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Statistical Methods for the Analysis of Time–Location
Sampling Data

John M. Karon and Cyprian Wejnert

ABSTRACT Time–location sampling (TLS) is useful for collecting information on a hard-to-
reach population (such as men who have sex with men [MSM]) by sampling locations where
persons of interest can be found, and then sampling those who attend. These studies have
typically been analyzed as a simple random sample (SRS) from the population of interest. If
this population is the source population, as we assume here, such an analysis is likely to be
biased, because it ignores possible associations between outcomes of interest and frequency of
attendance at the locations sampled, and is likely to underestimate the uncertainty in the
estimates, as a result of ignoring both the clustering within locations and the variation in the
probability of sampling among members of the population who attend sampling locations.
We propose that TLS data be analyzed as a two-stage sample survey using a simple weighting
procedure based on the inverse of the approximate probability that a personwas sampled and
using sample survey analysis software to estimate the standard errors of estimates (to account
for the effects of clustering within the first stage [locations] and variation in the weights). We
use data from the Young Men’s Survey Phase II, a study of MSM, to show that, compared
with an analysis assuming a SRS, weighting can affect point prevalence estimates and
estimates of associations and that weighting and clustering can substantially increase
estimates of standard errors. We describe data on location attendance that would yield
improved estimates of weights. We comment on the advantages and disadvantages of TLS
and respondent-driven sampling.
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INTRODUCTION

Public health scientists use time–location sampling (TLS; also known as time-space
sampling) to collect data from hard-to-reach populations, such as men who have sex
with men (MSM), who can be found at identifiable locations. For example, the
Centers for Disease Control and Prevention (CDC) used TLS in the Young Men’s
Survey (YMS) to enroll 3,492 MSM ages 15–22 years in seven large cities during
1994–1998.1 CDC recruited these men from a variety of types of venues (including
dance clubs, bars, businesses, parks, and street locations) where MSM could be
found. CDC collected public health data, including behavioral data and HIV and
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hepatitis B status. The prevalence of HIV at such a young age was high, 5.6% and
8.6% among men ages 15–19 and 20–22 years, respectively.

YMS investigators collected data using standard TLS methods.2 First, formative
research attempted to identify all venues (locations) at which enough persons from
the population of interest could be found on some day during a period of at least
4 hours to make recruitment worthwhile. The potential sampling periods for each
day were defined; there could be more than one period on a day at a venue (see
MacKellar et al.3 for a hypothetical example). These venues and sampling times
formed the sampling frame from which locations were selected; the sampling frame
could be redefined monthly based on updated attendance information (venues could
be added or deleted). Next, investigators chose a random sample of venues (a simple
random sample without replacement) of a specified size from this sampling frame.
For each venue selected, the investigators chose a day and then a time period for
sampling at each venue; if there was more than one potential sampling period, the
period during which sampling took place was chosen at random or considering
administrative constraints. Finally, the investigators chose a sample of persons
entering the venue from among those appearing to meet the eligibility criteria and
counted the number of attendees appearing to meet these criteria. Investigators used
procedures to avoid enrolling a person more than once.

The published analyses of YMS regarded the data as if they were obtained from a
simple random sample. For example, the investigators estimated prevalence as the
number with the condition, divided by the number with data; they used the binomial
distribution to obtain confidence intervals and logistic regression to evaluate the
association between an outcome and a risk factor, adjusted for covariates. Point
estimates and confidence intervals from such an analysis describe a population
resembling those actually sampled (over-representing persons who visit these
locations more frequently) but not the population from which those sampled was
drawn unless the persons studied were a simple random sample from an infinite
population and data from pairs of persons were independent. Because the
probability of sampling depends on the frequency with which a person attends
venues, the probability of accepting an invitation to participate, and the sampling
fractions at the venues he attends, the simple random sample assumption is false.
The independence assumption is false if there is sufficient variation in the mean
value of an outcome among the locations. Thus, estimates of prevalence from such
an analysis may be biased if outcomes are associated with frequency of attendance at
locations; estimates of associations between outcomes and personal characteristics
may be biased if these characteristics are associated with frequency of attendance.
Estimates of standard errors are too small if outcomes or characteristics cluster
within locations or if there is differential probability of enrollment in the study; we
will account for the latter by proposing a weighted analysis.

We assume that the population of interest is the population of persons attending
locations, rather than a population resembling those actually sampled. In this case, a
more appropriate analysis of a TLS study is that of a multi-stage cluster sample
survey. The primary sampling units (PSUs) are the locations (the first stage). The
sampling of persons within the PSUs is a second stage. The probability of being
sampled depends on many factors, including whether a person goes to any venue,
whether he goes to the venue at which sampling takes place during the sampling
period, and the proportion of eligible persons sampled. We show how to define
weights which approximately reflect the differential probability of enrollment in the
study; we include the effect of all factors that affect the sampling probability in these
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weights, so that the data can be analyzed as a two-stage rather than a three-stage
sample (software for analyzing a two-stage sample is more readily available than for
a three-stage sample). Using these weights and the location from which a person was
enrolled (the cluster) in sample survey software accounts for the effects of variation
among the weights and of clustering on the standard errors of estimates.

After summarizing the relevant sample survey theory, we propose a method to
compute approximate weights for TLS data. We illustrate these methods by
analyzing data from four of the six metropolitan areas in which CDC conducted a
second TLS study of MSM, YMS Phase II, which enrolled 2,942 MSM ages 23–
29 years during 1998–2000.4 The analyses demonstrate the effects of failing to use
weights and accounting for clustering to estimate the prevalences and the precision
of these estimates for HIV, hepatitis B, and unprotected anal intercourse (UAI) and
to evaluate the associations between UAI and the other two outcomes. In the
“Discussion” section, we comment on data collection for time–location surveys and
the analysis of these data, and on the use of other data collection methods.

