which
occur owing to end artefacts [107]. Such errors lead to
an underestimation of compressive Young’s modulus



Table 12. Engineering elastic constants of trabecular bone at different structural levels for the collagen Young’s moduli of 1.5
and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach III.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

E1 11.23 (23.98) 13.79 (27.6) 13.30 (26.65) 7.84 (17.88) 0.116 (0.263)
E2 6.38 (16.82) 8.10 (19.99) 7.73 (18.89) 7.84 (17.88) 0.116 (0.263)
E3 2.77 (8.37) 3.73 (10.58) 3.62 (9.90) 7.84 (17.88) 0.116 (0.263)
G12 5.18 (10.76) 6.76 (12.65) 6.5 (12.18) 3.26 (7.41) 0.045 (0.101)
G13 1.28 (4.07) 2.31 (5.84) 2.22 (5.62) 3.26 (7.41) 0.045 (0.101)
G23 1.29 (4.09) 2.23 (5.8) 2.14 (5.55) 3.26 (7.41) 0.045 (0.101)
n12 0.234 (0.231) 0.247 (0.232) 0.253 (0.236) 0.203 (0.206) 0.299 (0.3)
n21 0.133 (0.162) 0.145 (0.168) 0.147 (0.167) 0.203 (0.206) 0.299 (0.3)
n13 0.365 (0.308) 0.339 (0.303) 0.342 (0.301) 0.203 (0.206) 0.299 (0.3)
n31 0.09 (0.107) 0.092 (0.116) 0.093 (0.112) 0.203 (0.206) 0.299 (0.3)
n23 0.425 (0.354) 0.339 (0.332) 0.396 (0.351) 0.203 (0.206) 0.299 (0.3)
n32 0.184 (0.176) 0.18 (0.176) 0.186 (0.184) 0.203 (0.206) 0.299 (0.3)

Table 13. Engineering elastic constants of trabecular bone at different structural levels for the collagen Young’s moduli of 1.5
and 5.4 GPa, which are shown, respectively, outside and inside parentheses. The results correspond to approach IV.

elastic constants (GPa) nanoscale

sub-microscale

microscale mesoscalecoated fibril single lamella

E1 11.23 (23.98) 19.26 (30.63) 18.56 (29.52) 11.71 (19.9) 0.173 (0.292)
E2 6.38 (16.82) 10.62 (21.13) 10.1 (20.00) 11.71 (19.9) 0.173 (0.292)
E3 2.77 (8.37) 6.91 (12.64) 6.52 (11.72) 11.71 (19.9) 0.173 (0.292)
G12 5.18 (10.76) 8.03 (13.14) 7.73 (12.65) 4.91 (8.26) 0.067 (0.113)
G13 1.28 (4.07) 4.43 (7.00) 4.25 (6.71) 4.91 (8.26) 0.067 (0.113)
G23 1.29 (4.09) 4.13 (6.77) 3.95 (6.48) 4.91 (8.26) 0.067 (0.113)
n12 0.234 (0.231) 0.239 (0.233) 0.242 (0.235) 0.194 (0.205) 0.299 (0.299)
n21 0.133 (0.162) 0.132 (0.161) 0.132 (0.159) 0.194 (0.205) 0.299 (0.299)
n13 0.365 (0.308) 0.286 (0.28) 0.296 (0.288) 0.194 (0.205) 0.299 (0.299)
n31 0.09 (0.107) 0.103 (0.116) 0.104 (0.115) 0.194 (0.205) 0.299 (0.299)
n23 0.425 (0.354) 0.337 (0.323) 0.353 (0.341) 0.194 (0.205) 0.299 (0.299)
n32 0.184 (0.176) 0.219 (0.194) 0.228 (0.199) 0.194 (0.205) 0.299 (0.299)
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Figure 5. Displacement magnitude contours obtained using FEM.
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Figure 6. Displacement contours in the direction of compressive loading, z-direction, obtained using FEM. The box shows the
enlarged region in figure 7.
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Figure 7. Elastic strain energy density distribution obtained using FEM.
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of trabecular bone [107]. Also, the comparison between
our modelling results and experimental data is per-
formed at micro- and mesoscales but not at nano and
sub-microscales, owing to lack of experimental data at
lower scales.

Weproposeddifferentmodellingapproaches(approaches
I–IV). The results, shown in table 15, suggest that the
assumption of interpenetration for collagen and HA at
nanoscale (in approaches I and II) gives rise to higher
Young’s moduli for trabecula and trabecular bone com-
pared with the matrix-inclusion assumption (in
approaches III and IV). When we use the SC method to
obtain the effective elastic properties of mineralized col-
lagen fibrils, the elastic properties of stiff HA are more
dominant than the properties of soft collagen, consider-
ing the fact that their VFs are almost equal. However,
the collagen properties contribute more to the overall
elastic properties when the MT method is used rather
than the SC method. Such a trend can be verified by
J. R. Soc. Interface (2012)
the results obtained for different values of collagen
Young’s modulus: increasing collagen Young’s modulus
from 1.5 to 5.4 GPa increases Young’s modulus of
single trabecula, and accordingly of trabecular bone,
more significantly in approaches III and IV (by 128 and
70%, respectively) than approaches I and II (by 40 and
27%, respectively).

