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Abstract During slow-wave sleep, general anesthesia, and

generalized seizures, there is an absence of consciousness.

These states are characterized by low-frequency large-

amplitude traveling waves in scalp electroencephalogram.

Therefore the oscillatory state might be an indication of

failure to form coherent neuronal assemblies necessary for

consciousness. A generalized seizure event is a pathological

brain state that is the clearest manifestation of waves of

synchronized neuronal activity. Since gap junctions provide

a direct electrical connection between adjoining neurons,

thus enhancing synchronous behavior, reducing gap-junction

conductance should suppress seizures; however there is no

clear experimental evidence for this. Here we report theo-

retical predictions for a physiologically-based cortical model

that describes the general anesthetic phase transition from

consciousness to coma, and includes both chemical synaptic

and direct electrotonic synapses. The model dynamics

exhibits both Hopf (temporal) and Turing (spatial) instabil-

ities; the Hopf instability corresponds to the slow ([8 Hz)

oscillatory states similar to those seen in slow-wave sleep,

general anesthesia, and seizures. We argue that a delicately

balanced interplay between Hopf and Turing modes pro-

vides a canonical mechanism for the default non-cognitive

rest state of the brain. We show that the Turing mode, set by

gap-junction diffusion, is generally protective against

entering oscillatory modes; and that weakening the Turing

mode by reducing gap conduction can release an uncon-

trolled Hopf oscillation and hence an increased propensity

for seizure and simultaneously an increased sensitivity to

GABAergic anesthesia.

Keywords Seizure � Gap junctions � Mean-field cortical

model � Hopf oscillations � Turing patterns � Nonlinear

interactions � Phase coherence

Abbreviations

BOLD Blood oxygen level-dependent signal

EEG Electroencephalogram

E(I)PSP Excitatory (inhibitory) postsynaptic potential

MEG Magnetoencephalogram

Introduction

It is widely believed that direct electrotonic (gap junction)

synapses between cortical neurons could play a crucial role

in determining cortical stability (Carlen et al. 2000; Perez

Velazquez and Carlen 2000). Intuitively, the presence of

gap junctions would be expected to enhance synchronous

behavior between adjoined neurons. We might expect that

pathological (seizure) and physiological (slow-wave sleep)

synchronous states could be controlled or suppressed by

applying a pharmacological agent that modulates gap-

junction conductance.

However, there is growing debate in the literature about

the potential therapeutic benefit of opening versus closing

neuronal gap junctions. This debate arises from the appar-

ently contradictory experimental results reported by
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different research groups. It has been observed that mod-

afinil induces wakefulness by opening gap junctions (Beck

et al. 2008), and that increased physiological GABA activ-

ity—such as occurs in slow-wave sleep—as well as general

anesthetic drugs, close gap junctions (Shinohara et al. 2000;

Wentlandt et al. 2006). Many report that gap-junction

blocking agents suppress seizure activity in both in vivo

(Gajda et al. 2003, 2005; Nilsen et al. 2006) and in vitro

animal models (Jahromi et al. 2002; Pais et al. 2003), yet

others provide evidence that these drugs may enhance sei-

zure activity (Yang and Ling 2007; Voss et al. 2009; Jac-

obson et al. 2010). The excitation and suppression effects

may be dependent on concentration (Gajda et al. 2005; Voss

et al. 2009). For example, one of the actions of quinine is to

reversibly block connexin-36 (Cx36) (Juszczak and

Swiergiel 2009), the dominant gap-junction type found in

GABAergic cortical interneurons (Bennett and Zukin 2004).

In one report (Gajda et al. 2005), the effect of quinine on

4-aminopyridine-induced seizures in the anesthetized adult

rat was characterized as suppressive because the duration

and amplitude of ictal events was reduced—despite the fact

that quinine actually increased seizure frequency and was

unable to prevent the induction of seizures.