WEIGHTING AND VARIANCE ESTIMATION IN A SAMPLE
SURVEY

We review standard sample survey analysis methods which account for among-
person variation in sampling probabilities through the definitions of weights. We
review the design effect, which quantifies the increase in estimates of standard errors
as a result of variation in these weights and of clustering.

In a sample survey analysis, a weight w, the inverse of the probability of being
sampled, is defined for each person. Let xi and wi be the observed quantity of
interest and the weight, respectively, for the ith person in the sample. Then the
estimated mean value in the sample is

�x ¼ �wixi=�wi ð1Þ
Note that the mean is unchanged if all the weights are multiplied by a constant.

The variance of an estimate based on a sample survey is a sum of the variances for
each PSU. Each of these variances is an expression times 1−fpc, where fpc (the finite
population correction factor) is the probability that the PSU was sampled. Without
this correction, the estimated variance is too large if a substantial proportion of the
PSUs are sampled.

In a sample with unequal probabilities of sampling or clustering, the variance of
an estimate is likely to be larger than the variance obtained from a simple random
sample of the same size. This increase is quantified as the design effect (DE), defined
as the variance computed based on the sampling design, divided by the variance that
would be obtained if the sample were a simple random sample. For example, if we
estimate a prevalence with an observed value of p from a sample of size n and ignore
the finite population correction factor, the denominator of the DE is p(1−p)/n. If all
weights are equal, the design effect is approximately 1þ ð�n � 1Þ� where �n is the
mean cluster size and ρ is the intracluster (or intraclass) correlation coefficient (ICC;
see Kish.)5(p258) The ICC measures the variability among clusters compared to
the variability in the entire population. The ICC is 1 if x is constant within each
cluster. If the proportion with x=1 is constant across clusters, then the ICC is
negative and is equal to −1/(n−1) if all clusters are of size n (this is the minimum
value for the ICC). Note that the ICC may be different for different outcomes of
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interest. If the ICC is positive, it is plausible that the DE should increase as the
mean cluster size or ICC increases, because there is more effect of the clusters
sampled on the point estimate. Zou and Donner6 give three estimators (one based
on analysis of variance and one based on Pearson’s correlation coefficient, and a
kappa-type estimator) of the ICC and their variances for binary data x under the
hypotheses that the probability Pr(x=1) is constant across clusters, and that
observations from different clusters are independent.

With unequal weights, it is plausible that the DE should increase as the variation
among the weights increases, because the particular sample of persons selected for
the study has more effect on an estimate. Kish5 quantified the increase in the design
effect for a study with weights that are constant within strata but vary among strata
(Eq. 11.7.7). This expression is 1 plus a sum of terms, one term for each pair of
strata (for a TLS survey, locations). For two strata with sample sizes n1 and n2 and
weights w1 and w2, with mean weight �w, this term is �w2CV 2=ð2N 2w1w2Þ, where CV
is the coefficient of variation of the weights in these two strata (the standard
deviation of the weights divided by the mean of the weights) and N is the total
sample size in the study. Thus, in a TLS study, the design effect likely increases with
the square of the coefficient of variation of the weights, as well as with the ICC and
cluster size.

DEFINITION OF WEIGHTS FOR A TIME–LOCATION SAMPLE
STUDY

The prevalence of a sexually transmitted infection, such as HIV or hepatitis B, in
MSM may be associated with the frequency of attendance at venues in the time–
location study (hereafter also abbreviated as TLS) sampling frame. As noted in the
“Introduction” section, if this were true, an unweighted estimate of prevalence
would be biased compared to the prevalence in the population of MSM attending
the venues at which sampling took place. In this section, we suggest a simple
expression as an approximation to the probability with which a person is sampled
for a TLS.

The sampling probability p for a person enrolled in a TLS is similar to the
cumulative probability from a negative binomial distribution, as shown by Eq. 2
below. Let si be the probability that the person is enrolled during the ith sampling
event, given the person’s behavior (how often the person attends locations in the
sampling frame, which location the person attends, and when). Then

p ¼ s1 þ ð1� s1Þs2 þ ð1� s1Þð1� s2Þs3 þ ::: ð2Þ
That is, the person could be enrolled during the first sampling event, or not

enrolled during that event but enrolled during the second, or not enrolled during the
first two events but enrolled during the third, etc. If the si are constant, the
summands of Eq. 2 are the successive terms of the negative binomial probability
distribution.

CDC investigators attempted to estimate p in analyzing the first YMS from
interview information on how often a man went to the venues in the sampling frame
and the probability distribution of the types of venues he attended. The probability
that a man was sampled during the ith sampling event is the product of four
probabilities: γi, the probability that a man attends any venue in the sampling frame
on the day when that sampling event takes place; αi, the probability that he attends
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the venue at which sampling takes place given that he attends some venue on that
day; βi, the proportion of potential venue sampling time on that day during which
sampling took place (e.g., βi is 1 if there was only one potential sampling period and
men were recruited during the entire period, and is 2/3 if sampling took place during
an entire 4-h period but there was also a potential 2-h period); and fi, the sampling
fraction at that sampling event. Thus

si ¼ g iaibi fi ð3Þ
If fi is computed as the number who participate divided by the number believed

eligible, and if we do not stratify the response probability and the sampling fraction
by personal characteristics, then fi includes the effect of nonresponse.

MacKellar et al.2 estimated si for each man under the assumptions that
attendance at all venues of a particular type was equally probable (αi=1) and that
for all sampling events, βi was 1. However, the resulting numerical estimates of the
sampling probability p were approximately 1 for nearly all men; this implies that
nearly every man in the population was sampled, which clearly was not true
(sampling fractions were less than 0.25 even at the end of the study). There were a
large number of sampling events in each metropolitan area (1,592 sampling events
in seven areas).1 Therefore, for each man sampled, Eq. 2 is a sum of a very large
number of terms, each of which may be small. Such a sum is very difficult to
compute accurately, which likely led to the failure of this procedure.