Challenges and issues in creating FEM model might
give rise to some errors in estimating Young’s modulus
of trabecular bone. The first challenge is how to set a
threshold value for mCT images to accurately capture
bone architecture and porosity. Different grey levels in
the scan represent fully filled, partially filled or empty
voxels. Thresholding determines whether a partially
filled voxel is considered as bone or void. This might
cause some errors in calculating a bone volume fraction
which could be carried over into a finite-element model.
Moreover, since side surfaces of cylindrical sample were
rough, the volume of cylinder was approximated, which



Table 14. Comparison between Young’s modulus of trabecular bone at mesoscale obtained using different modelling methods.
Collagen Young’s modulus is 1.5 GPa for the numbers shown outside parentheses while 5.4 for the numbers given inside
parentheses.

modelling method

Young’s modulus of trabecular bone (GPa)

approach I approach II approach III approach IV

mCT-based FEM 0.265 (0.358) 0.297 (0.381) 0.115 (0.263) 0.172 (0.292)
Gibson model [40] 0.115 (0.157) 0.13 (0.165) 0.05 (0.114) 0.075 (0.127)
LDM [35] 0.725 (0.982) 0.808 (1.03) 0.314 (0.715) 0.469 (0.796)
MT [79,80] 0.756 (1.02) 0.849 (1.07) 0.328 (0.746) 0.489 (0.83)
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could cause inaccuracy in predicting bone’s apparent
Young’s modulus by using equation (2.15). Also, at
ends, we applied displacement boundary conditions
for simplicity. However, more realistic boundary con-
ditions should include friction. All the elements used
in FEM were selected to be linear tetrahedral elements,
for simplicity. Trabecular struts have evident bending
behaviour giving rise to linear stresses, while tetra-
hedral elements are constant stress elements. However,
we used a very fine mesh consisting of the largest
number of elements manageable with our computer
power that could minimize a possible error caused by
the use of tetrahedral elements. We did a mesh conver-
gence study in our previous work on modelling of
trabecular bone as an idealized three-dimensional peri-
odic cellular network [57]. The result showed that
using five linear elements per width of struts improved
the results by 13.17 per cent compared with the case
of using two linear elements per width of struts. Finally,
the resolution of our mCT image was selected to be
37 mm, based on sample dimensions, degree of X-ray
penetration and limitations of the equipment used for
imaging. Finer resolution would certainly capture
better the trabecular bone architecture and lead to
more accurate FEM predictions.

We made several simplifying assumptions and selec-
tions at different stages of modelling. First of all, the
classification of scales in the way done here is not
unique since the transitions between different hierar-
chies from nanoscale to macroscale in real bone are
continuous rather than discrete. We accounted for
four length scales while other choices could be made.
Also, for simplicity, we assumed that an RVE exists
at nano, sub-micro and microscales and that the fea-
tures at the previous scale are much smaller than
those at the next scale. In reality, bone features at pre-
vious scale are not necessarily infinitesimal relative to a
larger scale.

An ambiguity exists in selecting elastic properties
and VFs of collagen and HA from a wide range of
values reported in literature [10], while little data are
available for NCPs. Different choices may give rise to
very different results. To illustrate this point, we used
two different values for collagen Young’s modulus, 1.5
and 5.4 GPa.

Furthermore, at first three scales, we made simplify-
ing assumptions on bone’s actual microstructures. At
nanoscale, we did not model collagen cross-linking
explicitly. Also, we assumed perfect bonding between
J. R. Soc. Interface (2012)
collagen and HA and ignored the presence of an
interphase layer in between them. Non-uniform distri-
bution of HA crystals was also neglected in our
model. At sub-microscale, fibrils were aligned unidirec-
tionally, while in bone they are misaligned, but oriented
in a preferential direction. We assumed that extrafibril-
lar HA foam fully filled spaces between mineralized
fibrils. However, the foam might not fill all empty
spaces between the fibrils leaving some voids. Also, we
assumed that parallel layering of HA crystals in one col-
lagen fibril is aligned with crystal layers in adjacent
fibrils, while some TEM images suggest that crystals
have a random arrangement rather than an orderly
alignment in neighbouring collagen fibrils [108,109].
At microscale, we assumed bone tissue properties to
be homogeneous and isotropic. Nevertheless, several
studies showed that elastic properties of trabecular
bone at this level are heterogeneous and change across
thickness of a single trabecula (strut) [31,48,110–113].
Harrison et al. [31] performed nanoindentation along
the strut length and across the strut width of trabecular
samples and concluded that Young’s modulus across all
specimens varied from 3.14 GPa at strut exteriors to
19.75 GPa at strut centres. Such results verify the trend
of gradual reduction in tissue modulus from centre to sur-
face of trabeculae, where older bone at strut interior is
more mineralized compared with the newly formed
bone at strut surface. Also, for simplicity we assumed
that bone tissue is isotropic at microscale, while some
experimental data indicate anisotropy [114,115].