The evidence from Cx36 knockout mice is less con-

fusing: compared with their wild-type peers, mice lacking

the connexin-36 gene are much more prone to ictal burst

discharges in vitro (kainate-induced seizure-like events in

hippocampal slices) (Pais et al. 2003) and generalized

tonic-clonic seizures in vivo (pentylenetetrazol) (Jacobson

et al. 2010). Thus the knockout experiments, together with

a subset of the pharmacological experiments, suggest that

interneuronal gap junctions may be protective against sei-

zure, and that their ablation can enhance pathological

excitability. There are also data that suggest that Cx36

knockout mice are more sensitive to the hypnotic effects of

anesthetic drugs (Jacobson et al. 2011).

The puzzling discrepancies in the pharmacological and

genetic experiments demonstrate that our understanding of

gap-junction blockers, off-target impacts, and possible

gene-knockout compensations, is very incomplete. But

more fundamentally, we have little idea of the biological

significance of electrotonic coupling, its modulation, and

the role it plays in the maintenance of normal versus

pathological brain rhythms.

To help address this deficit, we present a physiologi-

cally-motivated mathematical model of the cortex that

shows how coupling via inhibitory electrical synapses can

generate spatially organized patterns of brain activity

known as Turing structures. These structures are modu-

lated in time by a low-frequency (1–4 Hz) Hopf instability

whose emergence is determined by the strength of the

postsynaptic response to firing activity from the population

of inhibitory cells. Our model focuses on the behavior of

the cortex in the vicinity of a general anesthetic phase

transition where the equilibrium manifold displays multiple

steady states: an activated ‘‘up state’’, and a quiescent

‘‘down state’’, these being separated by an unstable inter-

mediate ‘‘mid state’’. In our previous anesthesia modeling

we have identified the upper activated state with con-

sciousness, and the quiescent bottom state with drug-

induced unconsciousness. The presence of the unstable

mid-state separatrix implies an abrupt, first-order jump

between the conscious (up) and unconscious (down) states

brought about by increasing the level of inhibitory drive

(Steyn-Ross et al. 1999, 2001a, b, 2003, 2004).

In the up state, nonlinear interactions between the Hopf

and Turing instabilities can result in frequency splitting of

the Hopf oscillation (Steyn-Ross et al. 2010), generating in

an ultra-low frequency (*0.1 Hz) ‘‘beating’’ pattern that

resembles the slow waxing and waning of BOLD activity

during noncognitive rest (Raichle et al. 2001; Fox et al.

2005). Unlike other models which explicitly include real-

istic brain connections (Honey et al. 2007; Ghosh et al.

2008; Deco et al. 2009), our resting-state model is devoid

of anatomical structure. The lack of biological fidelity may

be justified on the grounds that, at the time-scale of sec-

onds, functional connectivity is largely independent of

anatomical connectivity (Honey et al. 2007; Mantini et al.

2007) with significant correlation between function and

anatomy only emerging at longer times (*minutes).

Exploration of the chemical–electrical Hopf–Turing inter-

actions uncovers some counterintuitive and unexpected cortical

behaviors. We find that closing gap junctions (i.e., weakening

Turing structures) in an idling cortex tends to unbalance the

temporal–spatial competition in favor of the temporal mode,

allowing a synchronous whole-of-cortex seizure oscillation to

develop. Seizure onset is marked by a pronounced reduction in

spatial coherence corresponding to the emergence of a chaotic

spatiotemporal precursor to full seizure. However, in a small

area of parameter space close to the edge of the multistability

region, the Hopf (dynamic) instability is replaced by a saddle

(static) instability. In this case, gap-junction closure can pre-

cipitate the cortex from a chaotic precursor state into a low-

firing inactivated state, and seizure is suppressed.

In this paper we report our numerical investigations of

the stability properties of a homogeneous (i.e., structure-

free) cortex that has access to multiple steady states. We

make stepped changes in interneuron-to-interneuron dif-

fusive coupling, and observe the resulting spatiotemporal

response to alterations in the relative balance between

Turing (spatial) and Hopf (temporal) destabilizations of the

homogeneous steady state. For an up-state idling cortex,

decreasing gap-junction conductance can allow the Hopf

instability to grow, evolving via a chaotic phase into a

gross-scale synchronized oscillation resembling grand mal

seizure.
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Theoretical methodology

Model overview

Our model is a mean-field (i.e., spatially-averaged) con-

tinuum description of a sheet of cortical tissue containing

excitatory and inhibitory neural populations that commu-

nicate along nonmyelinated (local) and myelinated (dis-

tant) connections at chemical synapses (Steyn-Ross et al.