Therefore, we use an alternative approach. To obtain a simple approximation to a
person’s sampling probability, we assume that, for a person in the sample, si is constant
and equal to s (s may vary among persons). This will be true if, for that person, γi, βi,
and the αi are constant during the study period (i.e., the person’s venue attendance
pattern is unchanged during the study), and the sampling fractions are equal at all
venues the person attended. Assume that there are k sampling events. Since the
probability of not being sampled at each event is 1−s, the probability of being sampled is

p ¼ 1� 1� sð Þk ¼ ks � k k � 1ð Þs2=2þ ::: ð4Þ
using the power expansion of (1+x)k; the omitted terms contain terms of at least order
k3s3. Because γi and βi are at most 1, sampling fractions will be substantially less than
1 at the larger venues at which many men can be sampled, and αi will be small if the
venue sampling frame is large enough, we expect the si to be much less than 1. If the
number of sampling events is not too large, ks is small, and the remaining terms are of
order (ks)2 or smaller. Because the higher-order terms are small compared to ks, p is
approximately equal to ks, and p is proportional to s provided that the person attends
locations in the sampling frame throughout the study period.

The information necessary to obtain approximate estimates ofγ andα can be obtained
in the interview. The value of β for the day on which a person is sampled is known. The
mean or overall sampling fraction at a venue is computed from the numbers sampled
and estimated to be eligible at each sampling event. If sampling fractions at larger
venues remain small near the end of the study, it seems plausible to conclude that ks is
small enough that p is proportional to s. Therefore, we use 1/s as our weight.

DATA ANALYSIS EXAMPLE

We illustrate the effects of weighting, variation among the weights, and clustering on
prevalence estimates, on estimates of the association between prevalence and a risk
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factor, and on the standard errors of estimates using data on MSM from four of the
six geographical areas (465–543 men in each area) in which YMS Phase II was
conducted. We show that these effects may vary among areas.

Investigators asked men how often they attended bars or dance clubs during the
last 6 months: never, less than once per month, once per month, two to three times
per month, once per week, two to three times per week, or daily. We computed each
man’s value of γ (the daily probability that he went to some venue) from these data.
In the following analyses, we excluded those who answered “never” because there
were relatively few of them, it is difficult to assign them an appropriate value of γ,
and the value would be quite small (leading to a large weight, and perhaps undue
influence on a point estimate). We assigned values of γ to the remaining categories of
0.01, 0.03, 0.08, 0.14, 0.35, and 1, respectively; these values are approximately the
probability of attending a bar or dance club on a day in a week (e.g., if a man
attended two or three times per week, his value of γ would be 0.28 [2/7] or 0.42 [3/7],
respectively; 0.35 is the average of these values). Recall that analysis results are
unchanged if all weights (hence estimates of probabilities of selection) are multiplied by
a constant. The interview did not contain more detailed information on either
the frequencies with which a man attended each type of venue or on the
frequency with which he attended the venue at which he was sampled. As a
result, we must assume that all men sampled within a geographic area have the
same attendance probability α the probability that a man attended the venue at
which sampling took place, given that he went to some venue; we suggest in the
Discussion how to avoid this assumption by collecting more detailed attendance
data. Let f be the overall sampling fraction at the venue at which a man was
sampled. The sampling frame data needed to compute the proportion β in Eq. 2
(the proportion of potential sampling time during which data were collected) for
the event at which a man was sampled are not available at this time. Therefore we
use the weight 1/(γf) for this man.

Tables 1, 2, and 3 summarizes characteristics of the 602 sampling events at the
124 venues at which sampling occurred in these four areas. The number of venues

TABLE 1 Descriptive statistics for sampling events in the Young Men’s Health Study Phase II, by
metropolitan area (excluding men who reported “never” going to a venue during the previous
6 months)—number of venues, by total number enrolled and number of sampling events

Metropolitan area

A B C D Total

Total number enrolled

452 527 498 484 1,961

Number of sampling events Number of venues

1 9 13 6 4 32
2 11 7 2 5 25
3 8 5 1 1 15
4 3 4 1 2 10
5–9 5 9 2 7 23
10–14 4 1 2 4 11
15–24 0 0 5 3 8
Total 40 39 19 26 124
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ranged from 19 in area C to 40 in area A (Table 1). There was only one
sampling event at approximately 25% (32 of 124) of the venues, e.g., nine of 40
venues in area A (Table 1). There was great variation in the number of men
enrolled at the venues and in the number enrolled at a sampling event. Four or
fewer men were enrolled at 40 of the 124 sampling locations (14 of 40 locations
in area A: Table 2). Overall, only one man was enrolled at 10 locations and 2 at
13 (data not shown). Among the 602 sampling events, 28% yielded only one man
enrolled (40 of 144 sampling events in area A); the overwhelming majority of
sampling events yielded at most four men (114 of 144, or 79%, of events in area
A; Table 3). In area C, at least 60 men were enrolled at three locations (Table 2),
including 99 at one and 100 at another. The large proportion of those enrolled in
an area who were found at a few venues (e.g., approximately 40% of the sample

TABLE 2 Descriptive statistics for sampling events in the Young Men’s Health Study Phase II,
by metropolitan area (excluding men who reported “never” going to a venue during the
previous 6 months)—number of venues, by number enrolled at a venue

Metropolitan area

A B C D Total

Number enrolled Number of venues

1–4 14 13 4 9 40
5–9 16 8 4 4 32
10–14 5 3 1 2 11
15–19 0 4 3 3 10
20–39 1 8 3 4 16
40–59 3 3 1 2 9
60+ 1 0 3 2 6
Total 40 39 19 26 124