Since the main focus of this paper is on a multi-
scale modelling approach, for simplicity, we used a
single realization of trabecular bone architecture in
the analysis. Then, we compared our computational
results with the experimental data obtained using
the same specimen. This was motivated by the fact
that properties of trabecular bone are dependent on
its architecture. More comprehensive analyses, consid-
ering a number of realizations, could be done in future.
Also, nanoindentation technique could be employed to
measure local elastic properties of trabecular bone
samples used in the experiment to verify our theoreti-
cal predictions at microscale. Chevalier et al. [30] used
such approach, a combination of theory (mCT-based
FEM) and experiments (nanoindentation technique
and macroscopic mechanical testing) to characterize
trabecular bone at tissue and bone levels.

All the uncertainties and open issues discussed above
along with some other factors ignored in this work make



Table 15. Comparison of modelling results for Young’s modulus of trabecular bone with experiments. Modelling results are
listed for different approaches, indicated by I, II, III and, IV, and both values of collagen elastic modulus: 1.5 and 5.4 GPa
(inside parentheses).

tissue

Young’s modulus (GPa)

modelling results for
different approaches
and collagen moduli

experimental data

measurements bone type testing technique

single trabecula I: 18.01 (24.48)
II: 20.24 (25.73)
III: 7.84 (17.88)
IV: 11.71 (19.90)

11.4+ 5.6 [33]
12.8+ 1.2 [100]
14.8+ 1.4 [23]
17.5+ 1.12 [27]
18.0+ 2.8 [101]
18.14+1.7 [27]
19.9+ 2.5 [28]

human femur (wet)
rat vertebra (dry)
human tibia (wet)
human femur (wet)
human femur
human femur (dry)
canine femur (wet)

nanoindentation
nanoindentation
ultrasound
ultrasound
FEM back-calculation
nanoindentation
ultrasound

trabecular bone I: 0.265 (0.358)
II: 0.297 (0.381)
III: 0.116 (0.263)
IV: 0.172 (0.292)

0.027 [ours]
0.075+0.032 [102]

0.145 – 0.559 [44]
0.344+0.148 [103]

0.374+0.202 [104]

0.431+0.217 [105]

0.613+0.319 [106]

human tibia (VFa: 8%)
human vertebra

(VF: 7.5%+ 2.3%)
human tibia (VF: 8.1%)b

human vertebra
(VF: 10%+ 2.8%)b

human mandible
(VF: 17.3%+3.4%)

human mandible
(VF: 16.4%+3.1%)

human tibia
(VF: 18.4%+5.0%)

compression testing
compression testing

ultrasound
compression testing

compression testing

compression testing

compression testing

aVF: bone volume fraction.
bBone apparent density was reported in these papers. We calculated the value of bone volume fraction by using their data
and assuming the tissue density to be 1.8 g cm23 [42].
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the multi-scale modelling of trabecular bone a challen-
ging problem with much potential for future studies.
Also, the modelling process discussed here is specifically
applicable to a healthy mature trabecular bone. How-
ever, the proposed multi-scale model can capture
elastic behaviour of aged or diseased trabecular bone
by changing the input parameters and bone microstruc-
tures at different scales. Ideally, a comprehensive multi-
scale experimental characterization of bone should be
performed to provide accurate inputs for modelling.
5. CONCLUSIONS

We modelled trabecular bone as a hierarchical material
and predicted its effective Young’s moduli. Our analysis
involved a multi-scale approach, starting with nano-
scale (mineralized fibril level) and moving up the
scales to sub-microscale (single lamella level), micro-
scale (single trabecula level) and finally mesoscale
(trabecular bone level). The selection of scales is
not unique and other choices could be made. At nano-
scale and sub-microscale, we used two alternative
approaches, one assuming interpenetrating phases and
the other involving matrix-inclusion geometry. At
mesoscale, we used mCT-based finite-element model
and compared the results with those obtained using
micromechanics methods. We also considered two
different values of Young’s modulus of collagen, owing
to a wide range of data available in literature. In the
analysis, we used the models of micromechanics,
J. R. Soc. Interface (2012)
LCMT and FEM. Good agreement was found between
theoretical and experimental results. This research sets
a framework for multi-scale modelling of materials with
hierarchical structures.

We acknowledge support of the National Science Foundation
(CMMI 09–27909 ARRA, to Dr Ken Chong). We also thank
Prof. William Hutton, Emory University Spine Center, for
valuable discussions and sharing his laboratory for
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