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Abstract Tonic inhibition has been found experimentally

in single neurons and affects the activity of neural popu-

lations. This kind of inhibition is supposed to set the

background or resting level of neural activity and plays a

role in the brains arousal system, e.g. during general

anaesthesia. The work shows how to involve tonic inhibi-

tion in population rate-coding models by deriving a novel

transfer function. The analytical and numerical study of the

novel transfer function reveals the impact of tonic inhibi-

tion on the population firing rate. Finally, a first application

to a recent neural field model for general anaesthesia dis-

cusses the origin of the loss of consciousness during

anaesthesia.
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Introduction

One of the most important questions in neuroscience is

how the brain decodes and encodes external stimuli, such

as visual scenes or spoken words. The corresponding

neural information processing is mediated by the network

of interacting neurons on different functional levels. For

instance, in the early auditory system single neurons pro-

cess incoming signals by decomposing the sounds into

frequency bands (Sohmer and Freeman 2000), whereas

later cognition or spatial source localization of sounds is

processed on a neural population level (Karper and

McAlpine 2004). This population activity represents the

origin of macroscopically measurable activity, such as the

electroencephalogram (EEG) (Niedermayer and Lopes da

Silva 2005).

Interacting single neurons build up neural populations

and it is reasonable to distinguish the single neuron level

and the population level from a functional perspective

assuming a hierarchical structure in the brain (Kaiser et al.

2010). This concept of hierarchy and the corresponding

bridge between scales is essential to understand how

actions on the single neuron level affects neural population

activity and, more generally, has an impact on macroscopic

effects. For instance, such microscopic actions are molec-

ular actions such as the receptor bindings of neurohormons,

which may control the sleep-wake cycle in humans induced

by the hormon melatonin (Lieberman 1986), and anaes-

thetics administered during surgery which induces loss of

consciousness (Antkowiak 2002). Moreover, anaesthetics

are well-known to affect the EEG of mammals. Hence,

molecular action on the microscopic level may tune mac-

roscopic neural activity and has an impact on behavior. The

present work shows how to bridge the two levels of single

neurons and populations and how to involve molecular

effects.

To bridge the scales between molecular action at neural

receptors and neural population activity, let us discuss in

the following the specific action of tonic inhibition. It is

assumed to tune the level of excitation in neural population

and may play a role in slow consciousness phenomena,

such as loss of consciousness, sleep or arousal (Kopanitsa

1997). On the microscopic level, tonic inhihibition origi-

nates from specific neural receptors. Such receptors are

located in the neurons membrane and respond to stimula-

tion by opening certain ion channels. For instance, an

incoming pulse at an inhibitory chemical synapse induces
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the transition of the neurotransmitter c-aminobutyric acid

(GABA) through the synaptic cleft and activates GABAA

receptors. These, in turn, open the ion channels for

Cl--ions, induce an inward ion current and hyperpolarizes

the membrane. This response may be either phasic or tonic

(Yeung et al. 2003; Brickley et al. 1996; Semyanov et al.

2004), while the tonic response evolves on a larger time

scale (Cavalier et al. 2005; Hamann et al. 2002). Most

previous neural population models involving inhibition

consider phasic inhibition only (Hutt 2011). In contrast, the

present work focusses on the effect of tonic GABAA

receptors on neural population activity.

GABAergic receptors may be found close to chemical

synapses or more distant. Typically, the receptors close to

synapses show phasic and tonic responses to stimulation,

whereas more distant receptors, i.e. extra-synaptic recep-

tors, respond by tonic inhibition only (Belelli et al. 2009;

Kaneda et al. 1995). To understand the tonic inhibition,

especially at receptors far from synaptic locations, it is

necessary to take a closer look to the concentration of

neurotransmitters around synapses. In case of large firing

rates, the synapses spill out a large amount of neurotrans-

mitters which not all may be uptaken by corresponding

GABAA-receptors. The remaining neurotransmitters dif-

fuse to more distant GABAA-receptors in extracellular

space leading to an ambient concentration of neurotrans-

mitters (Farrant and Nusser 2005; Semyanov et al. 2004;

Nusser et al. 1997). This spill-over may explain the larger

time scale of tonic responses found experimentally. In

addition, this finding implies that already small concen-

trations of neurotransmitters are sufficient to generate tonic

activity. However, this spill-over is just one possible

mechanism besides others (Farrant and Nusser 2005).

Several previous theoretical and experimental studies

(Haeusser and Clark 1997; Bernander et al. 1991; Destexhe

and Paré 1999) have pointed out that increased interneuron

activity may lead to a rather constant level of phasic

inhibition in postsynaptic excitatory neurons which may

also explain a tonic inhibitory background activity in

neural populations. However, experimental studies

(Semyanov et al. 2003; Brickley et al. 1996) have shown

that, in fact, tonic and phasic activity are generated in

different GABAA-receptors. Consequently tonic inhibition

may originate either from (phasic) interneuron activity or

from specific extra-synaptic receptors.