TABLE 3 Descriptive statistics for sampling events in the Young Men’s Health Study Phase II,
by metropolitan area (excluding men who reported “never” going to a venue during the
previous 6 months)—number of venues, by number of sampling events—number (percent) of
sampling events, by number enrolled at the event

Metropolitan area

A B C D Total

Number enrolled Number of sampling events (percent of events in that area)

1 40 (28) 23 (19) 54 (33) 54 (32) 171 (28)
2 35 (24) 18 (15) 34 (21) 45 (26) 132 (22)
3 24 (17) 24 (19) 24 (15) 24 (14) 96 (16)
4 15 (10) 14 (11) 23 (14) 15 (9) 67 (11)
5–9 25 (17) 35 (28) 23 (14) 32 (19) 115 (19)
10–14 5 (3) 9 (7) 1 (1) 1 (1) 16 (3)
15–19 0 (0) 1 (1) 4 (2) 0 (0) 5 (1)
Total 144 (100) 124 (100) 163 (100) 171 (100) 602 (100)
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from two venues in area C) suggests that intracluster correlation could have a
substantial effect on the precision of an estimated prevalence.

Table 4 summarizes information on numbers eligible and enrolled, sampling
fractions, and sampling weights. The numbers eligible include men who said that
they “never” attended a bar or dance club in the last 6 months (attendance
information is not available for those who did not participate). The sampling
fractions at the venues were computed from numerators excluding 175 enrolled
men who “never” attended a bar or dance club in the last 6 months and
denominators including all men deemed eligible. The medians and the quartiles of
the sampling fractions f are higher in areas B and C than in areas A and D. All
four areas have similar distributions of the sampling weights 1/γ based on
attendance only (ignoring the sampling fractions); the weights 1/γf tend to be
lower in areas B and C than in areas A and D (since these weights and sampling
fractions are inversely proportional). Within each metropolitan area, the
Spearman correlation between these two weight definitions is at least 0.95.
Therefore, we expect the two sets of weights to yield similar point estimates.

Table 5 shows, for each area, the mean venue sample sizes �n, coefficients of
variation (CVs) of the analysis weights, and, for each of three outcome variables,
the point estimate of the kappa-type ICC, and the joint effect of the mean cluster
(venue) size and the estimated ICC on the design effect. Recall that the design
effect increases with ð�n � 1ÞICC and with CV2. In each metropolitan area, both
analysis weight CVs are approximately 1.5 (without and with including the
sampling fractions in the weights). We computed estimated ICCs using Zou and
Donner’s analysis of variance (ANOVA), Pearson, and kappa-like expressions6

which assume that, in an area, the probability of a positive result does not vary
among clusters. We know that this assumption is false for HIV, as young black
MSM have a higher HIV prevalence than other MSM1 and the proportion of
enrolled men who are black varies among the venues. The ICCs estimated from
the Pearson and kappa-like expressions were similar and much smaller in
magnitude than those computed using the ANOVA expression. We show the
ICC point estimates and design effects from the kappa-like estimator. Despite the
violation of the assumption given above, the ICC estimates suggest that the
clustering of outcomes within venues is weak, especially for hepatitis B and
unprotected anal intercourse.

Table 6 shows the point estimates, standard errors, and observed design effects
for prevalences of HIV, hepatitis B, and UAI during the last 6 months if we
assume that the PSU finite population correction factors are very small and can be
ignored. The weighted prevalence estimates are somewhat larger than the
unweighted estimates for HIV and for hepatitis B except in area B; the weighted
estimates are smaller for UAI except for area C (much smaller for area A). Thus,
an unweighted analysis (ignoring frequency of attendance) may produce biased
estimates of prevalence in the population attending the locations in the sampling
frame.

Clustering increases the standard errors of the estimates (design effects for
an unweighted clustered analysis are greater than 1) for HIV and hepatitis B
except for hepatitis B in area D; such an analysis of the prevalence of UAI has
a design effect of approximately 1 except in area D, where the design effect is
0.4. Weighting increases the design effects, as expected, except for HIV in area
C. Most of these increases are substantial, such as the increase in the design
effect for the prevalence of HIV in area A from 1.2 for an unweighted
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clustered analysis to 4.0 for a clustered analysis using weights incorporating
sampling fractions. Using the venue sampling fractions in the weights has little
effect on the prevalence estimates and their standard errors compared to the
weighted results ignoring the sampling fractions. The observed design effects
for the unweighted clustered analyses of the prevalences of HIV and of
hepatitis B tend to be smaller than the corresponding estimates obtained from
Table 5. For example, the predicted design effects 1þ ð�n � 1ÞICC obtained from
Table 5 for clustered unweighted HIV prevalence estimates in areas A–D are 2.3,
3.0, 6.0, and 2.5, respectively, but the corresponding observed design effects in
Table 6 are 1.2, 2.7, 8.9, and 1.9; for hepatitis B and UAI, the observed design
effects in each area are smaller than those predicted from Table 5. Using PSU
finite population correction factors would not affect the point estimates but
would affect the standard errors and hence the design effects. For example, if we
assume that each PSU finite population correction factor is 0.5, the design effect is
half as large as that in the table, and the estimated standard error is multiplied by
1/

ffiffiffi

2
p

(0.7).
The similarity between the weighted and unweighted point estimates of

prevalence suggest that the proportions infected are not strongly associated with
the analysis weights. We can evaluate this dependence by tabulating the proportion
infected versus the attendance weights. The only “small” p values for the Cochran–
Mantel–Haenszel test for trend were for hepatitis B in area B and for UAI in areas C
and D (p values between 0.02 and 0.04; data not shown). If sampling probabilities
are computed with less grouping, the corresponding exploratory analysis could fit a
smooth curve to the binomial data. Potential smoothers are a robust loess (or
lowess) curve7 and a kernel smoother, which can be computed in a number of
statistical packages, including SAS, SPlus, stata, and R.

