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Lung cancer is the leading cause of cancer-related death in men and women in the United
States accounting for approximately 28% of total cancer deaths in 2010 despite comprising
only ~15% of new cancer cases1. Decades of research have contributed to our understanding
that lung cancer is a multi-step process involving genetic and epigenetic alterations where
resulting DNA damage transforms normal lung epithelial cells into lung cancer2,3. It is not
known whether all lung epithelial cells or only a subset of these cells (such as pulmonary
epithelial stem cells or their immediate progenitors) are susceptible to full malignant
transformation. Additionally, while the tumor initiating cell may have only a handful of
mutations, as the tumor expands cells may acquire additional mutations4. Smoking damages
the entire respiratory epithelium and thus “field cancerization” or “field defects” (molecular
changes) are observed in histologically normal lung epithelium, as well as a variety of
histologic preneoplastic/premalignant lesions, which also harbor molecular abnormalities
common to the adjacent tumor5. The culmination of these changes leads to lung cancers
exhibiting all the “hallmarks of cancer” (including self-sufficiency of growth signals,
insensitivity to growth-inhibitory (anti-growth) signals, evasion of programmed cell death
(apoptosis), limitless replicative potential, sustained angiogenesis, and tissue invasion and
metastasis)6,7. Lung cancer is a heterogeneous disease clinically, biologically, histologically
and molecularly. Understanding the molecular causes of this heterogeneity is the focus of
current research and these could reflect changes occurring in different classes of epithelial
cells or different molecular changes occurring in the same target lung epithelial cells.
Identifying the genes and pathways involved, determining how they relate to the biologic
behavior of lung cancer and their utility as diagnostic and therapeutic targets are important
basic and translational research issues. Thus, current information on the key molecular steps
in lung cancer pathogenesis and their timing in preneoplasia, primary cancer, and metastatic
disease and the clinical implications is the subject of this review.

Molecular epidemiology and etiology
The two main types of lung cancer, non-small cell lung cancer (NSCLC) (representing 80–
85% of cases) and small cell lung cancer (SCLC) (representing 15–20%) are identified
based on histological, clinical and neuroendocrine characteristics. NSCLC and SCLC also
differ molecularly with many genetic alterations exhibiting subtype specificity. NSCLC can
be further histologically subdivided into adenocarcinoma, squamous carcinoma, large cell
carcinoma (including large cell neuroendocrine lung cancers), bronchoalveolar lung cancer,
and mixed histologic types (e.g. adenosquamous carcinoma). Common molecular
differences between these major NSCLC subtypes and between NSCLC and SCLC are
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outlined in Table 1. These differences, as well as advances in both conventional and targeted
therapy, signify the importance of stratifying NSCLC tumors by subtype for prognostic and
predictive purposes and molecular studies8.

Approximately 85% of lung cancers are caused by carcinogens present in tobacco smoke,
while worldwide, 15–25% of lung cancer cases occur in life time “never smokers” (less than
100 cigarettes in a lifetime). These etiologic differences are associated with distinct
differences in tumor acquired molecular changes and are discussed later in this review9,10.
While the general public associates lung cancer with smoking, due to the number of lung
cancer cases overall, lung cancer occurring in life time never smokers is also a huge public
health problem. Likewise, over 50% of newly diagnosed lung cancers in the USA occur in
“former smokers” who changed their lifestyle – but the damage caused by past smoking still
led to the development of lung cancer. Thus, it will be important to identify the non-smoking
related etiologies of lung cancer arising in “never smokers” as well as methods to identify
which former smokers are most likely to develop clinically evident lung cancer.

Genetic susceptibility to lung cancer
There has been intense study of inherited predisposition to lung cancer including study of
polymorphisms associated with lung cancer risk (reviewed11,12) and familial linkage studies.
In 2008, three independent genome-wide association studies (GWASs) identified single
nucleotide polymorphism (SNP) variations at 15q24-q25.1 were associated with an
increased risk of both nicotine dependence and developing lung cancer13–15. This locus
includes genes encoding nicotinic acetylcholine receptor (nAChR) subunits (CHRNA5,
CHRNA3, and CHRNB4). More recently, two meta-analyses have provided further
evidence that variation at 15q25.1, 5p15.33, and 6p21.33 influences lung cancer risk16,17. It
has not yet been elucidated whether there is a mechanistic association with these nAChR
polymorphisms and nicotine addiction, carcinogenic derivatives of nicotine exposure, or the
effect of nicotine acting on nAChRs known to be expressed in lung epithelial cells18–26. In
addition, a genome-wide linkage study of pedigrees containing multiple generations of lung
cancer from the Genetic Epidemiology of Lung Cancer Consortium (GELCC) mapped a
familial susceptibility locus to 6q23-2527,28. A member of the regulator of G-protein
signaling (RGS) family, RGS17, was identified as a potential causal gene within this locus
where common variants were associated with familial, but not sporadic lung cancer29;
however, it is likely that more than one genetic locus in the 6q region is influencing
susceptibility.

Lung cancer in never-smokers
Never smoking lung cancers represent a distinct epidemiological, clinical and molecular
disease from smoking lung cancers. If considered independently, never smoking lung
cancers comprise the seventh most common cause of cancer death30. Never smoking lung
cancer occurs more frequently in women and East Asians, has a peak incidence at a younger
age, targets the distal airways, are usually adenocarcinomas, and frequently have acquired
EGFR mutations making them very responsive to EGFR targeted therapies9,31–36. Table 2
outlines the molecular differences between smoking and never smoking lung cancers.

Human papilloma virus (HPV)-mediated lung cancer
Human papilloma virus (HPV), an established human carcinogen (for both uterine cervical
and head and neck cancer), has been proposed to play a role in lung cancer pathogenesis;
however, published data remains controversial. The presence of HPV oncoproteins E6 and
E7 lead to inactivation of tumor suppressors p53 and Rb, respectively37,38. A meta-analysis
of 53 publications comprising 4,508 cases found a mean incidence of HPV positive lung
cancer of 25%, detected in all subtypes of lung cancer39. Geographically, European and
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American studies had a lower incidence of 15–17% while Asian lung cancer cases reported
a mean incidence of 38%. In an effort to overcome sample and detection limitations of
earlier studies, a recent case-control study of ~400 lung cancer patients of European descent,
representing the largest study to date, found no evidence of an association of HPV and lung
cancer40. While HPV will likely be primarily found in lung cancer arising in Asian
populations, the detection of oncogenic variants of HPV in some tumors and the wealth of
knowledge of the role of HPV oncoproteins suggest that a subset of lung cancer will have
HPV infection as a major etiologic feature. It will be important to characterize other
molecular alterations in these lung cancers, and how they respond to various therapies, given
the differences in response of head and neck cancer associated with HPV to EGFR targeted
therapy.

Molecular changes in lung carcinogenesis: Therapeutic implications from
both oncogenic changes and the cellular adaptations necessary to tolerate
these changes

Characterization of the molecular changes in lung cancer and associated preneoplastic cells
is becoming increasingly well-defined, aided immeasurably by the continued advancement
of both clinical and genomic tools. Improved detection and sampling of clinical samples
using fluorescent bronchoscopy, endobronchial ultrasounds and laser capture
microdissection techniques for instance, enables precise analysis of abnormal epithelial
cells. Introduction of high-resolution and high-throughput genomic tools (described in more
detail later in this review) has facilitated the identification and characterization of key
molecular changes – often involving oncogenes and tumor suppressor genes (TSGs) – and
importantly, the associated “tumor cell acquired vulnerabilities” that accompany these
oncogenotype changes (Figure 1). The key new concept that applies to many cancers,
including lung cancer, is that with the genetic and epigenetic changes that occur during
carcinogenesis the cancer becomes both dependent (“addicted”) to the continued presence/
function of these changes and also must make other cellular adaptations including mutations
to minimize the “oncogene stress” induced by these changes. While mutated oncogenic
proteins themselves are therapeutic targets (see discussion of mutant EGFR below), the
other cellular adaptations which are present in tumor but not normal cells also become
cancer specific therapeutic targets. The cancer needs both the oncogenic changes as well as
the cellular adaptations to tolerate the oncogenic changes – that is the oncogenic changes are
“synthetically lethal” with the adaptation changes. Thus, both of these are potential
therapeutic targets that can be discovered by genome wide functional approaches such as
siRNA library screening (see below). Together, these advances promote our understanding
of the development and progression of lung cancer, which is of fundamental importance for
improving the prevention, early detection, and treatment of this disease. Ultimately these
findings need to be translated to the clinic by using molecular alterations as: biomarkers for
early detection and risk assessment; targets for prevention; signatures for personalizing
prognosis and therapy selection for each patient; and as therapeutic targets to selectively kill
or inhibit the growth of lung cancer.