2009, 2010). Additionally, interneurons are assumed to be

coupled in a nearest-neighbor fashion via a dense network

of dendritic gap junctions to form a two-dimensional syn-

cytium (Fukuda et al. 2006); excitatory-to-excitatory gap

junctions are also included (Traub et al. 2001) but with

much lower coupling strength since their occurrence seems

to be rare (Bennett and Zukin 2004; Dudek 2002).

Soma potentials and firing rates

The population-average excitatory (e) and inhibitory (i)

soma potentials Ve,i determine the local firing rates Qe,i via

a sigmoidal mapping Q ¼ Qmax=f1þ exp½�C V � hð Þ=r�g
with firing threshold h and standard deviation r; C ¼
p=

ffiffiffi

3
p

: The firing rates act as outgoing sources of local and

long-range spike fluxes.

Chemical synapses

Incoming spike fluxes Uab (where a and b are labels each

standing for either e or i) induce excitatory and inhibitory

postsynaptic potentials (PSPs) that are integrated at the

soma to perturb the soma potential away from its resting

value Ve,i
rest,

se
oVe

ot
¼ V rest

e � Ve þ qeweeUee þ qiwieUie þ D1r2Ve;

ð1Þ

si
oVi

ot
¼ V rest

i � Vi þ qeweiUei þ qiwiiUii þ D2r2Vi; ð2Þ

where se,i are the soma time-constants; qa are signed synaptic

strengths (qe [ 0, qi \ 0); and wab are dimensionless rever-

sal-potential weights: wab = (Va
rev - Vb)/(Va

rev - Vb
rest). (See

Table 1 for values and symbol definitions).

Gap-junction synapses

The final terms on the right of (1, 2) are the electro-syn-

aptic voltage inputs arising from diffusive gap-junction

currents; the D1,2 coefficients are the excitatory and

inhibitory diffusive-coupling strengths. In earlier work

(Steyn-Ross et al. 2007), we estimated the size of the dif-

fusive coupling strength arising from gap-junction con-

nections between inhibitory neurons as having an upper

limit of D2 & 0.6 cm2, and here we explore the conse-

quences of allowing D2 to vary over the range 0.7 C D2/

cm2 C 0.1. Taking the soma relaxation time si = 40 ms as

our time-scale, the ratio D2/si defines a diffusion coefficient

for voltage change in the inhibitory neural population: in

time t, a voltage perturbation can be expected to diffuse

across a two-dimensional sheet of cortical tissue through an

rms distance drms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2t=si

p

; thus the speed of propa-

gation for gap-junction-mediated voltage change will scale

as
ffiffiffiffiffiffiffiffiffiffi

D2=t
p

: In contrast to the relative abundance of inhib-

itory-to-inhibitory gap junctions in cortex (Fukuda et al.

2006), evidence for networks of excitatory-to-excitatory

gap junctions is very sparse (Bennett and Zukin 2004), so

Table 1 Standard values for

the cortical model. Subscript

label b means destination cell

can be either of type e
(excitatory) or i (inhibitory)

Symbol Description Value Unit

se,i Soma time constant 0.040, 0.040 s

Ve,i
rev Cell reversal potential 0, -70 mV

Ve,i
rest Cell resting potential -64, -64 mV

qe,i Synaptic gain at resting voltage (1.00, -1.05) 9 10-3 mV s

ce,i Rate-constant for chemical synaptic input 170, 50/ki s-1

D2 i$ i gap-junction diffusive coupling strength 0.1–0.7 cm2

D1 e$ e gap-junction diffusive coupling strength D2/100 cm2

Neb
a Long-range e? b axonal connectivity 2,000 –

Neb,ib
b Local e? b, i? b axonal connectivity 800, 600 –

/eb
sc e? b incoming flux intensity from subcortex 300 s-1

v Axonal conduction speed 140 cm s-1

Keb Inverse-length scale for e? b axonal connections 4 cm-1

Qe,i
max Maximum firing rate 30, 60 s-1

he,i Sigmoid threshold voltage -58.5, -58.5 mV

re,i Standard deviation for threshold 3, 5 mV
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in our modeling we have arbitrarily set the excitatory