The largest design effect in Table 6 is for the clustered unweighted prevalence of
HIV in metropolitan area C; this analysis also has the largest ICC in Table 5. We can
show graphically which venues may be responsible for this clustering. Under the null
hypothesis of no clustering, the observed prevalence in each venue has a binomial
distribution with the proportion of persons equal to the overall (unweighted)
observed prevalence. Figure 1 shows a plot of the (unweighted) observed prevalence
of HIV and of UAI in each venue in area C, restricted to venues with at least 10 men
enrolled, compared to exact 99% confidence intervals for prevalences of 0.145 and
0.422, respectively (the overall unweighted prevalences in these venues), given the
observed sample size in the venue. For HIV as the outcome (with a design effect of
8.9 for an unweighted clustered analysis), three venues have prevalences outside
these confidence intervals; one venue with approximately 40 men enrolled has a
prevalence far above the upper limit of the confidence interval. In contrast, for UAI
as the outcome (with a design effect of 1.0 for an unweighted clustered analysis), all
observed prevalences are within the confidence intervals.

UAI is a risk factor for HIV and hepatitis B infection. Table 7 shows the effects of
clustering and weighting on estimates of the associations between UAI and these
infections in areas A and B from logistic regression models fit using both the SAS
Proc SurveyLogistic and from generalized estimating equation models fit using SAS
Proc Genmod. The two models give very similar estimates of the log odds ratio (OR)
and its standard error. The design effects for clustered unweighted analyses are close
to 1 but are clearly greater than 1 with weighting. Weighting has a large effect on the
point estimates of the log OR for HIV, with substantial increases in area A and
decreases in area B. The increase in the standard error for the log OR for the
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FIGURE 1. Proportions with HIV and unprotected anal intercourse during the last 6 months in
area C, by venue. The dotted line shows the proportion for all persons combined (using unweighted
analyses). For each venue, the open circle shows the observed proportion; the vertical bar shows a
99% exact confidence interval for this proportion in that venue based on the number sampled at
that venue, if the true proportion is equal to the proportion for all venues combined.
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weighted hepatitis B analysis in metropolitan area B causes a dramatic increase in
the p value for the association with UAI, from a highly significant association to a
clearly nonsignificant association. Examples of code to compute the results in Tables
6 and 7 are in the Appendix.

DISCUSSION

Special methods are required for sampling hard-to-reach populations (those for which
there is neither a list of the population members nor a list of where they can be found).
Kalton provided a recent review of methods for sampling these populations.8 The most
popular methods for sampling populations such as MSM and injection drug users are
time–location, respondent-driven, and snowball sampling. Two recent reviews contain
substantial discussions of time–location and respondent-driven sampling.9,10 We provide
a brief comparison of these two methods at the end of the “Discussion” section.

Reports of TLS data analyses should clearly state the population to which the
estimates apply. If the data are analyzed as a simple random sample, the results
apply to a population resembling the persons actually sampled, corresponding to
data from a surveillance system. If only the sampling fractions f in Eq. 3 are used to
compute weights for prevalence (frequency of attendance at venues and the
proportion of potential time used in sampling [γ, α, and β in Eq. 3] are not used),
or if the analysis is unweighted but the sampling fractions are approximately
constant, then prevalence point estimates refer to the population of visits to the
locations in the sampling frame, ignoring the fact that there is variation in the

TABLE 7 Results from logistic regression models for the associations between unprotected
anal intercourse in the last 6 months and HIV and hepatitis B in metropolitan areas A and B:
Young Men’s Health Study Phase II

Area Weight Clustering

Survey logistic model GEE model

Log OR (se) [DE] p value Log OR (se) p value

Outcome: HIV
A None None 0.549 (0.302) 0.07
A None Venue 0.549 (0.336) [1.2] 0.10 0.544 (0.334) 0.10
A Attendance Venue 0.752 (0.597) [3.9] 0.21 0.743 (0.581) 0.20
A Sampling fraction Venue 0.917 (0.620) [4.2] 0.14 0.909 (0.611) 0.14
B None None 0.177 (0.238) 0.46
B None Venue 0.177 (0.282) [1.4] 0.53 0.109 (0.289) 0.71
B Attendance Venue 0.092 (0.435) [3.4] 0.83 0.026 (0.421) 0.95
B Sampling fraction Venue 0.013 (0.429) [3.3] 0.98 −0.06 (0.427) 0.89
Outcome: hepatitis B
A None None 0.168 (0.264) 0.52
A None Venue 0.168 (0.243) [0.8] 0.49 0.162 (0.237) 0.50
A Attendance Venue 0.338 (0.519) [3.9] 0.51 0.336 (0.515) 0.51
A Sampling fraction Venue 0.400 (0.590) [5.0] 0.50 0.398 (0.587) 0.50
B None None 0.495 (0.193) 0.01
B None Venue 0.495 (0.162) [0.7] 0.00 0.484 (0.160) 0.00
B Attendance Venue 0.399 (0.294) [2.3] 0.17 0.376 (0.294) 0.20
B Sampling fraction Venue 0.449 (0.289) [2.2] 0.12 0.430 (0.291) 0.14

GEE generalized estimating equation, SE standard error
Weights using venue sampling fraction also use the man’s attendance pattern
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frequency with which persons appear at those locations. Persons who attend
locations in the sampling frame more frequently are over-represented in the sample
compared to the population of all persons who attend these locations. Therefore, if
there is a positive association between frequency of attendance and an outcome of
interest, the prevalence estimate for this outcome is likely to be larger than the
prevalence in the population of persons attending these locations. Unless the
possibility of clustering within locations is accounted for, the confidence interval for
a prevalence estimate from such an analysis may be too narrow (see Table 6 and the
discussion below), provided that we can ignore the finite population correction
factor for the sampling of locations (the primary sampling units).