Technologic revolution has allowed genome wide analyses of molecular changes
occurring in lung cancer

Chronic exposure to tobacco smoke carcinogens propels genetic and epigenetic damage
which can result in lung epithelial cells steadily acquiring growth and/or survival
advantages. Malignant transformation is characterized by genetic instability which can exist
at the chromosomal level (with large-scale loss or gain of genomic material, translocations,
and microsatellite instability), at the nucleotide level (with single or several nucleotide base
changes), or in the transcriptome (with altered gene expression). Abnormalities are typically
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targeted to proto-oncogenes, TSGs, DNA repair genes and other genes that can promote
outgrowth of affected cells. Activation of telomerase (the telomere-lengthening enzyme
required for cell immortality) and disruption or escape from apoptotic pathways are other
common events in cancer cells. Over the past 5–10 years there has been a revolution in
technologies that can be applied to determining all of the genetic and epigenetic changes in
lung cancer as well as other cancers. These include genome-wide mRNA expression
profiles, genome-wide DNA copy number variation changes, genome-wide DNA
methylation changes, miRNA changes and mass spectroscopy proteomics analyses. The
recent application of “next generation” (“NexGen”) sequencing technologies has led to the
first genome-wide mutational analyses of lung cancers compared to normal germline
DNA41–43. These have demonstrated a huge number of mutations occurring in lung cancers
arising in smokers, many changes that do not alter the coding sequences, and many changes
that are idiotypic to the particular tumor (see below in “Genomics” section). Within the next
several years there will be similar data on perhaps 1,000 lung cancers which will provide an
unprecedented amount of information. The key issues will be to determine which of these
mutations are “actionable” – that is provide a guide for targeting therapy, which are
“passenger” and which are “driver” mutations, how frequent the mutations are, how the
mutations are related to other molecular changes (e.g. in the epigenome and miRNAs), and
which mutations provide information to identify important subgroups (“molecular portraits”)
of lung cancer that provide prognostic (survival information independent of therapy) and/or
predictive (survival information dependent on the administration of specific therapies)
utility. Of course this will require large scale multidisciplinary and international
collaboration to unite clinically annotated with molecularly annotated lung cancer
specimens. Examples of this are the USA NCI “The Cancer Genome Anatomy” Program
(TCGA), the NCI Lung Cancer Mutation Consortium (LCMC), as well as international lung
cancer sequencing consortiums. A key component of this is to be able to perform mutation
testing of clinically available materials (such as formalin fixed paraffin embedded [FFPE]
specimens) in a timely fashion using clinical laboratory practices (CLIA certified laboratory
methods). Recently, the NCI’s LCMC performed such a study on >800 lung
adenocarcinoma tumor specimens examining mutations in established lung cancer driver
genes (EGFR, KRAS, BRAF, HER2, AKT1, NRAS, PIK3CA, MEK1, EML4-ALK, MET
amplification). Mutations in at least one of these genes were found in ~60% of tumor
specimens and >90% were “exclusive” – only one mutation was found in a particular
tumor44. Table 1 describes the current state of our knowledge of the common genetic
alterations found in lung cancer. A key element will be to make this information accessible
and understandable to patients and physicians not expert in cancer genomics. An example of
how patients and their physicians can interface with this data is the “My Cancer Genome”
website established by the Vanderbilt Cancer Center
(http://www.vicc.org/mycancergenome/).

Genetic instability: Chromosomal aberration and loss of heterozygosity
Like many solid tumors, genomic instability is a hallmark of lung cancer3. Mapping high-
level amplifications and deletions in copy-number throughout the cancer genome has led to
the identification of many oncogenes and TSGs45–62. Many genetic alterations have been
associated with lung cancer, with the more frequently observed changes including
aneuploidy, specific allelic loss at 3p, 4q, 9p, and 17p and gain at 1q, 3q, 5p, and 17q63–65.
Additionally, genetic alterations in several genes have been implicated in lung cancer
development, including activation of MYC, RAS, EGFR, NKX2-1, ERBB2, SOX2, BCL2,
FGFR2, and CRKL as well as inactivation of RB1, CDKN2A, STK11 and FHIT3,63,65–80.

Identification of the genetic alterations that occur in tumors has long been an important
approach to understanding tumorigenesis. Early techniques to analyze the cancer genome
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involved cytogenetic karyotyping, loss of heterozygosity (LOH) and microsatellite analyses,
followed later by comparative genomic hybridization (CGH) using metaphase spreads or
fluorescence in situ hybridization (FISH). These techniques identified multiple numeric and
structural chromosomal alterations in the cancer genome; however, the shift of CGH into a
microarray-based format improved upon previous techniques by providing high-resolution
detection of copy-number gain and loss56,79,81–92. Thus, due to low resolution of earlier
cytogenetic and CGH techniques, which made it difficult to identify focal aberrations and
the causal genes critical for tumorigenesis, aberrant loci/genes in lung carcinogenesis
continue to be defined75–80.

Oncogenes and growth stimulatory pathways and targeted therapeutics
Oncogene activation occurs in probably all lung cancers (typically by gene amplification,
over-expression, point mutation, or DNA rearrangements) and can result in persistent
upregulation of mitogenic growth signals which induce cell growth as well as “oncogene
addiction” whereby the cell becomes dependent upon this aberrant oncogenic signaling for
survival (Table 1)48,50–52,56,58,60,62,74,93,94. In lung cancer, commonly activated oncogenes
include EGFR, ERBB2, MYC, KRAS, MET, CCND1, CDK4, MET, EML4-ALK fusion,
and BCL2. These “driver” oncogenes or oncogene “addictions” represent acquired
conditional (on the oncogene) vulnerabilities in lung cancer cells, and present as significant
therapeutic targets by offering specificity of killing tumor but not normal cells. Oncogenic
signaling pathways commonly found in lung cancer and potential targeted therapies are
summarized in Figures 2–5 and Table 3, (also see article in this issue by Gettinger at al.).

Epidermal growth factor receptor signaling in lung cancer—The ErbB family of
tyrosine kinase receptors includes four members – EGFR, ErbB-2 (HER2), ErbB-3, and
ErbB-4 – with ability to form homo- and heterodimers and bind different ligands leading to
receptor activation (Figure 2)95. EGFR exhibits over-expression or aberrant activation in
50–90% of NSCLCs; therefore, much effort has been focused on the development of
targeted inhibitors for this molecule96. Initial research used monoclonal antibodies that
target the extracellular domain but this was supplanted by the development of small
molecules that inhibit intracellular EGFR tyrosine kinase activity: EGFR tyrosine kinase
inhibitors (TKIs). In 2004, a significant advancement was made in the treatment of NSCLC
following the observation that somatic mutations in the kinase domain of EGFR strongly
correlated with sensitivity to EGFR TKIs50,51. Exquisite sensitivity and marked tumor
response has since been shown with EGFR TKIs (such as erlotinib and gefitinib) and
antibodies (such as cetuximab) in EGFR mutant tumors50–52,97,98 – an example of oncogene
addiction in lung cancer where tumors initiated through EGFR mutation-activation of EGF
signaling rely on continued EGF signaling for survival. Mutant EGFRs (either by exon 19
deletion or exon 21 L858R mutation) show an increased amount and duration of EGFR
activation compared with wildtype receptors50, and have preferential activation of the PI3K/
AKT and STAT3/STAT5 pathways rather than the RAS/RAF/MEK/MAPK pathway98.
EGFR mutations are particularly prevalent in certain patient subgroups: adenocarcinoma
histology, women, never smokers, and East Asian ethnicity52,99–103. Resistance to TKI
therapy has been associated with EGFR exon 20 insertions or a secondary T790M mutation,
KRAS mutation, or amplification of the MET proto-oncogene104–109 where MET activates
the PI3K pathway through phosphorylation of ERBB3, independent of EGFR and
ERBB2109. Importantly, the authors found inhibition of MET signaling can restore
sensitivity to TKIs109. In lung adenocarcinomas, activated mutant EGFR has been shown to
induce levels of IL-6 leading to activation of STAT3110. IL-6 also plays an important role by
activation of JAK family tyrosine kinases111, which in turn activate multiple pathways
through signaling molecules such as STAT3, MAPK, and PI3K112.
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The RAS/RAF/MEK/MAPK pathway signaling in lung cancer—Activation of the
RAS/RAF/MEK/MAPK pathway occurs frequently in lung cancer (Figure 3), most
commonly via activating mutations in KRAS which occur in ~20% of lung cancers,
particularly adenocarcinomas113,114. In lung cancer, 90% of mutations are located in KRAS
(80% in codon 12, and the remainder in codons 13 and 61) with HRAS and NRAS
mutations only occasionally documented115. Mutation results in constitutive activation of
downstream signaling pathways, such as PI3K and MAPK, rendering KRAS mutant tumors
independent of EGFR signaling and therefore resistant to EGFR TKIs as well as
chemotherapy97,106,116. KRAS mutations are mutually exclusive with EGFR and ERBB2
mutations and are primarily observed in lung adenocarcinomas of smokers97,117. The
prevalence and importance of KRAS in lung tumorigenesis make it an attractive therapeutic
target. Two unsuccessful approaches were farnesyltransferase inhibitors, to inhibit
posttranslational processing and membrane localization of RAS proteins, and antisense
oligonucleotides against RAS113. More recently, efforts have been centered on downstream
effectors of RAS signaling: RAF kinase and mitogen-activated protein kinase (MAPK)
kinase (MEK)113,118. BRAF is the direct effector of RAS and while commonly mutated in
melanoma (~70%) mutations are rare in lung cancer (~3%), predominantly in
adenocarcinoma, and mutually exclusive to EGFR and KRAS mutations119–122. Strategies
to inhibit RAF kinase include degradation of RAF1 mRNA through antisense
oligodeoxyribonucleotides, and inhibition of kinase activity with multikinase inhibitor such
as sorafenib. Several MEK inhibitors have commenced Phase II testing in lung cancer
patients and are listed in Table 3. Attempts to directly inhibit or perturb mutant KRAS
continue with the advent of whole-genome approaches. Synthetic lethal siRNA screens have
identified small interfering RNAs (siRNAs) that specifically kill human lung cancer cells
with KRAS mutations in vitro123–125. Additionally, combination of anti-KRAS strategies
(such as depletion with short-hairpin RNAs (shRNAs)) with other targeted drugs has shown
potential therapeutic utility126–128.