coupling strength at a small fraction of the inhibitory value,

D1 = D2/100, implying that inhibitory diffusive changes

will propagate ten times faster than excitatory changes; this

inhibitory dominance is a prerequisite for spontaneous

emergence of Turing patterns (Turing 1952) that form

localized islands and peninsulas of elevated cortical

activity.

Postsynaptic potentials

The Uab incoming fluxes in (1, 2) obey second-order dif-

ferential equations,

d

dt
þ ce

� �2

Ueb ¼ c2
e Na

eb/
a
eb þ Nb

ebQe þ /sc
eb

h i

; ð3Þ

d

dt
þ ci

� �2

Uib ¼ c2
i Nb

ibQi; ð4Þ

where ce,i is the rate-constant (inverse time-to-peak) for the

PSP response function; Nab
a,b is the number of incoming

long-range (a), short-range (b) synaptic connections; and

/eb
sc is the fixed intensity of incoming subcortical flux

corresponding to a small level of background stimulation.

(Usually in our numerical simulations we add to /eb
sc a

small amount of spatiotemporal white noise to allow the

cortex to explore its nearby statespace.)

Long-range cortico-cortical inputs

The /eb
a long-range excitatory fluxes in (3) are described by

a damped wave equation (Robinson et al. 1997),

o

ot
þ vKeb

� �2

�v2r2

" #

/a
eb ¼ v2K2

ebQe; ð5Þ

where v is the average axonal conduction speed, and Keb is

an inverse-length scale for the long-range connections.

Analytical overview

Our analysis proceeds by mapping out the equilibrium

states of the homogeneous cortex over a two-dimensional

domain of excitatory and inhibitory driving influences. We

focus attention on the small region of multistability that is

close to the fold marking the separation between multiple

and singleton equilibrium points since this boundary

locates the domain subspace where the cortex is maximally

sensitive to perturbations and therefore most likely to

develop instabilities. We vary gap-junction diffusion, and

obtain linearized predictions for onset, offset, and interac-

tions between Turing (spatial) and Hopf (temporal) insta-

bilities. For details, see Results.

Numerical simulations

We test the linear predictions with a series of numerical

simulations of the full nonlinear equations, and demon-

strate that, depending on the relative balance of excitatory

and inhibitory drives, reductions in the Turing mode can

either unleash an unconstrained Hopf oscillation (seizure),

or suppress the oscillation altogether.

All numerical simulations use a grid resolution of Nx 9

Ny = 60 9 60 to represent a square cortex of size 25 cm 9

25 cm, giving a lattice spacing of dx = dy = 4.1667 mm.

The integration time-step is dt = 0.4 ms, corresponding to

an effective sampling rate of 2,500 s-1 at each grid point. In

order to create the Qe(x, t) space–time strip-charts displayed

below in Fig. 2c, 10 s of simulation data are recorded from

each of the 60 rows down the middle of the grid (i.e., at

column Ny/2 = 30) to give a 60 9 25,000 array of space–

time points from which the RðDxÞ phase coherence graphs of

Fig. 2e are computed.

Phase coherence

Our calculation of phase coherence R is a straightforward

generalization of Eq. [8] of Mormann et al. (2000); see the

Appendix for further details and sample computer code. In

brief, for each simulation run, we quantify fluctuation

coherence by computing the instantaneous phase /(x) at

nominated grid points relative to the phase /(x0) at a central

reference pixel x0; the absolute time-averaged phase differ-

ences then give a spatial distribution of coherence values

RðDxÞ ¼ hexp i½/ðxÞ � /ðx0Þ�ij j ð6Þ

where Dx ¼ x� x0 varies over the range 0–12.5 cm (i.e.,

up to half the width of the cortical grid). A coherence value

of R = 1 indicates perfect phase locking, while R = 0

means there is no consistent phase relationship.