The CDC recently published two reports on HIV in MSM, based on data from
the National HIV Behavioral Surveillance (NHBS) system.11,12 The initial publica-
tion11 gives prevalence estimates in individual cities; the second publication12 uses
logistic regression to examine associations between risk factors and HIV infection,
aggregating over geographical areas. The NHBS system uses time–location sampling
to collect data.3 The published results regard the data as simple random samples
(clustering within venues and cities, differential venue attendance patterns, and
sampling fractions at individual sampling events are not considered; the logistic
regression models do include geographic area as a fixed effect). As summarized
above, estimates from these analyses describe a population resembling the actual
men sampled, rather than a larger population. Based on the results in Tables 6 and
7, we expect that the published confidence intervals would be narrower than
confidence intervals for estimates pertaining to the population of MSM attending
venues in the sampling frame. CDC staff fit a variety of models that account for
clustering at the venue level, including a generalized linear mixed model and a
generalized estimating equation model. For these models, the lengths of the
confidence intervals for the log odds ratios differed from those from the published
model by at most 2% and approximately 10%, respectively. Therefore, for these
data, conclusions from logistic regression models seem not to be affected by
clustering. However, such an analysis would be essential before ignoring the possible
effects of clustering in the analysis of TLS data from other studies. CDC is currently
reviewing TLS weighting strategies, similar to those presented here but specifically
tailored to the NHBS protocol, for possible use in NHBS data analyses.

In contrast, an analysis using weights based on the probability that a person is
sampled, accounting for the variation in the frequency with which persons attend a
location in the sampling frame, yields estimates that refer to the population of
persons who attend these locations. Precision estimates are invalid unless they allow
for the effect of clustering within sampling locations on standard errors. Accounting
for clustering does not affect point estimates.

Our results show that using weights and accounting for clustering can yield both
point estimates and standard error estimates that are substantially different from
those obtained from regarding the data as arising from a simple random sample
(Tables 6 and 7). If we could collect better data on venue attendance (as suggested
below), we could estimate α (the probability of attending the location where
sampling took place) in Eq. 3; we suggest an estimate for γ (the probability of
attending some location in the sampling frame) which would increase the variation
of γ among persons. If some location sampling periods did not include all potential
sampling times at a location, some of the terms βi in Eq. 3 would not be 1. We
would use the inverse of γαβf as the participant’s analysis weight. Increased
variability in the first three terms in this product would increase the variability in the
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weights. Because the design effect increases with the coefficient of variation in the
weights, more complete data would likely result in larger design effects (larger
standard errors) for clustered weighted analyses than those in Tables 6 and 7.

Our proposed weights are proportional to the inverses of estimated sampling
probabilities for the study. These estimated probabilities rely on assumptions that
would be hard to verify and on self-reported data, resulting in weights that can only
be approximations to the correct weights. To evaluate the potential for biased
estimates as a result of incorrect weights, the data analysis should include an
evaluation of associations between weights and both outcomes of interest and
important covariates, as we suggested in our analyses of the YMS Phase II data. If
there are clear associations, appropriate care should be used in drawing conclusions
from the study. If some persons are assigned relatively large weights, perhaps as a
result of being one of only a few persons sampled at a location, it may be desirable
to check the robustness of the results by redoing the analysis after those persons are
deleted from the data. Alternatively, one may consider weight-trimming methods
that reduce the influence of persons with extreme weights. Because our weights are
approximations to the correct weights, the true standard errors of our estimates are
likely to be larger than the computed standard errors. As a result of the possible bias
in a point estimate and underestimation of its standard error, conclusions from
analyses of TLS data should be made cautiously.

We ignored both the fpc and chose to combine all sampling events at each
location in our analysis. It may be possible to compute the fpc if the analysis is based
on individual sampling events, rather than combining all events at each location. In
YMS Phase II, at most three men were enrolled during at least half of the sampling
events in each of the four metropolitan areas (Table 3). An analysis using individual
sampling events would produce unstable estimates as a result of these small
numbers. In addition, it would ignore the correlation between men sampled at
different times at a location, possibly leading to an underestimate of variance
(consider the case when all men at a location have the same response, so the sample
size contributed to the analysis by that location should effectively be 1, not the
number of men sampled or the number of times the location was sampled). Because
the validity of the weights is uncertain, resulting in potential bias and underestima-
tion of standard errors, we prefer to have conservative confidence intervals for our
estimates. Ignoring the fpc provides such intervals. Computing the fpc with multiple
sampling events at a venue is an unsolved problem.

If reliable data can be obtained on the frequency with which a person is present at
each type of location in the location sampling frame, we can make better estimates
of a person’s sampling probability. Suppose that such data can be collected.
Analogous to Eq. 3, let γ be the probability that the person is present at some
location of the type at which he was sampled. For each location i of this type, let nij
be the number of eligible persons counted at the jth sampling event at this location,
and let �ni be the average of nij/βij (βij is defined as in Eq. 3) over all sampling events
at this location (�ni is the estimated average attendance at location i during periods
when sampling could have occurred). If the location at which the person was
sampled is indexed by i=1, let � ¼ �n1=��ni (this is an estimate of the probability that
the person went to the location where he was sampled, given that he went to a
location of this type). Let f be the sampling fraction at this venue based on all
sampling events combined (we prefer to combine sampling events, as the numbers of
eligible and sampled persons at individual sampling events may be small). Let β be
the proportion of possible sampling hours on this day at this location during which
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data were collected. We propose using the inverse of γαβf as the analysis weight. We
need appropriate studies of the feasibility of collecting detailed data on the frequency
with which men attend venues of different types and of the accuracy of such data.