MYC—One of the major downstream effectors of the RAS/RAF/MEK/MAPK pathway is
the MYC proto-oncogene (Figure 3). In normal conditions this transcription factor functions
to keep tight control of cellular proliferation; however, aberrant expression through
amplification or over-expression is commonly found in lung cancer129,130. MYC proto-
oncogene members (MYC, MYCN and MYCL) are targets of RAS signaling and key
regulators of numerous downstream pathways such as cell proliferation131 where enforced
Myc expression drives cell cycle in an autonomous fashion. It can also sensitize cells to
apoptosis through activation of the mitochondrial apoptosis pathway – thus, Myc driven
tumorigenesis often requires co-expression of anti-apoptotic BCL2 proteins132. Activation
of MYC members often occurs through gene amplification. MYC is most frequently
activated in NSCLC133, while the other two members, MYCN and MYCL along with MYC,
are usually activated in SCLC64,134.

EML4-ALK fusion proteins—In 2007, a novel fusion gene with transforming ability was
reported in a small subset of NSCLC patients135. Formed by the inversion of two closely
located genes on chromosome 2p, fusion of PTK echinoderm microtubule-associated protein
like-4 (EML4) with anaplastic lymphoma kinase (ALK), a transmembrane tyrosine kinase,
yields the EML4-ALK fusion protein. The fusion results in constitutive oligomerization
leading to persistent mitogenic signaling and malignant transformation and a recent meta-
analysis of 13 studies encompassing 2,835 tumors reported the EML4-ALK fusion protein is
present in 4% of NSCLCs136. EML4-ALK fusions are found exclusive of EGFR and KRAS
mutations, and occur predominantly in adenocarcinomas and never or light smokers. Tumors
with EML4-ALK fusions exhibit dramatic clinical responses to ALK targeted therapy137–141

and the ALK inhibitor crizotinib (PF-02341066) has now entered a Phase III clinical trial.
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The PI3K/AKT/mTOR pathway—Phosphoinositide 3-kinases (PI3Ks) are lipid kinases
that regulate cellular processes such as proliferation, survival, adhesion and motility142. The
PI3K/AKT/mTOR pathway is a downstream signaling pathway of several receptor tyrosine
kinases, such as EGFR, and can also be activated via binding of PI3K to activated RAS143.
In lung tumorigenesis, activation of the PI3K/AKT/mTOR pathway occurs early in
pathogenesis, generally through mutations in PI3K or PTEN as well as EGFR or KRAS,
amplification of PIK3CA, PTEN loss, or activation of AKT144 and results in cell survival
through inhibition of apoptosis (Figure 4). The pathway has two negative regulators: the
tumor suppressor gene, PTEN, and TUSC1/TUSC2 complex which act upstream and
downstream of AKT, respectively. The serine/threonine kinase mTOR, a downstream
effector of AKT, is an important intracellular signaling enzyme in the regulation of cell
growth, motility, and survival in tumor cells145. Targeted therapies to the PI3K/AKT/mTOR
pathway (such as LY294002 and rapamycin) have shown significant efficacy in both
NSCLC and SCLC cells with activated AKT signaling146–148.

SOX2 and NKX2-1 (TITF1) – lung cancer lineage dependent oncogenes—
Genome-wide screens for DNA copy number changes in primary NSCLCs has led to the
identification of recurrent, histologic subtype-specific focal amplification at 14q13.3
(adenocarcinoma) and 3q26.33 (squamous cell carcinoma) 74,75,80,93,149. Functional analysis
identified NKX2-1 (also termed TITF1) and SOX2 as the respective targets of these
amplifications. NKX2-1 encodes a lineage-specific transcription factor essential for
branching morphogenesis in lung development and the formation of type II pneumocytes –
the cells lining lung alveoli150,151. Initial studies reported on the oncogenic role of NKX2-1
in lung adenocarcinoma74,93,149,152; however, recent in vivo data suggests it also has a
tumor suppressive role153. SOX2 amplification was identified specifically in squamous cell
carcinomas and is required for normal esophageal squamous development75,80.
Amplification of tissue-specific transcription factors in cancer has been previously observed
in prostate cancer (AR)154, melanoma (MITF)155, and breast cancer (ESR1)156. These
findings have led to the development of a “lineage-dependency” concept in tumors157 where
the survival and progression of a tumor is dependent upon continued signaling through a
specific lineage pathways (i.e. abnormal expression of pathways involved in normal cell
development) rather than continued signaling through the pathway of oncogenic
transformation as seen with oncogene addiction94.

Tumor suppressor genes (TSGs) and growth inhibitory pathways
Loss of TSG function is an important step in lung carcinogenesis and usually results from
inactivation of both alleles with LOH inactivating one allele through chromosomal deletion
or translocation, and point mutation, epigenetic or transcriptional silencing inactivating the
second allele158,159. Commonly inactivated TSGs in lung cancer include TP53, RB1,
STK11, CDKN2A, FHIT, RASSF1A and PTEN.

The p53 pathway—TP53 (17p13) encodes a phosphoprotein which prevents
accumulation of genetic damage in daughter cells. In response to cellular stress, p53 induces
the expression of downstream genes such as cyclin-dependent kinase (CDK) inhibitors
which regulate cell cycle checkpoint signals, causing the cell to undergo G1 arrest and
allowing DNA repair or apoptosis159 (Figure 5). p53 inactivating mutations are the most
common alterations in lung cancer where 17p13 frequently demonstrates hemizygous
deletion and mutational inactivation in the remaining allele160–162. Some point mutations in
TP53 confer a gain-of-function phenotype leading to increased aggressiveness of lung
cancer163. Due to the prevalence of p53 inactivating mutations in human cancers large scale
efforts have been focused on therapeutic strategies to restore normal p53 function. These
include re-introduction of wildtype p53 using gene therapy, pharmacological rescue of
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mutant p53 with small molecule agents and peptides, blocking of MDM2 expression,
inhibiting MDM2 ubiquitin ligase activity, and targeting the p53-MDM2 interaction with
small molecule inhibitors. In vivo restoration of p53 expression in a subpopulation of tumor
cells has been achieved with p53 gene therapy of lung cancer patients164.

The CDKN2A/RB pathway—The CDKN2A-RB1 pathway controls G1 to S phase cell
cycle progression (Figure 5). Hypophosphorylated retinoblastoma (RB) protein, encoded by
RB1, halts the G1/S phase transition by binding to the transcription factor E2F1 and was the
first tumor suppresser gene identified in lung cancer165,166. Absent or mutant RB protein is
found in approximately 90% of SCLCs compared to only 10–15% of NSCLCs while
abnormalities in p16 (encoded by CDKN2A) and an upstream regulator of RB
phosphorylation are predominantly found in NSCLCs167.

Chromosome 3p TSGs—Loss of one copy of chromosome 3p is one of the most
frequent and early events in human cancer, found in 96% of lung tumors and 78% of lung
preneoplastic lesions168. Mapping of this loss identified several genes with functional tumor
suppressing capacity including FHIT (3p14.2), RASSF1A, TUSC2 (also called FUS1), and
semaphorin family members SEMA3B and SEMA3F (all at 3p21.3), and RARβ (3p24). In
addition to LOH or allele loss, some of these 3p genes (FHIT, RASSF1A, SEMA3B and
RARβ) often exhibit decreased expression in lung cancer cells by means of epigenetic
mechanisms such as promoter hypermethylation169–173. Furthermore, FHIT, RASSF1A,
TUSC2, and SEMA3B will reduce growth when re-introduced into lung cancer cells. FHIT,
located in the most common fragile site in the human genome (FRA3B), has been shown to
induce apoptosis in lung cancer174. RASSF1A can induce apoptosis, as well as stabilize
microtubules, and affect cell cycle regulation175. The tumor suppressing effect of TUSC2 is
thought to occur via through inhibition of protein tyrosine kinases such as EGFR, PDGFR,
c-Abl, c-Kit, and AKT176 as well as inhibition of MDM2-mediated degradation of p53177.
The candidate TSG SEMA3B encodes a secreted protein which can decrease cell
proliferation and induce apoptosis when re-expressed in lung, breast and ovarian cancer
cells169,170,178,179 in part, by inhibiting the AKT pathway180. Another family member,
SEMA3F may inhibit vascularization and tumorigenesis by acting on VEGF and ERK1/2
activation181,182 and RARβ exerts its tumor suppressing function by binding retinoic acid,
thereby limiting cell growth and differentiation.

STK11 (LKB1)—The serine/threonine kinase STK11 (also called LKB1) functions as a
TSG by regulating cell polarity, motility, differentiation, metastasis and cell metabolism183.
Germline inactivating mutations of STK11 cause Peutz-Jeghers syndrome184, but somatic
inactivation through point mutation and frequent deletion on 19p13 occurs in ~30% of lung
cancers – ranking it the third most commonly mutated gene in lung adenocarcinoma after
p53 and RAS119,185,186. STK11 mutations often correlate with KRAS activation and result
in the promotion of cell growth187. Its tumor suppressing effect is thought to function, in
part, through inhibition of the mTOR pathway via AMP-activated protein kinase188 (Figure
3). STK11 inactivation appears to be particularly prevalent in NSCLC while rare in SCLCs,
and inactivating mutations are more common in tumors from males and smokers, and poorly
differentiated adenocarcinomas78,185–187,189. Mutation in both KRAS and STK11 appears to
confer increased sensitivity to MEK inhibition in NSCLC cell lines compared to either
mutation alone190.