The effect of extra-synaptic receptors on the dendritic

activity has not attracted much attention for many years.

This may result from the relatively small number of such

receptors compared to synaptic receptors (Kopanitsa 1997;

Farrant and Nusser 2005). In addition, the recent develop-

ment of genetic techniques in the last decade now allows to

identify, classify and even localize different sub-types of

GABAA receptors (Semyanov et al. 2004; Farrant and

Nusser 2005). For instance, it has been shown experimen-

tally, that d-sub units of GABAA receptors occur exclusively

at extra-synaptic sites (Belelli et al. 2009; Farrant and

Nusser 2005; Nusser et al. 1998; Wei et al. 2003). This

indicates a specific role of these receptors. It is interesting to

note that a recent study shows that d-sub unit receptors are

not activated by spill-over (Bright et al. 2011). This finding

reduces the importance of synaptic spill-over to explain

tonic inhibition. Tonic inhibition induced by extra-synaptic

GABAA-receptors represents a persistent increase in the cell

membrane’s conductance. On the single neuron level, this

diminishes the membrane time constant and, consequently,

reduces the size and duration of excitatory post-synaptic

potentials propagating on the dendrite. Hence tonic inhi-

bition reduces the excitability of the membrane and

increases the effective firing threshold (Farrant and Nusser

2005). Moreover, there is evidence that extra-synaptic

GABAA-receptors located on axonal membranes modulate

action potential conduction (Kullmann et al. 2005). On the

neural population level, extra-synaptic receptors affect the

excitability of interneuron-pyramidal cell networks and thus

modify network oscillations (Semyanov et al. 2003).

Moreover, Kopanitsa (1997) argue that the sustained spa-

tially widespread tonic inhibition appears energetically

more effective for the system to diminish neural population

activity than short-lasting local phasic inhibition, since

lower neurotransmitter concentrations are sufficient.

Further evidence for the importance of extra-synaptic

receptors in neural information processing is their high

sensitivity to modulation by various clinically relevant

agents, such as anaesthetic agents (Farrant and Nusser 2005;

Orser 2006). For instance, the anaesthetics midazolan and

propofol enhance tonic inhibition much more than phasic

inhibition in hippocampal neurons (Bai et al. 2001). Similar

effects have been found in the brain stem (McDougall et al.

2008) and the thalamus (Belelli et al. 2009). Since these

areas are supposed to play a role in general anaesthesia

(Alkire et al. 2008), extra-synaptic receptors may mediate

anaesthetic effects, such as the loss of consciousness.

The present paper aims to include the molecular effect

of tonic inhibition in macroscopic structures, such as neural

populations. These are not only an agglomeration of

interacting single neurons, but are functional units on their

own with specific properties. Although its dynamics

depend on the dynamics of the underlying single neurons,

the population exhibits an effective activity which is not a

sum of the single neuron dynamics. In other words, neural

populations are typical complex systems, which contain

interacting units, which in turn are build of underlying

interacting sub-units and so on. The unit on a functionally

higher level results from the interaction of the underlying

sub-units on a lower level, which in turn depends on the

higher level units. This is called circular causality (Haken
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2004). Examples for the functional units in neural popula-

tions are cortical macrocolumns in the mammalian visual

cortex (Hubel and Wiesel 1963) or the barrel cortex in

rodents (Petersen and Sakmann 2001). Typically, such col-

oumns contain several thousands of neurons. Moreover, the

experimental discovery of such functional units on a higher

abstract scale has triggered the development of a macro-

scopic theory for the dynamics of neural population activity,

the so-called mean field theory (Wilson and Cowan 1973;

Taylor 1999; Bressloff 2009; Faugeras et al. 2008). Suc-

cessful mean-field models should take into account the most

important features of single neurons and their interactions

while neglecting minor features. Two of the most important

features that should be taken into account are the synaptic

activity on dendrites of single neurons and the threshold

dynamics at the soma of the neurons. Most previous models

(Bressloff and Coombes 1997; Hutt and Atay 2005; Hutt

et al. 2003; Hutt and Longtin 2009) have considered an

effective synaptic response function of chemical synapse

and a nonlinear transfer function resulting from distributed

firing thresholds on the population level. In this context,

previous studies considered the membrane potential and the

neural firing threshold independently (Wilson and Cowan

1972; Hutt and Atay 2005; Freeman 1979; Amit 1989).

However, in fact, the firing threshold depends on the

membrane potential if extra-synaptic receptors are present in

the population. The present work reveals this dependence of

the firing rate characteristics on the dynamics of extra-syn-

aptic receptors.

The present work is structured as follows. The next

section motivates mathematically how to include the

dynamical effects of tonic inhibition on dendrites in a

neural population model. This discussion yields a novel

expression for the population firing rate involving effects

of tonic inhibition.

Methods

Previous experimental studies have shown that extra-syn-

aptic GABAA-receptors induce tonic inhibition in single

neurons (Belelli et al. 2009). To understand better the

effect of such receptors on neural population activity, the

subsequent paragraphs present an approach how to incor-

porate extra-synaptic action in mathematical neural popu-

lation models.