Results

At equilibrium, cortex can access multiple steady states

For normal, healthy brain function, we assume that the

cerebral cortex remains close to a stable steady state, and

that the electrical activity detected by a scalp EEG elec-

trode consists of small voltage fluctuations about this

steady state. Precisely which steady state the cortex is in

will be determined by a dynamic balance between excit-

atory and inhibitory drives arising from both external and

internal sources.

For modeling purposes, we represent ‘‘inhibitory drive’’

as a dimensionless scale-factor k which increases the

effectiveness of each incoming inhibitory action-potential
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spike. We scale the area qi of the resulting inhibitory

postsynaptic potential (IPSP) without changing its ampli-

tude. This constant-height area scaling of the IPSP is a

reasonable model for the cellular effect of some common

anesthetics such as propofol (Steyn-Ross et al. 1999; Ki-

tamura et al. 2002; Bojak and Liley 2005; Hutt and

Longtin 2010).

For our ‘‘excitatory drive’’ parameter, we have chosen

DV rest
e ; a small positive offset imposed on the resting

voltage Ve
rest of the population of excitatory neurons.1 The

range of cortical states is thus projected onto a two-

dimensional ðDV rest
e ; kÞ domain whose axes represent

intrinsic neuronal excitability, and inhibitory synaptic gain

respectively (see Fig. 1).

To locate the manifold of equilibrium states, we set all

time- and space-derivatives in the differential equations to

zero, then solve the resulting nonlinear algebraic equations

numerically to compute the steady-state firing rates (Qe
o,

Qi
o) and soma voltages (Ve

o, Vi
o) of the excitatory and

inhibitory neural populations. A typical equilibrium mani-

fold is shown in Fig. 1. Interestingly, for certain combina-

tions of excitatory and inhibitory drive, the model predicts

that the cortex has up to three equilibrium states available to

it: an active high-firing upper branch (‘‘up-state’’); an inac-

tive low-firing branch (‘‘down-state’’); and a reentrant

middle branch which is always unstable with respect to

small perturbations. The upper and lower branches are

generally stable, but can be destabilized in time and space by

alterations to the IPSP rate-constant (ci) and the interneu-

ronal gap-junction coupling strength (D2) respectively

(Steyn-Ross et al. 2007). In the present work, we investigate

the stability changes brought about by stepped reductions in

the D2-conductance at the domain coordinate ðDV rest
e ¼

1:5 mV; k ¼ 1:0Þ shown in Fig. 1; these reductions in

inhibitory diffusion represent pharamacological blockade of

dendritic gap-junction connections between interneurons.

Resting state of the cortex arises from balanced

interaction between Turing and Hopf instabilities

The cortical model can exhibit both Hopf (temporal) and

Turing (spatial) instabilities. If the D2 gap-junction con-

nectivity between interneurons is set too high, a ‘‘frozen’’

Turing pattern can result (Steyn-Ross et al. 2007) in which

different regions of the cortex precipitate into either high-

firing or low-firing modes of activity, and remain there. On

the other hand, without gap-junction connections, a suffi-

ciently small value of the ci inhibitory rate-constant can

lead to an unrestrained Hopf instability that manifests as

synchronized global oscillations in firing that we and others

have identified as seizure (Robinson et al. 2002; Kramer

et al. 2005; Liley and Bojak 2005; Wilson et al. 2006).

Either extreme state is pathological.

Instead of allowing one or other instability to dominate,

it is natural to contemplate a balanced interaction between

modes that allows the Hopf temporal dynamics to modulate

the Turing pattern-forming tendencies (and vice versa).

Such a balanced interaction—as illustrated by the Qe(t)

time-series (b) and Qe(x, t) space–time strip-chart (c) in the

top row of Fig. 2—might represent cortical activity during

the default non-cognitive resting state of the brain when

driven by low-level subcortical stimulation (Steyn-Ross

et al. 2009). Here, the moderately high value for gap-

junction coupling (D2 = 0.7 cm2) has allowed a Turing

pattern of separated regions of high- (up-state) and low-

firing (down-state) activity to emerge, but the activity

patterns are not frozen in time because the Hopf instability

interacts with the Turing to produce a low-amplitude *3-

Hz oscillation that is largely coherent across the cortex.