Lung cancer stem cells: Detection, signaling pathways and therapeutic targeting
The cancer stem cell (CSC) model hypothesizes there is a population of rare, stem-like
tumor cells capable of self-renewing and undergoing asymmetric division thereby giving
rise to differentiated progeny that comprise the bulk of the tumor191–193. While the first
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evidence for CSCs (also termed tumor initiating cells) was reported in acute myeloid
leukemia194, support for their existence in solid tumors, including lung cancer, is becoming
increasingly common137,139,195–199. Several cell surface biomarkers have been reported for
the detection and isolation of putative lung CSCs (Table 4). Interestingly, it is becoming
apparent that in addition to significant variability of the utility of CSC biomarkers between
different solid tumor types, no single biomarker can reliably detect CSCs in tumors from the
same tissue – possible reflecting tumor heterogeneity. Regulation of CSCs in lung cancer is
likely by the Hedgehog (Hh), Wnt and Notch stem cell signaling pathways200 (Figure 6).
Important in normal lung development, specifically progenitor cell development and
pulmonary organogenesis, these pathways are now also being studied in regards to their role
in tumor development. Increased signaling of the HH pathway results in activation of the
transcription regulating GLI oncogenes (GLI1, GLI2, and GLI3)201–203 and persistent
activation is found in both SCLC and NSCLC204,205. The Wnt pathway has critical roles in
organogenesis, cancer initiation and progression, and maintenance of stem cell pluripotency.
In NSCLC, studies have found dysregulation of Wnt pathway members such as Wnt1, Wnt2
and Wnt7a, as well as upregulation of Wnt pathway agonists (Dvl proteins, LEF1, and
Ruvb11) and underexpression or silencing of antagonists (WIF-1, sFRP1, CTNNBIP1, and
WISP2)206–212. Notch signaling is important in cell fate determination but can also promote
and maintain survival in many human cancers213–216. These signaling pathways are thought
to be involved in the regulation of stem/progenitor cell self-renewal and maintenance and
while normally a tightly regulated process; genes that comprise these pathways are often
mutated in human cancers217–219, leading to abnormal activation of downstream effectors.

Clinical Implications—CSCs are thought to have higher resistance to cytotoxic therapies
and radiotherapy than the bulk tumor cells. Thus, while conventional treatment strategies
may initially “de-bulk” the primary tumor through elimination of differentiated tumor cells,
the small population of CSCs eventually regenerate the tumor, giving rise to recurrence. In
lung cancer, evidence of this increased resistance has been shown in primary tumors199 and
lung cancer mouse xenografts137. Approaches to specifically treating the CSC population
include selective targeting using CSC detection molecules, sensitization of CSCs to
conventional therapies and differentiation therapies, and inhibition of signaling pathways
important to CSCs, such as Hh, Wnt and Notch signaling pathways, and telomerase an
important enzyme in normal stem cell function that is activated in most lung cancers (see
below). In lung, progress towards the latter approach has been shown in lung cancer
cells204,220. Inhibition of the Hh pathway has been demonstrated with cyclopamine, a
naturally occurring inhibitor of SMO which has led to the development of synthetic oral
inhibitors which show clinical activity in basal cell carcinoma221. Inhibition of the Notch
signaling pathway shows potential with γ-secretase inhibitors. Several inhibitors have
shown efficacy in NSCLC222,223 and a Phase II trial using a γ-secretase inhibitor as second
line therapy has commenced. Lastly, analysis of CSC biomarkers as diagnostic and
prognostic biomarkers has recently shown clinical utility196,224–226.

Angiogenesis and the tumor microenvironment
Angiogenesis is one of the hallmarks of cancer, essential for a microscopic tumor to expand
into a macroscopic, clinically relevant tumor. Thus, angiogenic growth factors are required
early in pathogenesis. A number of angiogenic proteins have been characterized including
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF),
fibroblast growth factor (FGF), interleukin-8, and angiopoietins 1 and 2. VEGF is an
important inducer of angiogenesis and is known to stimulate proliferation and migration,
inhibit apoptosis, promote survival and regulate endothelial cell permeability227. VEGF
signaling is stimulated by tumor hypoxia, growth factors and cytokines, and oncogenic
activation228. VEGF is highly expressed in both NSCLC and SCLC229 and its expression is
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associated with poor prognosis in NSCLC230–232, therefore inhibition of VEGF signaling in
tumor cells is an important therapeutic target.

Clinical Implications—Two main approaches to anti-VEGF therapy are blocking VEGF
from binding to its extracellular receptors using VEGF-specific antibodies and recombinant
fusion proteins, or using small molecule TKIs that bind to the intracellular region of
VEGFR233. The humanized monoclonal antibody bevacizumab blocks the binding of
VEGF-A to its receptors VEGFR1 and VEGFR1 and is now approved for use in some solid
cancers, including lung234. Interestingly, VEGF expression does not always correlate with
response to bevacizumab235. One possible reason could be single nucleotide polymorphisms
(SNPs) in VEGF. Numerous SNPs have been reported in VEGF with some being associated
with lower plasma levels of VEGF236, better outcome in NSCLC237, or recently, response to
bevacizumab238.

The tumor microenvironment describes the complex and dynamic milieu of stromal cells,
endothelial cells, innate cells and lymphoblasts that surround tumor cells. Cells that
comprise the tumor microenvironment interact both with each other and with tumor cells,
and as a consequence, they can affect tumor growth, invasion and metastasis239. This
supports the “seed and soil” hypothesis proposed by Stephen Paget in 1889240 who observed
that the patterns of organ metastasis were a result of favorable conditions between metastatic
tumor cells (the “seed”) and the organ microenvironment (the “soil). Modulation of critical
tumor microenvironment biomarkers could improve current treatment of lung cancers. For
example, hypoxia is associated with an increased risk of metastasis and increased resistance
to radiotherapy and possible chemotherapy. Inhibition of HIF1α, a master transcription
factor activated in response to hypoxia, or VEGFR, a target of HIF1α, can increase
sensitivity to radiotherapy241,242.

Metastasis and epithelial to mesenchymal transition (EMT)
Many of the molecular changes discussed above promote metastatic capability of a tumor
cell, enabling it to detach from the primary tumor, invade tissue and enter circulation and
lastly colonize and grow in a secondary site. Recently, the cell-biological program epithelial
to mesenchymal transition (EMT), involved in embryogenesis and normal development in
the differentiation of multiple tissues and organs, has been the focus of tumor progression
and metastasis due, in part, to evidence of EMT in many in vitro cancer cell models243.
EMT describes the loss of cell polarity into a motile, mesenchymal phenotype typically
characterized by loss of E-cadherin expression244. Conversion of epithelial cells to a
mesenchymal state promotes motility and invasiveness allowing the tumor cells to detach
from the primary tumor and relocate to a secondary site. The cells will then undergo a
mesenchymal to epithelial transition (MET) to revert to an epithelial state to enable
proliferative growth245. While initial reports demonstrated the role of EMT in invasion and
metastasis, EMT has since been associated with early events in carcinogenesis246, the
acquirement of stem cell-like properties246–248, and resistance to cell death, senescence and
conventional chemotherapies245. In lung cancer, mesenchymal markers and EMT inducers
(e.g. Vimentin, Twist and Snail) have been shown to be strong prognostic markers249–251.
EMT has also been linked to resistance to EGFR TKIs252,253 and COX-2 and LKB1 have
been implicated promoting EMT in lung cancer254–256. The miR-200 family of miRNAs is
an important negative regulator of EMT257–260 and is discussed later in this review.

Activation of telomerase in lung cancer pathogenesis
Activation of telomerase, the telomere-lengthening enzyme, in premalignant cells prevents
loss of telomere ends beyond critical points and is essential for cell immortality. Although
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silenced in normal cells, telomerase is activated in >80% of NSCLCs and almost uniformly
in SCLCs (Table 1)261–263.

Clinical Implications—The prevalence of activated telomerase in cancer cells has made it
an attractive target for therapeutic inhibition. Inhibition of telomerase in such cells leads to
telomere shortening and ultimately either cellular senescence or apoptosis264,265.
Approaches to telomerase inhibition include using antisense oligonucleotides that bind to
human telomerase RNA265 (such as Imetelstat, which has started Phase II trials266) and
immunotherapy whereby a patient’s own immune system is stimulated with a vaccine to
recognize tumor cells containing a major histocompatibility complex presenting hTERT
peptide on the cell surface267,268.

Epigenetic changes in lung carcinogenesis
Methylation and histone modification: Epigenetic events can lead to changes in gene
expression without any changes in DNA sequence and therefore, importantly, are potentially
reversible269. Aberrant promoter hypermethylation is an epigenetic change that occurs early
in lung tumorigenesis resulting in silencing of gene transcription and therefore a common
method for inactivation of TSGs in lung cancer (Table 1)270. They include genes involved in
tissue invasion, DNA repair, detoxification of tobacco carcinogens, and differentiation. The
prevalence of promoter methylation has been reported to differ between smokers and never-
smokers. Promoter methylation of p16, MGMT, RASSF1, MTHFR, and FHIT was
significantly higher among smokers than never-smokers whilst RASSF2, TNFRSF10C,
BHLHB5, and BOLL was more common in never-smokers271–275. Recent advances in
whole-genome microarray profiling have allowed researchers to globally study DNA
methylation patterns in lung cancer – the lung cancer epigenome or methylome – and
indicate the role of methylation in lung tumorigenesis may have been underestimated276–285.
Initial genome-wide studies analyzed the effect on gene expression following treatment of
lung cancer cell lines with demethylating agents (such as 5-azacytidine); however,
development of methylation-specific microarrays enables epigenomic analysis of tumor
specimens276–281.