A prominent neural population model is the neural field

which is a mean-field model that considers a rate coding

mechanism. Such models allow to describe mesoscopic

dynamics in neural populations such as pulse propagation in

slices (Ermentrout and Kleinfeld 2001) or spatio-temporal

spreading activity in the visual cortex during visual hallu-

cinations (Bressloff et al. 2002; Ermentrout and Cowan

1979). The corresponding population firing rate P in the

neural field model represents the number of spikes emitted

by neurons in the population under study in a short time

interval, i.e. typically few milliseconds (Hutt and Atay 2005;

Wilson and Cowan 1972; Amit 1989). In this sense, P is

almost instantaneous but averaged over a short time win-

dow, i.e. coarse-grained in time. Moreover, P ¼ Pð �VÞ is a

function of the effective averaged membrane potential �V

which represents an average over all neurons in the popu-

lation. Here, the effective membrane potential is defined as

the difference between the sum of excitatory and inhibitory

potentials at the soma. If the effective membrane potential at

a single neuron Vi exceeds the firing threshold Vi
th of this

neuron and the neuron is not in a refractory period, then this

neuron fires and contributes to the population firing rate in

the short time interval of the firing event.

More mathematically, let us introduce NðV th
i � �V th; tÞ as

the distribution of firing thresholds in the neural population

at time t with mean firing threshold �V th; i.e. the number of

non-refractory neurons with a firing threshold Vi
th. More-

over one considers the probability density of effective

membrane potentials pðVi � �VÞ: Then the number of firing

neurons in the time interval Dt reads (Hutt and Atay 2005)

Pð �VÞ ¼
Z1

�1

pðwÞ
Z1

�1

Hðw� uþ �V � �V thÞ �N ðu; tÞdu dw:

ð1Þ

Here, Hð�Þ is the Heaviside function and �Nðu; tÞ ¼
Nðu; tÞ=Dt represents the population firing rate generated

by a subset of non-refractory neurons. Equation 1 assumes

that firing thresholds and the effective membrane potentials

may take unlimited values. It has been shown previously

(Hutt and Atay 2005; Amit 1989), that if the number of

non-refractory neurons N is constant over time and the

distribution �NðuÞ and the probability density p(w) are

unimodal, then the population firing rate function Pð �VÞ has

the well-known sigmoidal shape.

Although the latter considerations reflect a first good

estimation on the population firing statistics, it is too

simple in many aspects. For instance, it takes into account

mean values of the effective membrane potentials and fir-

ing thresholds only. Recent studies have abolished these

constraints (Bressloff 2009; Faugeras et al. 2008) and have

shown the impact of the variance of membrane potential

fluctuations on the population dynamics. Another simpli-

fication is the assumption that a single neuron emits just

one spike when the effective membrane potential exceeds

the firing threshold. This assumption reflects the ancient

idea of McCulloch-Pitts neurons well-known from artificial

neural networks (McCulloch and Pitts 1943). For these

neurons the step function Hð�Þ in Eq. 1 represents the
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corresponding transfer function. In contrast, real neurons’

firing rate, i.e. the number of spikes emitted, depend on the

membrane potential. This dependence is closely related to

the so-called f–I curve that gives the relation of single

neuron output firing rate and an input current.

To illustrate the reasoning, let us consider stationary

firing activity in the population and a time window

Dt ¼ 1s. Then single neurons with firing rate fi emit fi
spikes in the time interval Dt. To gain the population firing

rate P, one sums up the firing rates P =
P

i fi and the firing

rates may be given by the individual f–I curves fi = fi(Ii)

with single input currents Ii at neuron i. We note that the

membrane potential Vi may be defined as RIi with resis-

tance of the membrane R and Vi is the voltage above the

resting potential of the neuron. For shorter time intervals

Dt; the firing rates are proportionally smaller.

Hence, a more realistic population firing rate should take

into account the dependence of the membrane potential and

the number of spikes emitted and replace the Heaviside

function HðVÞ in Eq. 1 by HðVÞgðVÞ where the function

g(V) reflects the dependence of the output firing rate of the

membrane potential V. The function g is linearly related to

the f–I curve by g(V) = [f(V/R)]/dt where the dimension-

less variable dt is defined as Dt=1s. For instance,

g(V) = 1 Hz represents a McCulloch-Pitts neurons as used

in Eq. 1 whereas g(V)= 1 Hz reflects the new dependency.

Moreover, the consideration of g(v) = 1 Hz allows to

include microscopic effects on single neurons, such as

extra-synaptic receptor action. To illustrate the dependence

of the output rate g(V) of the input activity in the presence

of tonic inhibition, Fig. 1 shows such dependences of the

output firing rate of a single neuron on the input conduc-

tance obtained experimentally in granule cells (Mitchell

and Silver 2003). Similar effects have been observed in

cortical pyramidal cells (Ulrich 2003). We observe a tonic

inhibition-induced divisive effect with offset of the output

rate dependent on the input magnitude. Consequently, it is

necessary to consider g(V)= 1 Hz to take into account the

effect of tonic inhibition. Previous experimental studies,

e.g. (Mitchell and Silver 2003; Haeusser and Clark 1997),

have shown that the tonic inhibition reduces the membrane

time constant and increases the neurons’ firing threshold.