The stability graphs in column (a) of Fig. 2 provide

some predictive guidance about which instability modes

will be significant. The blue traces in (a) show the real part

of the dominant eigenvalue, a ¼ ReðKÞ (in s-1), as a

function of (scaled) wavenumber q/2p, for the up-state

equilibrium (upper graph), and for the down-state equi-

librium (lower graph); the red traces show the predicted

Fig. 1 Manifold of equilibrium states for the mean-field cortical

model. Surface shows how the steady-state firing rate Qe
o (vertical

axis; spikes/s) is distributed across a two-dimensional domain defined

by excitatory drive DV rest
e (mV) and inhibitory drive k. Dashed-black

curve encloses the region of multiple steady states; red curve marks

the infinite-slope cusp where the surface folds back on itself. We

select a reference point at domain coordinate DV rest
e =mV,k

� �

¼
ð1:5; 1Þ where the cortex has access to three steady-state firing rates

(gray-shaded beads): from top to bottom, these firing rates are

Qe
o = 18.47, 10.77, 2.15 s-1. (Color figure online)

1 We could equally well have chosen to increase the level of

subcortical drive entering the cortex, or we could have scaled qe, the

strength of the excitatory postsynaptic potential (EPSP); however,

neither of these alternatives substantially alters the qualitative model

predictions reported here.
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oscillation frequency extracted from the imaginary part,

f ¼ ImðKÞ=2p (in Hz). The homogeneous equilibrium is

expected to become unstable if a[ 0 (blue curve crosses

dashed zero-axis and goes positive), with maximum

instability growth at the spatial frequency that maximizes

a. Thus for D2 = 0.7 cm2, the up-state is predicted to

destabilize in favor of a whole-of-cortex Hopf (H) oscil-

lation (peak instability occurs at q = 0), while the down-

state shows a damped Hopf (DH at q = 0) plus a weakly

damped Turing (DT) that peaks at spatial frequency q/2p
& 0.4 waves/cm (i.e., wavelength *2.5 cm), consistent

with the structured cortical activity seen in the bird’s-eye

view of (d). Thus modal interplay between the top-branch

H and bottom-branch DT instabilities is responsible for the

emergent temporal and spatial patterns captured in columns

(b–d).

Fig. 3 Model sensitivity to a very small increase in cortical inhibition

to ki = 1.016 (previously 1.0 in Fig. 2). Gap-junction diffusion (in

cm2) is decreased from D2 = 0.5 (top row) to 0.4 (middle row) to 0.35

(bottom row). a Predicted linear stability for up- and down-states as a

function of wavenumber q. The 3-Hz Hopf instability in the up-state

has become a saddle instability, while the down-state dispersion

curves are little changed. b and c show 10-s numerical simulations for

a cortex initialized at the unstable mid-branch equilibrium values: b
Qe(t) time-series for excitatory firing activity at selected pixels

distributed at equal intervals along a line parallel to the grid x-axis; c

Qe(x, t) space–time view of cortical activity. As for Fig. 2, initial

decrease in inhibitory diffusion (D2 = 0.5, 0.4 cm2) leads to chaotic

precursor to seizure, but further blockade now suppresses seizure-like

activity completely Graph scales: a Blue = real part of dominant

eigenvalue (in s-1); red = (imaginary part)/2p (Hz); horizontal axis is

scaled wavenumber q/2p (waves/cm). b Vertical scale for Qe runs

from zero to 30 spikes/s; time axis runs from 0 to 10 s. c Space–time

plot with vertical scale showing 25-cm x-axis extent of cortical grid,

horizontal axis showing time; color scale: red = high activity, blue =

low activity. (Color figure online)