If we wish to make inference to the population from which persons attend
sampling locations, we emphasize that it is essential to collect data that allow us to
compute an approximation to the probability that a person is sampled. We outlined
above the location attendance information that would permit estimation of γ and α.
We also need estimates or counts of the numbers of eligible persons. If nonresponse
may depend on a characteristic that can be obtained from eligible nonrespondents
that is also associated with an outcome or covariate of interest, this characteristic
should also be recorded for all eligible persons who are counted. The details of the
sampling frame used to schedule sampling events must be available in order to
compute β. The length of time during which eligible persons were counted should
also be recorded, as β should be computed by dividing this duration by the total time
potentially available for sampling at that location on that day. The sampling frame
details would also be needed if theory is developed to use the finite population
correction factors for the primary sampling units in estimating standard errors.

As noted earlier, analysis weights should incorporate the probability that we obtain
data from a sampled person (in our case, a man asked to participate) by multiplying the
estimated selection probability by the estimated response probability. In our example, if
men with a particular characteristic were more likely to cooperate, they were over-
represented among respondents, possibly biasing our estimates. It is common practice in
creating survey analysis weights to incorporate not only the design weight, which
reflects an individual’s chance of selection, but also a response probability (to adjust for
nonresponse). This procedure assumes that the factors associated with the probability
of response (typically demographic characteristics such as age, race/ethnicity, and sex)
are related to the outcomes of interest. In a population survey, the response probability
may be able to be computed from the known demographic characteristics of the
population. To implement this procedure in a TLS survey such as YMS II, interviewers
would need this information for those who refuse to participate; because many or most
may refuse to provide information, it may be feasible to use only characteristics that can
be estimated from appearance, such as age range or race. We incorporated response
probabilities in our definition of the sampling fraction f. If response probabilities
depend on one or more demographic characteristics, there are two possibilities. The
sampling fractions could be computed by stratifying on these characteristics.
Alternatively, it could be assumed that sampling fractions do not depend on these
characteristics, and a separate multiplicative proportion could be included in the
expression for the weight. In the latter case, we propose combining sampling events at a
location to compute response probabilities for the same reasons as for computing
location sampling fractions.

Our analysis recommendations have assumed that sampling fractions and
response probabilities at a location do not depend on time, and that the data
provide good estimates of these proportions even at locations with only a few
persons sampled. It may be desirable to consider grouping some locations at which
few persons are sampled with other locations (in YMS II, locations of the same type)
to estimate these proportions; logistic regression could be used to evaluate this
possibility. It may also be desirable to check whether these proportions vary over
time by plotting proportions against time and by a categorical data analysis.

Design effects may be large and probably cannot be estimated in advance
(Tables 6 and 7). Variation in the weights increases the design effects. Sample sizes
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for a time–location sample must take into account possible large design effects. Our
analyses highlight the need to account for design effects greater than 1 as a result of
clustering and variation in the weights, in addition to potential sampling bias, when
analyzing TLS data. The importance of design effects greater than 1 in respondent-
driven sampling (RDS) analyses has been discussed,13 but to our knowledge has
rarely been considered in the analysis of TLS data.

Finally, the primary alternative to TLS is RDS.14 Two studies in Brazil found
substantial differences between the estimates from these two sampling methods.15,16

One study of MSM shows that these two methods may yield samples with very
different properties with respect to a characteristic of interest (in this case, socio-
economic status) that may be associated with an outcome of interest.15 Inference
from TLS is limited to the population of persons attending venues in the sampling
frame where sampling took place; in a report on TLS study, it would be desirable to
summarize characteristics of locations at which no persons could be recruited to
assess possible differences between the reachable population of venue attendees and
the complete population of venue attendees. TLS is also likely to be slower and more
expensive than RDS.15 We have outlined the assumptions required to compute valid
analysis weights for a sample survey analysis of TLS data. Theory for RDS depends
on assumptions concerning respondents’ knowledge of their network, the way
respondents recruit others, the character of the network, and the recruitment
process;17 see also Gile and Handcock’s recent critical evaluation.18 Custom
software is available to implement RDS (www.respondentdrivensampling.org). See
Semaan10 for further discussion of software and evaluation. Using an RDS sample of
a population with known parameters, Wejnert19 showed that current methods for
estimating variance are not consistent and may over or under estimate uncertainty.
Similarly, using simulation, Goel and Salganik13 showed that, under certain
conditions, current RDS software reports confidence intervals that are substantially
too narrow. In addition, the current RDS theory does not cover fitting linear and
logistic regression models.

The choice between TLS and RDS should consider ease of implementation, time
needed to complete the study, cost of the study, coverage of the population of
interest, assumptions required for the analysis to be valid, data required for the
analysis, difficulty in doing the analysis, and feasibility in doing the analysis. Because
our proposed TLS analysis is based on standard sample survey methods, compared
to RDS it has the advantages of a firmer theoretical basis, the ability to fit models,
and the use of widely available software. Both methods have design effects greater
than one; further research is needed to determine which, if either, method has a
consistently smaller design effect than the other.
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APPENDIX: COMPUTATIONAL SOFTWARE

We analyze a time–location survey as a two-stage cluster sample, sampling of venues
(PSUs) and sampling within venues (the second stage). The number of persons
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sampled varies among venues, and persons are sampled with unequal probabilities.
The sample should be analyzed using software that can accommodate such a
sampling design.

Many software packages could be used, some of which are free. The website
www.hcp.med.harvard.edu/statistics/survey-soft/ contains brief descriptions of and
links to many of these packages. Well-known commercial packages that could be
used include SUDAAN, SAS, Stata, and SPSS (with an additional module). We show
code from SAS, which produced the results in Tables 6 and 7 and from R, a free
package.