Hence the subsequent part of the work investigates the

effect of g(V) on the population firing rate P(V), and par-

ticularly the effect of the membrane time constant and the

firing threshold.

To implement g(V)= 1 Hz in a neural population

model, let us consider the firing rates in single neurons. In

general, the output firing rate function g(V) depends non-

linearly on the input current or, equivalently, on the input

potential V. This input potential may originate from syn-

aptic responses (postsynaptic potentials) or from external

stimuli.

For example, let us consider the output firing rate

function in leaky integrate-and-fire models (LIF) without

refraction. It reads gðViÞ ¼ 1=ðsm lnðVi=ðVi � Vi0ÞÞÞ;Vi [
Vi0 with firing threshold Vi0 of neuron i and membrane time

constant sm(Gerstner and Kistler 2002). This is a model for

neurons of type I, i.e. g(Vi0) = 0. For membrane potentials

much larger than the firing threshold a first reasonable

approximation is the linear function

g1ðxÞ ¼ cix ð2Þ

with the gain ci = 1/2smVi
th and the new firing threshold

Vi
th = Vi0/2 of neuron i. Here the gain depends on the

membrane time constant and the firing threshold. For

membrane potentials not too large, this is a good approx-

imation since it is known that negative feedback linearizes

(Ermentrout 1998) the function g(V). For simplicity, we

will choose V th
i � �V th which is a good approximation for

narrow firing threshold distributions. Figure 2a shows how

the output firing rate model (2) changes if tonic inhibition

is included. It reveals that the nonlinear gain increases for

decreasing the time constant and the nonlinear gain

decreases for increasing the firing threshold resembling

previous experimental findings (Mitchell and Silver 2003;

Haeusser and Clark 1997).

However, the firing rate in Eq. 2 grows to infinity if

V !1 which is biophysically not reasonable . An

improved model for neurons of type I may consider an

absolute refractory period Dref , that limits the firing rate to

the maximum 1=Dref . The output firing rate of the corre-

sponding LIF reads (Gerstner and Kistler 2002)

g2ðxÞ ¼
1

Dref þ sm ln 1þ V th
i

x

� �
:

ð3Þ

In the following we will choose V th
i � �V th which is a good

approximation for narrow firing threshold distributions �N.

It is important to mention that a vanishing membrane time

constant sm? 0 and D ¼ 1 convert the type I-neuron model

to the McCulloch-Pitts neuron model. Figure 2b presents

the effect of shunting inhibition on the out firing rate

Fig. 1 Tonic inhibition effect on the output firing rate of neurons.

Left A step-like excitatory input conductance (Gexc) generates tonic

spiking activity in the absence (Control) and presence of 1nS tonic

inhibition (Inhibition). Right The tonic inhibition induces an offset of

the output firing rate function. Taken from Mitchell and Silver (2003)
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function (3) and resembles the experimental output firing

rate shown in Fig. 1.

Our population model considers a single neural popu-

lation of the general class of model neurons of type I,

which may reflect properties of granular cell, cf. (Mitchell

and Silver 2003) or pyramidal cells, cf. Ulrich (2003). This

population may represent a certain cortical layer or a the

neuronal network in a tissue slice. Moreover the population

assumes identical membrane time constants for all neurons

but different firing thresholds. This constraint is introduced

for simplicity but may be abolished easily and does not

limit the generality of the results obtained. As observed in

Fig. 1, tonic inhibition may change the nonlinear gain and

the offset of firing activity. Moreover, it is well-known that

tonic inhibition also affects the membrane time constant

(Bai et al. 2001) and the mean firing threshold distribution,

called sm and �N in the present model, respectively. Sum-

marizing, the membrane time constant sm and the mean

firing threshold �V th depend on the tonic inhibition level.

The present work studies the dependence of the population

firing rate Pð �VÞ on both variables sm and �V th:

Results

To study the population firing rate Pð �VÞ with respect to the

level of tonic inhibition, at first the following paragraphs

show the derivation of Pð �VÞ for general neuron types and

discusses the corresponding nonlinear gain. Then the work

focusses on type I-neurons with and without refractory

period. The latter case allows an analytical study of Pð �VÞ,
whereas the discussion of refractory neurons is based on

numerical results.