Clinical Implications—Aberrant methylation occurs early in lung cancer pathogenesis
and can be detected in circulating DNA; thus, many studies have investigated the utility of
methylation status in lung cancer for risk assessment, early detection, disease progression
and prognosis (reviewed286,287). Table 5 summarizes published candidate early detection,
prognostic and predictive methylation biomarkers where hypermethylation of p16, APC,
FHIT, RASSF1A, DAPK and CDH1 being repeatedly reported as potential prognostic
markers288–302.

DNA is methylated by DNA methyltransferases (DNMTs) which are responsible for both de
novo and maintenance of pre-existing methylation in a cell303. Histone modification is
another mechanism for epigenetic control of gene transcription where histone deacetylation
results in condensing of chromatin resulting in transcriptionally inactive DNA. Inhibitors of
DNMTs or histone deacetylases (HDACs) resulting in pharmacologic restoration of
expression of epigenetically silenced genes is an exciting targeted therapeutic approach and
show promise in lung cancer304,305 (Table 3).

MicroRNA-mediated regulation of lung cancer
MicroRNAs (miRNAs) are a class of non-protein encoding small RNAs capable of
regulating gene expression by either direct cleavage of a targeted mRNA or inhibiting
translation by interacting with the 3’ untranslated region (UTR) of a target mRNA. miRNAs
commonly have multiple target genes therefore a single miRNA can often affect multiple
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cellular processes. Furthermore, a mRNA may be targeted by more than one miRNA
resulting in a complex network of molecular pathways to elucidate. Aberrant expression of
miRNAs has been found to play an important role in the pathogenesis of cancer as either
oncogenes or TSGs306–316. Microarray-based analyses of miRNA expression have identified
many lung cancer-associated miRNAs313,314,317–328, and a review of experimentally
validated miRNAs has been published previously329. One of the most widely-studied lung
cancer-associated miRNAs is the let-7 miRNA family. Functioning as a tumor suppressor, it
has been shown to regulate N-RAS, K-RAS, MYC and HMGA2330–332 via binding to the
let-7 binding sites in their respective 3’ UTRs330,333. It is frequently under-expressed in lung
tumors, particularly NSCLC, compared to normal lung, and decreased expression has also
been associated with poor prognosis313,318. Induction of let-7 miRNA expression has been
found to inhibit in vitro growth313,331,334,335 and reduce tumor development in a murine
model of lung cancer335,336. Other miRNAs that exhibit tumor suppressing effects in lung
cancer include miR-29a/b/c, miR-34a/b/c, miR-16, and miR-126318–321,337,338, and recently,
miR-128b was reported to be a direct regulator of EGFR with frequent LOH occurring in
NSCLC cell lines322. Oncogenic miRNAs found to be over-expressed in lung cancer include
the miR-17-92 cluster of seven miRNAs (that target PTEN, E2F1-3 and BIM), miR-21
(suggested to be positively regulated by the EGFR signaling pathway, specifically EGFR
mutations), miR-93, miR-98, miR-197, miR-221/222, and miR-155314,323,327,328.
Additionally, hsa-miR-146b, miR-155 and miR-21 and have been reported to be strong
predictors of poor prognosis in lung cancer318,326,339,340. Recent evidence shows a strong
link between miRNAs and invasion and metastasis with several miRNAs found to regulate
key regulators of EMT, a process central to cancer metastasis258–260,341. These include
miR-10b (through inhibition of HOXD10), miR-126, and the miRNA-200 family (which
inhibit EMT inducers ZEB1 and ZEB2)257–259,320,341.

Clinical Implications—There is currently a strong research focus on miRNAs as potential
diagnostic and prognostic biomarkers, and therapeutic targets. Restoration of aberrantly
expressed miRNAs can be achieved in vitro and in vivo using miRNA mimics (for under-
expressed miRNAs) or miRNA inhibitors (termed antisense oligonucleotides or antagomirs)
(for over-expressed miRNAs)342–346. miRNA profiles for histologic347,348 and
prognostic318,326,337,338,340 classification of lung tumors and detection of miRNAs in
peripheral blood and sputum349–351 illustrate the potential of miRNAs as diagnostic and
early detection biomarkers in lung cancer. Additionally, concurrent inhibition or over-
expression of miRNAs with conventional therapies has resulted in an increased response to
EGFR TKIs and radiotherapy327,352. These studies illustrate the immense potential of
miRNAs in therapeutics development; however, limitations in pharmacokinetics, delivery
and toxicity need to be addressed353,354.

The search for new biomarkers: Tools and model systems
Genomics: Tools for identification, prediction and prognosis: Genetic and epigenetic
mechanisms underlying lung cancer development and progression continue to emerge,
spearheaded by the development of technologies allowing genome-wide analysis of DNA
copy-number, mutations, gene expression, SNPs and methylation.

Transcriptome Profiling—Profiling the lung cancer transcriptome has imparted
biologically- and clinically-relevant information such as novel dysregulated genes and
pathways and gene signatures that can predict patient prognosis, response to treatment, and
histology reviewed in355–357. In an effort to overcome limitations of sample size and
heterogeneity in previous studies, a multi-site, blinded validation study of 442 lung
adenocarcinomas comprehensively examined whether the mRNA profile of primary tumors
robustly predicts patient outcome either alone or in combination with clinicopathological
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factors358. This study developed several models (or signatures) which for the most part
predicted outcome better than current clinical methods. A recent critical review of published
prognostic signatures in lung cancer, however, found little evidence of any published
signature being ready for clinical application due, for the most part, to problems with study
design and analysis359. The role of expression of the 48 nuclear receptors (and later their co-
regulators) has been studied in lung cancer and found to provide as good or better prognostic
information than other mRNA expression signatures360. Since the nuclear receptors are also
targets for therapeutic manipulation (via hormone agonists and antagonists) the expression
of nuclear receptor patterns in individual lung cancers may also provide insight for targeted
therapy. Despite complexities of mRNA profiling, the success of prognostic signatures in
breast cancer, as seen with Oncotype DX361, impels further research efforts.

Genome-wide copy number profiling—High resolution mapping of copy number
alterations in the lung cancer genome has been able to identify single genes as targets of
genomic gain or loss through improved definition of known aberrant regions or by
identification of focal alterations undetectable with earlier technology74–76,79,80,83,84,86. A
large-scale analysis of 371 primary lung adenocarcinomas identified 57 significant recurrent
copy-number alterations, of which 31 were focal events and many were new lung cancer
loci74; for example, amplification at 14q13.3 was reported as the most common event
targeting the transcription factor NKX2-1, discussed earlier. Similar studies in NSCLC and
squamous cell carcinoma cohorts have identified other novel ‘drivers’ of lung
carcinogenesis75,76,79,80.

Genome wide sequencing of lung cancers—Large-scale sequencing and SNP
analyses have also led to the identification of novel somatic mutations in the lung cancer
genome13–15,119. In a screen of 188 lung adenocarcinomas Ding et al119 identified somatic
mutations in putative oncogenes (ERBB4, KDR, FGFR4, EPHA3) and TSGs (NF1, RB1,
ATM, and APC). A major breakthrough has come with the development of “next
generation” (also termed second-generation) DNA sequencing technologies which enable
sequencing of expressed genes (‘transcriptomes’), known exons (‘exomes’) and complete
genomes of tumors362. Data analysis can detect point mutations, insertions/deletions, copy
number alterations, translocations and non-human sequences. Comparison of a primary lung
NSCLC of adenocarcinoma histology with adjacent normal tissue identified many somatic
mutations at an estimated rate of ~18 per megabase, including >50,000 single nucleotide
variants41. Sequencing of a SCLC cell line revealed over 22,000 somatic substitutions42

while another study which sequenced a SCLC cell line and a neuroendocrine lung cancer
cell line found a higher rate of somatic and germline rearrangements in the SCLC cell line43.
Sequencing of the coding exons of ~1,500 genes across 441 tumors, including 134 lung,
found lung adenocarcinomas and squamous cell carcinomas displayed high protein-altering
mutation rates363, perhaps indicative of the inherent heterogeneity found in lung tumors
compared with tumors from other tissues. One hurdle in second-generation sequencing is
storage and analysis of the immense amount of data that is produced and separating
biologically meaningful data from noise. However, the potential insight we will have into
cancer genomes and its applicability to diagnostic sampling brings us even closer to the goal
of ‘personalized medicine’.

Genome-wide functional (siRNA, shRNA library) screening—“Synthetic lethal”
screens using RNAi (siRNAs and shRNA libraries) technology have allowed unbiased,
genome-wide approaches to identification of genes whose perturbation can selectively kill
lung cancer cells (Figure 1). The ability to identify “synthetic lethality” associated with
oncogenic changes in tumor cells has particular utility in identifying new therapeutic targets
or molecules to treat traditionally hard to target tumors, such as those with oncogenic
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KRAS. siRNA and shRNA screens have identified genes whose perturbation can selectively
sensitize NSCLC cell lines to sub-lethal doses of chemotherapeutic agents364, sensitize
KRAS mutant cells to targeted drugs126–128, suppress tumorigenicity in cells with specific
gene dysregulation such as oncogenic KRAS123–125,365, or aberrant EGFR366,367, or identify
novel genes critical for tumorigenic processes such as metastasis368.