We assume that the dataset has one row for each person sampled. As an
illustration, we assume that for each person we have the following variables: Site,
the area in which sampling was done, if there were multiple areas, as in our data;
Stratum, a code for stratum within site—the probability of sampling a PSU is
uniform within each stratum; Venue, the venue at which sampling was done; Weight,
the sampling weight, the inverse of a constant times an estimate of the probability
that the person was sampled; Status, an indicator variable for the presence of the
condition for which prevalence is to be estimated (1 if the condition is present); and
RiskFactor(s), one or more variables with data on a risk factor for which the
association with the condition is to be estimated (in Table 7, unprotected anal
intercourse in the past 6 months). In addition, if the sampling probability for PSUs
was not constant, for analyses in SAS we need a second data set with one row for
each site and stratum combination, with variables Site, Stratum, and Rate, where
Rate is the proportion of PSUs sampled in that stratum. Status, Weight, RiskFactor
(s), and Rate should be numeric.

Analysis in SAS
We assume these data sets are SAS data sets with names DataPersons, and, if
sampling probabilities vary among PSUs, DataRates, in the folder c:/SAS/data. To
obtain the estimated prevalences and standard errors in Table 6, we used the
following code:

LIBNAME in “c:/SAS/data”;
Data Step1; set in.DataPersons; run;
Proc sort data=Step1; by Site; run;
Proc SurveyMeans data=Step1 Rate=Gvalue or DataRates9mean stderr var clm;
by Site;
cluster Venue; Var Status; weight Weight;
ODS output Statistics=SummaryData;
run;

If all PSUs are sampled with the same probability, Rate should equal the sampling
probability, and the cluster statement should be omitted. The ODS statement uses
the Output Delivery System to create the data set SummaryData with one row for
each value in site. For each site, the dataset contains the estimated prevalence
(mean), and its standard error (stderr), variance (var, useful for computing design
effects), and a confidence interval (clm, by default, a 95% interval). The
SurveyMeans procedure produces several pages of output for each site.

The code for logistic regression results uses the SurveyLogistic procedure
available in SAS version 9. It is easiest to do the analysis for a single site. Let step2
be the data set with data for one of the sites. If sampling probabilities vary among
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PSUs for this site, let DataRatesSite be the data set restricted to this site.

Proc SurveyLogistic data=step2 Rate=Gvalue or DataRatesSite9;
strata Stratum; cluster Venue; weight Weight;
ODS output ParameterEstimates=ParameterEsts;
model Status (desc)=RiskFactor;
run;

The ODS statement creates a data set with parameter estimates. If there are
repeated analyses, the data sets can be concatenated to summarize the output.

Analysis in R
R is a powerful statistical programming package that implements the S language20 and
contains functions to implement many statistical procedures. The package can be
downloaded from http://cran.r-project.org/; you will also need the library named survey,
obtained from a link on the same home page. The Help feature on the R commands page
has links to two useful documents, An Introduction to R, and R Data Import/Export
under Manuals. See Venables et al.21 for an introduction to R; a preliminary 114 page
version is available from the R website.22 Another useful document is A Survey Analysis
Example,23 by Thomas Lumley, author of the R survey library; see also Lumley’s book.24

The following discussion assumes that a user has learned the basics of R.

Survey Data Analysis The structure of the dataset is the same as for SAS, except
that there should be an additional variable FPC, which is either the number of
venues in the sampling frame from which the venue was chosen, or the sampling
probability for the venue. If the venue was chosen with certainty, FPC should be 1.
To ignore the finite population correction, set FPC to a small number (such as
0.001). Persons with a missing value for essential data (sampling weight, venue)
should be removed. If the dataset is ASCII, it should be edited to change the missing
value code to NA; otherwise, use a distinctive numeric code for missing data. It is
desirable, but not necessary, to have the variable names in the first row of the data
set. It is easiest if this dataset is saved in the folder containing the R software.

We first define a data frame containing the data. If the data set is in a project folder,
replace “filename” by the path and filename. The operator “G-” defines an object to be
the value of the function or expression on the right-hand side of this operator.

library(survey) # load the survey library
DataFrameG- read.table(“filename”, header=TRUE) # variable names in data set
DataFrameG- read.table(“filename”, header=FALSE, col.names=c(character list)
# variable names not in row 1 of data set
# character list is “variable1”, “variable2”,…,“variablev”
DataFrame[1:10,] # look at the data for the first 10 rows of the data set

We now analyze the prevalence of Status. We use one of the first three
assignments below to create a new data frame from which persons with NA are
removed. The operator “!” is the logical operator “not”. Use the third assignment if
the missing value has the numeric value Mcode.

DataStatusG- DataFrame[!is.na(DataFrame[, “Status”],]
DataStatusG- DataFrame[(DataFrame[, “Status”] !=NA,]
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DataStatusG- DataFrame[(DataFrame[, “Status”] !=Mcode,]
# create an object with the survey design information (order of function #

arguments is arbitrary)
SurveyStatusG- svydesign(data=DataStatus, ids=∼Venue, strata=NULL,
weights=∼Weight, fpc=∼NFrame)
svymean(x=∼Status, design=SurveyStatus, deff=TRUE) # prevalence estimate

In the previous two statements, note that it is essential to have the tilde (“∼”) in
defining some function arguments. svymean() returns the variable analyzed (Status),
the weighted mean, the standard error, and the design effect. Omit the specification
of the design effect if is not to be computed.

To obtain the logistic regression estimate of the association between Status and
RiskFactor, we first remove persons with missing values of RiskFactor, e.g.

DataStatusRiskG- DataStatus[!is.na(DataStatus[, “RiskFactor”]),]
SurveyStatusRiskG- svydesign(data=DataStatusRisk, id=∼Venue, weights=∼Weight,
fpc=∼NFrame)
logitmodelStatusG- svyglm(Status∼RiskFactor, design=SurveyStatusRisk,
family=quasibinomial())
summary(logitmodelStatus) # results of logistic regression

summary() prints information about the model used and, for the intercept and each
risk factor, the regression coefficient, standard error, Student’s t value, and p value.
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