The population firing rate

To compute the population firing rate subjected to the tonic

inhibition effect, let us re-formulate the population firing

rate as

Pð �VÞ ¼
Z1

�1

pðV � �V ; tÞ
Z1

�1

HðV � V thÞgðV � V thÞ

�NðV th � �V thÞdV th dV

¼
Z1

�1

pðwÞ
Z1

0

gðuÞ �Nðw� uþ �V � �V th; tÞ du dw:

ð4Þ

Here, the probability density of membrane potentials p and

the firing threshold distribution �N are assumed to be

dependent on time. It is reasonable to assume that the

probability density function p and the firing threshold

distribution function per time unit �D are unimodal and we

choose

pðx; tÞ ¼ 1ffiffiffiffiffiffi
2p
p

rsðtÞ
e�x2=2r2

s ðtÞ ;

�Nðx; tÞ ¼ N0ffiffiffiffiffiffi
2p
p

rthðtÞ
e�x2=2r2

th
ðtÞ:

with N0 = n/dt and n is the number of neurons in the

population under study. The terms rs
2(t) and rth

2 (t) represent

the time-dependent variance of the distribution of

membrane potentials and firing thresholds, respectively.

Then Eq. 4 reads

Pð �VÞ ¼ N0

Z1

�1

~pðkÞ ~Nð�kÞeikð �V� �V thÞ
Z1

0

gðuÞe�ikudu dk

¼ N0ffiffiffiffiffiffi
2p
p

r

Z1

0

gðuÞe�ðu�ð �V� �V thÞÞ2=2r2

du ð5Þ

with the effective variance r2 = rs
2 ? rth

2 including the

variances of the membrane potential distribution and the

threshold distribution. For simplicity, here and in the fol-

lowing we do not note explicitely the time-dependence of

the population firing rate P and the variance r2 though it is

implicit.

(a) (b)Fig. 2 The model output firing

rate functions g1(V) and g2(V).

a Firing rate of a neuron without

refraction corresponding to

Eq. 2. b Firing rate of a neuron

with refraction corresponding to

Eq. 3. Parameters are sm = 1.0,

Vi
th = 1 (bold line), sm = 1.0,

Vi
th = 1.5 (dashed line) and

sm = 0.5, Vi
th = 1 (dashed-

dotted line)
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To learn more about the shape of the new population

firing rate P(V) in Eq. 5, at first let us consider the con-

ventional model including McCulloch-Pitts neurons with

g(V) = 1 Hz. Then Eq. 5 reads

Pð �VÞ ¼ N0ffiffiffiffiffiffi
2p
p

r

Z1

0

e�ðu�ð
�V� �V thÞÞ2=2r2

du

¼ N0

2
1þ erf

�V � �V thffiffiffi
2
p

r

� �� �

¼ N0Srð �V � �V thÞ

ð6Þ

which is the well-established sigmoid function.

To examine the function P(V) for general g(V), let us re-

write the integral in Eq. 5 as

IðaÞ ¼
Z1

0

gðxÞe�ðx�aÞ2=2r2

dx

¼
Za

�1

dI

dy
dy

ð7Þ

with a ¼ �V � �V th and we find

dI

da
¼ 1

r2

Z1

0

ðx� aÞe�ðx�aÞ2=2r2

gðxÞdx

¼ �
Z1

0

o

ox
e�ðx�aÞ2=2r2
� �

gðxÞdx

¼ gð0Þe�a2=2r2 þ
Z1

0

e�ðx�aÞ2=2r2

g0ðxÞdx

ð8Þ

with g0ðxÞ ¼ dg=dx. Inserting (8) into (7) leads to

Pð �VÞ ¼ N0gð0ÞSrð �V � �V thÞ

þ N0 Dg�
Z1

0

g0ðxÞSrðx� ð �V � �V thÞÞdx

0
@

1
A

with Dg ¼ limx!1 gðxÞ � gð0Þ and Sr is the sigmoid

function taken from (6). The first term is proportional to the

standard population firing rate (6) and the last term is the

correction due to the individual dependence of the single

neuron output rate on the membrane potential. In the standard

case of McCulloch-Pitts neurons, i.e. g(V) = 1 Hz, the last

term vanishes and P(V) is identical to the well-known

conventional rate. For neurons of type I, the first term

vanishes since g(0) = 0 and the last term represents the

population firing rate and Dg is the maximum firing rate of the

single neurons leading to

Pð �VÞ ¼ N0gð0Þ � N0

Z1

0

g0ðxÞSrðx� ð �V � �V thÞÞdx ð9Þ

The first term represents the maximum population firing

rate that P(V) approaches for �V !1 . For vanishing

variance r2? 0, the population firing rate becomes pro-

portional to the Heaviside function step function

Pð �VÞ ¼ N0Hð �V � �V thÞ:
In addition, the nonlinear gain dP/dV is an important

characteristic of the population firing activity since it

defines the linear stability of stationary states (Hutt 2008;

Atay and Hutt 2006; Owen et al. 2007). It reads

dPð �VÞ
d �V

¼ cð �VÞ

¼ N0ffiffiffiffiffiffi
2p
p

r

Z1

0

g0ðxÞe�ðx�ð �V� �V thÞÞ2=2r2

dx� 0:
ð10Þ

To get an idea about the shape of the nonlinear gain, we

choose r? 0, i.e. the noise level is very low and the

neurons in the population are almost identical, and find that

the nonlinear gain of the population becomes proportional

to the nonlinear gain of the single neuron as expected with

cð �VÞ ! N0g0ð �V � �V thÞHð �V � �V thÞ:

For g(x)=const the nonlinear gain is non-symmetric to �V th.