Public databases and bioinformatics—Although the challenges in gathering reliable
and clinically- and pathologically-annotated data are not trivial, high throughput
technologies and publicly stored genome-wide databases related to lung cancer are resources
with the potential to drive a global collaborative effort in identifying new targets for lung
cancer diagnostics and therapeutics. Currently, and within the near future, all lung cancer
investigators will have access to all of the genome-wide studies performed on lung cancers
with the attached clinical annotation. This will allow independent confirmation on the role
of the different molecular changes for prognosis, prediction, and targeting of therapy. With
these tools researchers have enhanced ability to correlate patient subsets with augmented
sensitivity to conventional or targeted therapeutics, distinguish driver versus passenger
mutations, and better focus the design on novel therapeutic targets.

In vitro and in vivo model systems
While genome-wide approaches have the capacity of identifying novel genes or interactions
in relation to lung cancer, the functional relevance of these findings need to be elucidated
using preclinical model systems, namely in vitro models (such as tumor cell lines or
immortalized human bronchial epithelial cells) and in vivo xenograft and transgenic mouse
models of lung carcinogenesis. Experimental disease models play a crucial role in
developing our understanding of lung carcinogenesis. Lung cancer cell lines and xenografts
provide one set of important models. However, due to the genetic complexity of lung
cancers they will usually have hundreds if not thousands of genetic/epigenetic changes. By
contrast, two much simpler and equally valuable models, particularly to study the
progression of lung carcinogenesis, are immortalized human bronchial epithelial cells
(HBECs) and genetically engineered mouse models (GEMMs). These systems provide
methods to reduce the inherent complexity and heterogeneity of the lung cancer genome and
allow characterization of single or sequential genetic alterations in relation to the
development, maintenance, and progression of lung cancer.

HBECs are derived from primary human airway epithelial cells and immortalized with
either viral oncoproteins (such as SV40 early region) and hTERT369 or overexpression of
Cdk4 and hTERT260,370. Stepwise transformation of these cells can be studied by the
introduction of defined genetic manipulations commonly found in lung cancer371,372.

GEMMs allow the study of lung cancer pathogenesis with defined changes in the setting of
the whole organism. They were critical in developing our understanding of oncogene
dependence94, as observed in conditional KrasD12-induced lung adenocarcinomas, where
switching off the driving oncogene was sufficient to induce tumor regression even in the
presence of other non-driving oncogenic alterations373. Ensuing research has characterized
several conditional lung tumor inducing combinations of oncogenic activations in mice
(summarized in Table 6) which have been used to test new targeted therapies, improve
effectiveness of conventional chemotherapies, identify biomarkers and imaging strategies
for early detection, and study disease relapse and metastasis374.

Summary
This review has outlined some of the significant molecular alterations known to be involved
in the initiation and/or progression of lung cancer. Continued development of targeted
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therapies for the treatment of lung cancer is dependent upon increased understanding of
involved molecules and pathways. Cancer genome analyses are identifying 100s to 1000s of
candidate targets but these all require molecular and clinical validation. Furthermore, it is
becoming increasingly apparent that targeting a single molecule will not be enough due to
the non-linearity of pathways involved in carcinogenesis. Rather, targeting multiple
molecules at once to combat the inter-connective and complex signaling pathways will
improve efficacy. Recent next-generation sequencing efforts are revealing the lung cancer
genome is mutated at a high rate, likely contributing to the known heterogeneity of these
tumors and explaining the lack of identifying effective conventional and targeted therapies
that have a universal effect in lung cancer. Systematic understanding of the molecular basis
of lung cancer through comprehensive characterization of aberrations in the cancer genome
and their functionality will provide the means to evaluate their use in diagnosis, prognosis
and therapy. Integration of clinical and biological factors will ultimately lead to improved
detection, diagnosis, treatment, and prognosis of lung cancer by achieving “personalized
medicine”, the selection of the best treatment for each patient based on tumor associated
biomarkers.
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Figure 1. Oncogene addiction and synthetic lethality in targeting acquired tumor cell
vulnerability
A) Oncogene addiction. A tumor cell contains many abnormalities in oncogenes and tumor
suppressor genes (TSGs) however while some gene mutations may be critical for tumor cell
survival (“driver” mutations) other gene mutations are not (“passenger” mutations).
Inactivation of a critical “driver” gene in a tumor cell will result in cell death or
differentiation into a normal phenotype. Inactivation of non-critical “passenger” mutations
however, will not affect the tumor cell. B) Synthetic lethality arises when inactivation of two
of more genes (A + B) leads to cell death whereas inactivation of either gene alone does not
affect viability of the cell as the remaining gene acts in a compensatory manner. C)
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Synthetic lethality to target tumor cells. If a tumor cell has a non-drugable oncogene or
inactivation of a TSG (Gene A), the cell will be vulnerable to inactivation of Gene B
whereas a normal cell will not thus creating a second therapeutic target in addition to
targeting the “driver” mutation. Adapted from94,375,376.
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Figure 2. EGFR mutations found in lung cancer
Activating mutations, which are found with increased frequency in certain subsets of lung
cancer patients, occur as three different types of somatic mutations – deletions, insertions,
and missense point mutations – and are located in exons 19–21 which code for the tyrosine
kinase domain of EGFR50,51. Mutant EGFRs (either by exon 19 deletion or exon 21 L858R
mutation) show an increased amount and duration of EGFR activation compared with
wildtype receptors50, and have preferential activation of the PI3K/AKT and STAT3/STAT5
pathways rather than the RAS/RAF/MEK/MAPK pathway98. EGFR mutant tumors are
initially highly sensitive to EGFR tyrosine kinase inhibitors (TKIs)50–52 however, despite an
initial response, patients treated with EGFR TKIs eventually develop resistance to TKIs
which is linked (in approximately 50% tumors) to the acquiring of a second mutation at
T790M in exon 20107,108,377–380. Interestingly, the presence of the T790M mutation in a
primary lung cancer that had not been treated with EGFR-TKIs however, suggests that this
resistance mutation may develop with tumor progression and not necessarily as a response to
treatment381. Adapted from104,382.
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Figure 3. The RAS/RAF/MEK/MAPK pathway
The RAS proto-oncogene family (KRAS, HRAS, NRAS and RRAS) encode four highly
homologous 21kDa membrane-bound proteins involved in signal transduction. Proteins
encoded by the RAS genes exist in two states: an active state, in which GTP is bound to the
molecule and an inactive state, where the GTP has been cleaved to GDP383. Activating point
mutations can confer oncogenic potential through a loss of intrinsic GTPase activity
resulting in an inability to cleave GTP to GDP. This can initiate unchecked cell proliferation
through the RAS/RAF/MEK/MAPK pathway, downstream of the EGFR signaling
pathway384. Ras signaling also activates the PI3K/AKT pathway (leading to cell growth,
proliferation, and survival), RalGDS and RASSF1. Adapted from12,385.
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Figure 4. The PI3K/AKT/mTOR pathway
Downstream targets of AKT are involved in cell growth, angiogenesis, cell metabolism,
protein synthesis, and suppression of apoptosis directly or via the activation of mTOR.
Activation of the PI3K/AKT pathway can occur through the binding of the SH2-domains of
p85, the regulatory subunit of PI3K, to phosphotyrosine residues of activated RTKs such as
EGFR143. Alternatively, activation can occur via binding of PI3K to activated RAS.
Mutation and more commonly, amplification of PIK3CA, which encodes the catalytic
subunit of phosphatidylinositol 3-kinase (PI3K), occurs most commonly in squamous cell
carcinomas56,90,386,387. AKT, a serine/threonine kinase that acts downstream from PI3K can
also have mutations that lead to pathway activation. One of the primary effectors of AKT is
mTOR, a serine/threonine kinase involved in regulating proliferation, cell cycle progression,
mRNA translation, cytoskeletal organization, and survival388. The tumor suppressor PTEN,
which negatively regulates the PI3K/AKT pathway via phosphatase activity on
phosphatidylinositol 3,4,5-trisphosphate (PIP3), a product of PI3K389 is commonly
suppressed in lung cancer by inactivating mutations or loss of expression390,391.
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Figure 5. The p53 and RB pathways
Regulation of p53 can occur through the MDM2 oncogene which reduces p53 levels through
degradation by ubiquitination. MDM2 can in turn be inhibited by the tumor suppressor
p14ARF, an isoform of CDKN2A. As such, the genes that encode MDM2 and p14ARF are
commonly altered in lung cancer through amplification and loss of expression,
respectively392–394. The CDKN2A/RB1 pathway controls G1 to S phase cell cycle
progression. RB acts as a tumor suppressor by acting with E2F proteins to repress
transcription of genes necessary for the G1-S phase transition. RB is inhibited by
hyperphosphorylation by CDK-CCND1 complexes (complexes between CDK4 or CDK6
and CCND1), and in turn, formation of CDK-CCND1 complexes can be inhibited by the
p16 isoform of CDNK2A395. Nearly all constituents of the CDKN2A/RB pathway have
been shown to be altered in lung cancer through mutations (CDK4 and CDKN2A), deletions
(RB1 and CDKN2A), amplifications (CDK4 and CCDN1), methylation silencing
(CDKN2A and RB1), and phosphorylation (RB)396–401.
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Figure 6. Stem cell self-renewal pathways and therapeutic strategies to block these pathways in
cancer
Notch, Wnt, and Hedgehog (Hh) are stem cell self-renewal pathways that are often
deregulated and aberrantly activated in lung cancer, thus representing key therapeutic
targets. The hedgehog pathway signals through Hh ligands binding to the Patched (PTCH)
receptor and inhibiting its repression of Smoothened (SMO), allowing SMO activation
which results in nuclear translocation of GLI transcription factors. Wnt signaling functions
through Wnt ligands binding to the Frizzled (FZD) receptor and signaling through
disheveled (DSH) leading to the stabilization of β-catenin. In the absence of Hh or Wnt
ligands, GSK3 phosphorylates GLI1/2 and β-catenin, respectively, resulting in
ubiquitination and degradation. Notch signaling functions through Notch ligands (DLL and
JAG) binding to the Notch receptor which results in the cleavage of Notch intracellular
binding domain (NICD) by γ-secretase enabling it to translocate to the nucleus, bind to CLS
transcription factors and activate transcription. Some components of the pathways were
omitted (dashed lines) for simplicity. Adapted from402,403.