This will be confirmed in the paragraphs below.

For deeper insight into the shape of the new population

rate, the following paragraphs discuss the particular cases

of non-refractory and refractory neurons of type I.

Neurons without refractory period

The linear output function g = g1(V) in Eq. 2 neglects

refraction in the neuron and yields the population firing rate

Pð �VÞ ¼ N0

2
ffiffiffi
p
p

sm
�V th

rffiffiffi
2
p e�ð

�V� �V thÞ2=2r2

�

þð �V � �V thÞ 1þ Erf
�V � �V thffiffiffi

2
p

r

� �� �� ð11Þ

with the Gaussian error function Erf ð�Þ. For a vanishing

variance r2, the population firing rate reads

Pð �VÞ ¼ N0ffiffiffiffiffiffi
2p
p

sm
�V th
ð �V � �V thÞH �V � �V th

� �
ð12Þ

with the Heaviside step function Hð�Þ. This case reflects a

single firing threshold and identical membrane potentials in

all neurons.

Figure 3 shows the population firing rate for various

parameters. We observe in Fig. 3a that increasing the

variance r2 = rs
2 ? rth

2 smoothes the activity threshold.

This finding is reasonable since the variance rs
2 reflects the

level of noise in the system which is known to smoothen

the population firing rate of spiking neural networks

(Sutherland et al. 2009). Moreover, it is known from
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experiments (Mitchell and Silver 2003; Haeusser and Clark

1997) that tonic inhibition involves a decreased membrane

time constant and an offset of the firing threshold to larger

values. Figure 3b shows that a decrease of sm increases the

slope of P(V) in accordance to experimental findings

shown in Fig. 1. Figure 3c considers the increase of the

mean firing threshold and reveals both an offset and a

decrease in the nonlinear gain of the population firing rate.

This shows good accordance to experimental findings

(Mitchell and Silver 2003; Haeusser and Clark 1997).

Neurons with refractory period

More realistic output firing rate models of single neurons

such as in Eq. 3 with g = g2(V) take into account a

refractory period leading to a maximum firing rate.

Inserting Eq. 3 into Eq. 5 yields

Pð �VÞ ¼ N0ffiffiffiffiffiffi
2p
p

r

Z1

0

e�ðu�ð
�V� �V thÞÞ2=2r2

Dref þ sm ln 1þ �V th

u

� � du: ð13Þ

In the case of identical neurons and a noise-free neuronal

network, all neurons share the same firing threshold and

membrane potential and the variance vanishes, i.e. r2 = 0.

Mathematically, then the Gaussian function in the inte-

grand of Eq. 13 becomes a Dirac-delta distribution and

Eq. 13 recasts to the single neuron output rate g2(V) (cf.

Fig. 2b) including the sharp firing threshold �V th:

Considering non-identical firing thresholds and the

presence of noise, then r2 [ 0 which smoothens the output

rate but retains its principle sigmoidal shape. Figure 4a

illustrates the dependence of P(V) on the variance r2.

Moreover, tonic inhibition decreases the membrane time

constant and increases the firing thresholds and Fig. 4b and

c show that this leads to an increase and decrease of the

population firing rate, respectively.

In addition to the population rate function the corre-

sponding nonlinear gain, i.e. its derivative dP/dV, plays an

important role in the stability of the neural population

activity (Hutt 2008; Atay and Hutt 2006; Owen et al.

2007). The nonlinear gain reflects the level of excitation in

the system.

Figure 5 compares the population firing rate (a) and the

nonlinear gain (b) of the conventional model (denoted as

g = 1) and the new model involving neurons of type I

(denoted as g = g2). We observe that, for sm [ 0, the

conventional rate function exhibits a much sharper first rise

than the new rate while increasing V. This reflects a lower

excitation of the neural population for neurons of type I.

Moreover, the nonlinear gain in the conventional model is

symmetric to the mean firing rate function, whereas the

population of type I-neurons exhibits a long tail of the

nonlinear gain.

Considering tonic inhibition in the population of type I-

neurons, Fig. 5 shows the offset of the population firing

rate (panel a) and the nonlinear gain (panel b) for two

values of the mean firing threshold. In addition, the max-

imum nonlinear gain dP/dV is diminished in the case of

tonic inhibition. Since the maximum value of the nonlinear

gain defines the stability threshold of the neural population

activity about a stationary state, it appears that the tonic

inhibition effect induced by a larger firing threshold ren-

ders stationary states more stable.

(a)

(b)

(c)

Fig. 4 The population firing rate P(V) for refractory neurons given

by Eq. 13. Parameters are a sm = 1.0, �V th ¼ 1:0: b r2 ¼ 0:5; �V th ¼
1:0. c r2 = 0.5, sm = 1.0. Other parameters are D0 ¼ 1:0; D ¼ 1

(a)

(b)

(c)

Fig. 3 The population firing rate P(V) for non-refractory neurons

given by Eq. 12. Parameters are a sm = 1.0, �V th ¼ 1:0: b r2 ¼
0:5; �V th ¼ 1:0: c r2 = 0.5, sm = 1.0. Other parameters are D0 = 1.0
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To examine this aspect in more detail, Fig. 6 shows the

maximum nonlinear gain subjected to the mean firing

threshold and the membrane time constants, i.e. the

parameters dependent on the level of tonic inhibition. We

observe that increasing the tonic inhibition level by an

increased firing threshold decreases the nonlinear gain and,

consequently, renders the system more stable. In contrast, a

smaller membrane time constant increases the nonlinear

gain. These numerical results are confirmed analytically

applying Eqs. 3 and 10 leading to

dcð �VÞ
dsm

\0;
dcð �VÞ
d �V th

\0

with dg02=dsm; dg02=d �V th\0:

Application to general anaesthesia

In general anesthesia, the anaesthetics administered enters

the brain via the blood-brain barrier and bind to neural

receptors. For instance, the anaesthetic propofol binds to

GABAergic synaptic and extra-synaptic receptors. Exper-

imental studies have shown (Orser 2006) that propofol

enhances tonic inhibition. To investigate the role of tonic

inhibition in general anaesthesia, e.g. in the induction of

the sedation and hypnosis, the subsequent paragraph con-

siders a recent neural population model for general

anaesthesia (Hutt and Longtin 2009) and studies the effect

of tonic inhibition subjected to the concentration of

propofol.

Propofol prolongs the decay phase of phasic synaptic

GABAA receptor responses and increases the correspond-

ing synaptic charge transfer while increasing the propofol

concentration (Kitamura et al. 2002). Introducing the

control parameter p C 1, the decay time constant of the

receptor response and the charge transfer are proportional

to p in good approximation to experimental data, cf. (Hutt

and Longtin 2009). Considering two populations of excit-

atory and inhibitory neurons and excitatory and inhibitory

synapses, then the stationary state �Us of such a network of

two populations obeys (Hutt and Longtin 2009)

�Us ¼ aePð �Us �HeÞ � paiPð �Us �HiÞ: ð14Þ

with the population firing rate P and the mean firing

thresholds He and Hi of excitatory and inhibitory neurons,

respectively. The factors ae, ai represent the total synaptic

strength. The stationary state �Us represents the difference

of excitatory and inhibitory stationary membrane poten-

tials. According to a recent hypothesis about the origin of

the loss of consciousness (LOC) by Steyn-Ross et al.

(Steyn-Ross and Steyn-Ross 1999; Steyn-Ross et al. 2004;

Friedman et al. 2010), the LOC reflects a sudden jump

from a high neural activity level (conscious state of the

subject) to a low activity level (unconscious state of the

subject). This jump is supposed to reflect a first-order phase

transition in the neural population involving hysteresis: the

jump from a high activity level to a low level emerges at a

larger propofol concentration than the return from the low

level activity to high level activity. Figure 7 shows the

stationary states �Us for two values of the excitatory

threshold, where the larger value reflects the impact of

(a) (b)

Fig. 5 The population firing rate P(V) and the nonlinear gain dP/dV
for refractory neurons in comparison to the conventional model

g = 1. The panels show the population firing rate P(V) (a) and the

nonlinear gain (b) for the conventional model (g = 1, dashed-dotted

line) and the new model (g = g2) according to Eq. 13. Parameters are

sm ¼ 1:0; r2 ¼ 0:01; �V th ¼ 1:0 (solid line) and �V th ¼ 3:0 (dashed
line). Other parameters are D0 ¼ 1:0; D ¼ 1

Fig. 6 The maximum nonlinear gain P0max dependent on the level of

tonic inhibition. Increasing �Vth and decreasing the membrane time

constant sm reflects an increased tonic inhibition level. It is defined as

the global maximum of dP(V)/dV and P(V) given by Eq. 13.

Parameters are r2 ¼ 0:01; D0 ¼ 1:0; D ¼ 1
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tonic inhibition in a first approximation. For the smaller

firing threshold He ¼ �53 mV, it illustrates the high and

low activity level, in addition to an (unstable) medium

level. Increasing the mean firing threshold of excitatory

neurons, i.e. considering tonic inhibition, only a single

stationary state exists.

Discussion

The work considers a population of neurons in which the

output firing rate functions of single neurons g(V) is

affected by tonic inhibition. The derivation of the popula-

tion firing rate function in ‘‘The population firing rate’’

implies that the firing rate of single neurons is stationary

and depends on the membrane potential only, i.e. assumes

that the f–I curve (which is proportional to the function

g(V)) owns the relevant dynamical features. This is a strong

assumption, but improves the conventional population fir-

ing rate model, e.g. by Wilson and Cowan (1972), that

neglects the voltage-dependence of firing rates.