Larsen and Minna Page 47

Clin Chest Med. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larsen and Minna Page 48

Ta
bl

e 
1

C
om

m
on

 g
en

et
ic

 a
lte

ra
tio

ns
 f

ou
nd

 in
 lu

ng
 c

an
ce

r

G
en

e
SC

L
C

 (
%

)a
N

SC
L

C
 (

%
)a

R
ef

er
en

ce
s

A
ll

A
de

no
-

ca
rc

in
om

a
Sq

ua
m

ou
s 

ce
ll

O
nc

og
en

ic
 a

lt
er

at
io

ns

M
ut

at
io

n

   
 B

R
A

F
R

ar
e

1–
3

1–
5

R
ar

e
40

4,
40

5

   
 E

G
FR

R
ar

e
~2

0
10

–4
0

R
ar

e
96

,4
04

,4
06

–4
08

   
 E

rb
B

2 
(H

E
R

2)
R

ar
e

2
4

R
ar

e
40

4,
40

9

   
 K

R
A

S
R

ar
e

10
–3

0
15

–3
5

<
5

40
4,

41
0–

41
2

   
 M

E
T

13
21

14
12

12

   
 P

IK
3C

A
R

ar
e

1–
5

<
5

<
5

57
,3

87
,4

13
,4

14

A
m

pl
if

ic
at

io
n

   
 E

G
FR

R
ar

e
20

–3
0

15
30

12

   
 E

rb
B

2 
(H

E
R

2)
5–

30
2–

23
6

2
12

,4
09

,4
15

,4
16

   
 M

D
M

2
6–

24
14

22
39

2,
41

7

   
 M

E
T

7–
21

20
21

41
8,

41
9

   
 M

Y
C

18
–3

0
8–

22
13

0,
42

0–
42

2

   
 N

K
X

2-
1 

(T
IT

F1
)

R
ar

e
12

–3
0

10
–1

5
3–

15
12

,7
4,

42
3

   
 P

IK
3C

A
~5

9–
17

6
33

–3
6

12
,3

87

In
cr

ea
se

 in
 p

ro
te

in
 e

xp
re

ss
io

n

   
 C

R
K

8–
30

8–
30

42
4

   
 B

C
L

2
75

–9
5

10
–3

5
41

2,
42

5,
42

6

   
 C

C
N

D
1

0
43

35
–5

5
30

–3
5

39
8,

42
7

   
 C

D
44

R
ar

e
C

om
m

on
3

48
42

8

   
 c

-K
IT

46
–9

1
R

ar
e

42
9–

43
5

   
 E

G
FR

R
ar

e
50

–9
0

40
–6

5
60

–8
5

10
0–

10
3,

41
2

   
 E

rb
B

2 
(H

E
R

2)
<

10
20

–3
5

16
–3

8
6–

16
40

9,
41

2,
43

2,
43

6–
43

8

   
 M

Y
C

10
–4

5
<

10
13

3,
43

9–
44

1

Clin Chest Med. Author manuscript; available in PMC 2012 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larsen and Minna Page 49

G
en

e
SC

L
C

 (
%

)a
N

SC
L

C
 (

%
)a

R
ef

er
en

ce
s

A
ll

A
de

no
-

ca
rc

in
om

a
Sq

ua
m

ou
s 

ce
ll

   
 P

D
G

FR
A

65
2–

10
0

10
0

89
44

2–
44

5

T
um

or
 s

up
pr

es
si

ng
 a

lt
er

at
io

ns

M
ut

at
io

n

   
 C

D
K

N
2A

 (
p1

6)
<

1
10

–4
0

41
2

   
 L

K
B

1
R

ar
e

30
–4

0
30

–6
0

5–
30

18
6,

18
7,

18
9,

44
6,

44
7

   
 p

53
75

–9
0

50
–6

0
50

–7
0

60
–7

0
41

2,
44

8–
45

0

   
 P

T
E

N
15

–2
0

<
10

41
2

   
 R

b
80

–1
00

20
–4

0
41

2,
45

1–
45

3

D
el

et
io

n/
L

O
H

b

   
 C

D
K

N
2A

 (
p1

6)
37

75
–8

0
72

,3
97

,4
54

   
 F

H
IT

10
0

55
–7

5
72

,4
54

,4
55

   
 p

53
86

–9
3

74
–8

6
72

,4
54

   
 R

b
93

62
72

,4
54

L
os

s 
of

 p
ro

te
in

 e
xp

re
ss

io
n

   
 C

A
V

1
95

24
45

6

   
 C

D
K

N
2A

 (
p1

4A
R

F)
65

40
–5

0
39

3,
39

4,
39

7,
45

7

   
 C

D
K

N
2A

 (
p1

6)
3–

37
30

–7
9

~5
5

60
–7

5
72

,4
54

   
 F

H
IT

80
–9

5
40

–7
0

72
,4

12
,4

54

   
 P

T
E

N
25

–7
4

77
70

39
1,

45
7

   
 R

b
90

15
–6

0
23

–5
7

6–
14

72

   
 T

U
SC

2 
(F

U
S1

)
10

0
82

79
87

45
8

T
um

or
-a

cq
ui

re
d 

D
N

A
 m

et
hy

la
ti

on

   
 A

PC
15

–2
6

24
–9

6
17

2,
17

3,
45

9

   
 C

A
V

1
93

9
45

6

   
 C

D
H

1
60

 4
0

20
–3

5
17

3,
45

9–
46

1

   
 C

D
H

13
15

–2
0

45
17

2,
17

3

Clin Chest Med. Author manuscript; available in PMC 2012 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larsen and Minna Page 50

G
en

e
SC

L
C

 (
%

)a
N

SC
L

C
 (

%
)a

R
ef

er
en

ce
s

A
ll

A
de

no
-

ca
rc

in
om

a
Sq

ua
m

ou
s 

ce
ll

   
 C

D
K

N
2A

 (
p1

4A
R

F)
nd

b
6–

8
17

3

   
 C

D
K

N
2A

 (
p1

6)
5,

 0
15

–4
1

21
–3

6
24

–3
3

29
6,

46
2,

46
3

   
 D

A
PK

1
nd

16
–4

5
17

3,
29

8,
45

9

   
 F

H
IT

64
37

17
2,

17
3

   
 G

ST
P1

16
7–

15
17

3,
46

4

   
 M

G
M

T
16

10
–3

0
17

3,
45

9

   
 P

T
E

N
26

24
30

39
1

   
 R

A
R
β

45
–7

0
40

–4
3

17
2,

17
3,

46
5

   
 R

A
SS

F1
A

72
–8

5
15

–4
5

31
43

16
9,

17
3,

17
5,

29
7,

45
9,

46
6

   
 S

E
M

A
3B

nd
41

–5
0

46
47

16
9,

17
0

   
 T

IM
P3

nd
19

–2
6

17
3

T
el

om
er

es

   
 T

el
om

er
as

e 
ac

tiv
ity

75
–1

00
50

–8
0

65
–8

5
80

–9
0

26
1–

26
3,

41
2,

46
7

C
hr

om
os

om
al

 a
be

rr
at

io
ns

   
 E

M
L

4-
A

L
K

 f
us

io
n

2–
13

13
6

   
 L

ar
ge

-s
ca

le
 lo

ss
1p

, 3
p,

 4
p,

 4
q,

 5
q,

 8
p,

 1
0q

,
13

q,
 1

7p
3p

, 5
q,

 8
p,

 9
p,

 1
3q

, 1
7p

, 1
8q

, 1
9p

,
19

q,
 2

1q
, 2

2q
2q

, 3
p,

 4
q,

 8
p,

 9
p,

 9
q,

 1
0p

, 1
0q

,
13

q,
 1

5q
, 1

8,
 2

0
3p

, 4
q,

 9
p,

 1
0p

, 1
0q

, 1
8,

 2
0

63
,6

4,
90

,4
54

,4
68

–4
71

   
 F

oc
al

 d
el

et
io

ns
2q

22
.1

, 3
p1

4.
2,

 3
q2

5.
1,

 5
q1

1.
2,

 7
q1

1.
22

, 7
q3

4,
 9

p2
3,

 9
p2

1.
3,

 1
0q

23
.3

1,
 1

1q
11

, 1
3q

12
.1

1,
 1

3q
14

.2
, 1

3q
32

.2
, 1

8q
23

,
21

p1
1.

2
74

,8
4,

86

   
 L

ar
ge

-s
ca

le
 g

ai
n

3q
, 5

p,
 8

q,
 1

8q
1q

, 3
q,

 5
p,

 6
p,

 7
p,

 7
q,

 8
q,

 2
0p

, 2
0q

5p
, 7

p,
 7

q,
 8

q,
 1

1q
, 1

9,
 2

0q
2q

, 3
q,

 5
p,

 7
, 8

q,
 1

1q
, 1

3q
, 1

9,
 2

0q
63

,6
4,

90
,4

54
,4

68
–4

71

   
 F

oc
al

 a
m

pl
if

ic
at

io
ns

1p
36

.3
2,

 1
p3

4.
3,

 1
q3

2.
2,

 1
q2

1.
2,

 2
p2

4.
3,

 2
q1

1.
2,

 2
q3

1.
1,

 3
q2

6.
31

, 5
p1

5.
33

, 5
p1

5.
31

, 5
p1

4.
3,

 5
q3

1.
3,

 6
p2

1.
1,

 7
p1

1.
2,

8p
12

, 8
q2

1.
13

, 8
q2

4.
21

, 1
0q

24
.1

, 1
0q

26
.3

, 1
1q

13
.3

, 1
2p

12
.1

, 1
2q

13
.2

, 1
2q

14
.1

, 1
2q

15
, 1

4q
13

.3
, 1

4q
32

.1
3,

 1
6q

22
.2

,
17

q1
2,

 1
8q

12
.1

, 1
9q

12
, 1

9q
13

.3
3,

 2
0q

13
.3

2,
 2

2q
11

.2
1

74
,8

4,
86

a nd
, n

ot
 d

et
er

m
in

ed

b L
O

H
, l

os
s 

of
 h

et
er

oz
yg

os
ity

Clin Chest Med. Author manuscript; available in PMC 2012 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larsen and Minna Page 51

Table 2

Molecular differences between smoking and never smoking lung cancers

Gene Never smoking Smoking

TP53 mutations – overall Less common More common

TP53 mutations – G:C to T:A mutations Less common More common

KRAS mutations Less common (0–7%) More common (30–43%)

EGFR mutations More common (45%) Less common (7%)

STK11 mutations Less common More common

EML4-ALK fusions More common Less common

HER2 mutations More common Less common

Methylation index Low High

p16 methylation Less common More common

APC methylation Less common More common

Loss of hMSH2 expression Common (40%) Rare (10%)

Data summarized from the following reviews9,35,36
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Table 3

Targeted therapies against oncogenic pathways in lung cancer

Gene Drug

AKT MK-2206, Nelfinavir, Perifosine

ALK Crizotinib, GSK1838705A, nVP-TAE684

Aurora kinase AZD 1152, MLN 8237, MK0457, MK5108

BCL2 ABT-737, Gossypol, Navitoclax (ABT-263), Oblimersen, Obatoclax

CDK Purvalanol

COX-2 Celecoxib

EGFR AEE 788, AV-412, BMS-599626, BMS-690514, Canertinib, Cetuximab, CUDC-101EKB-569, Erlotinib, Gefitinib,
Icotinib, Lapatinib, Matuzumab, Neratinib, Nimotuzumab, Panitumumab, Pelitinib, Vandetanib, XL647, Zalutumumab

ErbB2 CI-1033, HKI-272, Lapatinib, Trastuzumab

FGFR BIBF 1120, Brivanib Alaninate, E-7080, FP-1039, PD-173074, Regorafenib, TSU-68TKI-258, XL999

FLT-3 MK-0457, Sorafenib, Sunitinib, XL999

FUS1 fus1 liposome complex

HDACs Belinostat, CUDC-101, Entinostat, Panobinostat, Pivanex, Romidepsin, SB939, Vorinostat

HER2 AEE 788, Afatinib, AV-412, BMS-599626, BMS-690514, CUDC-101, EKB-569, Lapatinib, Neratinib, Pertuzumab,
Trastuzumab, XL647,

Hh (SMO) BMS-33923, Cyclopamine, GDC-0449, IPI-926, LDE 225

HIF1 Oncothyreon

HSP70 17-AAG

HSP90 Alvespimycin, Retaspimycin, Tanespimycin

IAPs HGS01029

IGF-1R AMG 479, BIIB022, BMS-754807, Cixutumumab, Figitumumab, MK-0646, OSI906

c-KIT AMG-706, Axitinib, Cediranib, Dasatinib, Imatinib, Motesanib, Pazopanib, Regorafenib, Sorafenib, Sunitinib, Vatalanib

MDM2 JNJ-26854165, RO5045337

MEK AS 703026, AZD6244 (selumetinib), AZD8330, GDC-0973, GSK1120212, PD325901, RDEA119, Sorafenib

c-MET AMG 102, AMG 208, ARQ197, Crizotinib, Foretinib, GSK1363089, PF-04217903, PHA-665752, SCH900105,
SGX523, SU11274, XL184

mTOR AZD 8055, BEZ235, Everolimus, OSI 027, PX-866, Ridaforolimus, Sirolimus/Rapamycin, Temsirolimus

Notch (γ-secretase) MK0752, MRK-003, PF03084014, RO 4929097

p53 p53 peptide vaccine, PRIMA-1

PARP AG014699, Iniparib, Olaparib, Veliparib

PDGFR AMG-706, Axitinib, BIBF 1120, Cediranib, Dasatinib, E7080, Imatinib, IMC-3G3, Linifanib, Motesanib, Pazopanib,
Ramucirumab, Regorafenib, Sorafenib, Sunitinib, TKI-258, TSU-68, Vatalanib, XL999

PI3K BEZ235, BGT226, GDC-0941, LY294002, PX-866, XL147, XL765

PPARγ BSI-201, CS 7017, Olaparib

Proteasome Bortezomib, Carfilzomib, CEP-18770, MLN9708, Salinosporamide A

RAF AZ628, GSK2118436, ISIS 5132, Regorafenib, Sorafenib, XL281

RAS lonafarnib, ISIS 2503 (H-Ras), Tipifarnib

SRC/BCR-ABL AZD0530, Dasatinib, Imatinib, KX2-391, XL999

Telomerase Imetelstat, Sodium metaarsenite

TGF-β Trabedersen

TRAIL Apomab, Conatumumab, Dulanermin, Lexatumumab, Mapatumumab, rhApo2L
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Gene Drug

VEGF Aflibercept, Bevacizumab

VEGFR Adnectin, AEE 788, Axitinib, BIBF 1120, BMS-690514, Brivanib Alaninate, Cediranib, E7080, Foretinib, Linifanib,
Motesanib, Neovasat, Pazopanib, Ramucirumab, Regorafenib, Sorafenib, Sunitinib, Tivozanib, TKI-258, TSU-68,
Vandetanib, Vatalanib, XL184, XL647, XL999
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Table 4

Published putative markers for the isolation of lung cancer stem cells

Sample type Tumor type Marker/Property for CSC Isolation Reference

Cell lines NSCLC Hoechst exclusion 198,472

Chemoresistance 473

ALDH activity 196,474,475

CD133+ 195

SCLC ALDH activity 474

CD133+ 476

uPAR 477

Tumor tissue NSCLC Hoechst exclusion 198

ALDH activity 474

CD133+ 137,195,199

SCLC CD133+ 199
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Table 5

DNA methylation as a biomarker in lung cancer

Early detection Prognostic marker Predictive marker

APC APC SFN (14-3-3 sigma)

CDH13 CDH1

DAPK1 CDH13

DNMT1 CXCL12

FHIT DAPK1

GATA5 DLEC1

GSTP1 EPB41L3 (DAL-1)

MAGEA1 ESR1

MAGEB2 FHIT

MGMT IGFBP-3

p16 MGMT

PAX5-b MLH1

RARβ2 MSH2

RASSF1A p16

RASSF5 PYCARD (ASC)

RUNX3 PTEN

TCF21 RASSF1A

RRAD

RUNX3

SPARC

TIMP3

TMS1

TSLC1

WIF1

Data summarized from the following reviews286,287,478
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Table 6

Conditional genetically engineered mouse models of lung cancer

Genetic manipulationa Histopathology of lungs Metastasis Reference

BRAFV600E Adenocarcinoma 479

EGFRL858R or Del Adenocarcinoma with BAC features 480,481

EGFRT790M or T790M+L858R or T790M+Del Adenocarcinoma 482,483

EGFRvIII Adenocarcinoma None 484

EML4/ALK Adenocarcinoma with BAC features 485

HER2YVMA Adenosquamous Yes 486

KrasD12 Adenocarcinoma None 487

KrasV12 Adenocarcinoma Lymph node, kidney 488

KrasD12 + HIF2α Yes 489

KrasD12 + Ink4a/Arf−/− Adenocarcinoma None 446

KrasD12 + p16Ink4a−/− Adenocarcinoma Yes 446

KrasD12 + p53L/L− Adenocarcinoma Yes 446

KrasD12 + p53F/F Adenocarcinoma Yes 490

KrasD12 + p53R270H/F Adenocarcinoma 490

KrasD12 + p53R172H/F Adenocarcinoma 490

KrasD12 + PTENΔ5/Δ5 Adenocarcinoma 491

KrasD12 + Lkb1L/L or L/− Squamous cell, adenosquamous, large cell Yes (lymph node, skeletal) 446

KrasD12 + Lkb1 L/+ or +/− Adenocarcinoma Yes (lymph node, skeletal) 446

PIK3CAH1047R Adenocarcinoma with BAC features 128

p16Ink4a−/− + p53L/L None 446

p53+/− Adenocarcinoma 492

p53F/F Adenocarcinoma 493

p53R172H/+ or R172H/− Adenocarcinoma 492

p53R270H/+ or R270H/− Adenocarcinoma, squamous cell 492

p53F/F + RbF/F SCLC Yes 493

a
-, germline null allele; L or F, conditional knockout allele;
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