Relation of conventional population rate to novel rate

The new model includes the variance of the membrane

potential distribution, which reflects the internal noise

level, and the variance of the firing threshold distribution.

If both variances are small, then the population firing rate

resembles the single neuron firing rate function. This is

shown for both general neuron types (‘‘The population

firing rate’’) and non-refractory (‘‘Nervous without refrac-

tory period’’) and refractory (‘‘Neurons with referactory

peroid’’) neurons of type I. Moreover, for a non-vanishing

membrane time constants sm [ 0, the population firing

rate increases much slower with increasing membrane

potentials for neurons of type I than in the conventional

model, i.e. the nonlinear gain is smaller for a non-vanishing

membrane time constant (cf. Fig. 5). In other words, the

excitation in type I-neuron populations are diminished

compared to the excitation in populations of McCulloch-

Pitts neurons. This can also be seen in the nonlinear gain in

Fig. 5, which is smaller for non-vanishing membrane time

constants compared to McCulloch-Pitts neurons.

Effects of tonic inhibition on population firing rate

Tonic inhibition in single neurons increases the firing

threshold and reduces the membrane time constant. Fig-

ures 5, 6 and the analytical treatment in ’’Neurons with

referactory peroid’’ show that this yields a decrease and

increase of the nonlinear gain in type I-neurons. In this

context, Mitchell and Silver (2003) have investigated the

role of firing threshold and membrane time constant in

tonic inhibition in the presence of a temporal variability of

excitatory input conductances. They find that increasing the

temporal variability of input conductances reduces the

nonlinear gain while tonic inhibition increases the nonlin-

ear gain. The authors conclude that the loss of nonlinear

gain outweighs the gain by reduction of the membrane

potential. According to this finding, one concludes that the

reduction of the nonlinear gain by tonic inhibition results

mainly from the increase of the firing threshold in single

neurons. Considering the obvious dependence of the pop-

ulation firing rate and the nonlinear gain on the membrane

time constant (decreased by a factor of two or three as

observed in Figs. 3, 4 and 6), it is reasonable to conclude

that the the membrane time constant does not change much

in the presence of tonic inhibition due to its minor effect.

Effects of tonic inhibition in general anaesthesia

The general anaesthetic propofol affects the level of tonic

inhibition. Consequently increasing the concentration of

propofol enhances this effect. Mathematically, the model

considers the increase of concentration by an increase of

the control parameter p. Figure 7 shows that such an

increase may lead to stable stationary states on high and

low activity (for p& 1.2) while just a single stationary state

at high activity is present in the absence of propofol

(p = 1). Further increasing the concentration destroys the

high-level stationary state and the system evolves on a

lower activity level. The interpretation of this destruction is

the loss of consciousness in subjects. Although the dis-

cussion of the stationary state in the anaesthesia model (14)

reveals a first insight into the effect of tonic inhibition

during anaesthesia, it is necessary to keep in mind the

underlying assumptions. Most importantly, the tonic

inhibition at extra-synaptic receptors implies shunting

Fig. 7 Stationary solutions in a network of excitatory and inhibitory

neurons and synapses subjected to tonic inhibition. The given values -

53 and -50 mV are the mean firing thresholds of excitatory neurons He

and reflect the absence (black lines) and presence (blue line) of tonic

inhibition. For He ¼ �53 mV, the top branch (solid line) and bottom

branch (dashed line) are linearly stable (analysis not shown), whereas

the centre branch (dotted line) is unstable. Other parameters are r2 ¼
1:0 mV2; N0 ¼ 1; D ¼ 1ms; s ¼ 1:0ms; ae ¼ 40 mVs; ai ¼ 80 mVs;
Hi ¼ �62 mV. The stationary state is given by �Us ¼ �V þ Vr; �V obeys

Eq. 13 and Vr = - 70 mV is the neuron resting potential
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inhibition, which is known to induce nonlinear interactions

between excitatory and inhibitory post-synaptic currents

(Koch et al. 1983). Hence, the study of the stationary state
�Us as the difference between excitatory and inhibitory post-

synaptic potentials is a first approximation only. Future

studies shall introduce the nonlinear interaction in �Us:

Interestingly, including tonic inhibition removes the two

stable states and retains a single stationary state at a low

activity level. This result points out that tonic inhibition

inhibits the neural population activity. Moreover, it raises

the question on the importance of the two stable states in

general anaesthesia and the LOC. It appears that tonic

inhibition may facilitate a single stationary state during

anaesthesia and the importance of a phase transition to

lower levels for LOC is doubtful.

Perspectives

The present work represents the first consideration of tonic

inhibition in population models and considers the most

obvious inhibition effects, such as the shift of the firing

threshold. Future work will focus on more subtle effects of

tonic inhibition, such as the shift of the f–I curve dependent

on the input frequency (Mitchell and Silver 2003) and the

consideration of synaptic excitation and inhibition currents

that add non-linearly at the soma due to the involved

shunting inhibition.
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