Fig. 2 Cortical stability and spatiotemporal dynamics for stepped

reductions in inhibitory diffusion D2. a Dispersion curves showing real

(blue) and imaginary (red) components of the dominant eigenvalue as

a function of wavenumber q for top-branch (‘‘up’’) and bottom-branch

(‘‘down’’) equilibria marked in Fig. 1. For D2 = 0.7 cm2, maximum

instability in the up-state occurs at q = 0, predicting a whole-of-cortex

Hopf (H) oscillation at a frequency of *3 Hz, while for the down-

state a damped Hopf (DH) and a weakly damped Turing (DT)

instability at q/2p & 0.4 waves/cm are expected. For stepped

reductions in diffusion D2, the DH Turing peak diminishes in

strength. Columns b–e show results of 10-s numerical simulations of

the model equations for a 25 cm 9 25 cm square cortex initialized at

the unstable mid-branch equilibrium. b Qe(t): time-series of excitatory

firing rate for a regularly-spaced subset of grid points (identified with

differently colored lines) aligned parallel to the x-axis; c Qe(x, t):
space–time view of cortical activity (red = high, blue = low firing-

rate); d Qe(x, y): bird’s-eye view of activity after 10s; e phase

coherence for pairs of pixels separated by distance Dx across the grid.

Simulation details: grid resolution = 60 9 60; time-step = 0.4 ms.

(Color figure online)

b
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In activated rest state, blocking gap junctions can

both promote and suppress seizures

The second and subsequent rows of Fig. 2 show the effect of

stepped reductions in gap-junction conductance. While the

up-state stability curves, with their dominant Hopf instability

(marked H in the topmost D2 = 0.7 cm2 graph), are little

changed by reductions in D2 (so are not shown), the down-

state Turing instability (marked DT) becomes substantially

weakened. This suppression of Turing influence has a pro-

found and unexpected impact on cortical dynamics: the

coherent, small oscillations about the up and down states (top

row: D2 = 0.7 cm2) are replaced by coherent giant fluctua-

tions (bottom three rows: D2 = 0.3, 0.2, 0.1 cm2) that gen-

erate synchronized waves of cortical activity; we interpret

this dynamics as a fully-developed seizure state resulting

from an unrestrained Hopf instability. Thus blockade of gap

junctions has taken the cortex from a state of non-cognitive

rest to full-blown seizure.

Column (e) of Fig. 2 plots phase coherence R as a function of

grid-point separation Dx: The top row (D2 = 0.7 cm2: acti-

vated rest) and the bottom three rows (D2 = 0.3, 0.2, 0.1 cm2:

seizure) are all characterized by large coherence values that do

not decay significantly with distance, i.e., the fluctuations have

a large coherence length. However, in the transition zone

(D2 = 0.6, 0.5, 0.4, 0.35 cm2) the coherence length decreases

markedly, achieving a minimum coherence at the point

D2 = 0.4 cm2 where the fluctuations appear to be maximally

turbulent and chaotic. These modeling results show that seizure

onset might be heralded by a low-coherence chaotic EEG

precursor. This prediction is supported by clinical observations

of EEG phase decoherence in the period leading up to seizure

(Chávez et al. 2003; Mormann et al. 2003; Amor et al. 2009).

Figure 2 demonstrates that blockade of gap-junction

diffusion provides a possible route to seizure. This invites

the provocative conclusion that diffusion-mediated Turing

structures are protective against ‘‘runaway’’ Hopf insta-

bility, and that application of gap-junction blockers may in

fact precipitate seizure by weakening Turing mediation. If

this is true, then gap-junction blockers are antithetical to

seizure suppression or prevention.

However, Fig. 3 contradicts this simple determination.

For this second series of experiments we have displaced the

cortex reference coordinate from the Fig. 1 value of

ðDV rest=mV
e ; kÞ = (1.5, 1.0) to (1.5, 1.016); this represents a

tiny increase in inhibitory drive that moves the up-state very

close to the loss-of-consciousness cusp on the manifold

surface. This subtle change in coordinate causes the up-state

stability graph to transform from the 3-Hz Hopf oscillation of

Fig. 2a to a zero-frequency instability (Fig. 3a) that we label

as ‘‘saddle’’ (in analogy to zero-frequency saddle–node

bifurcations in two-variable dynamical systems (Steyn-Ross

et al. 2006)). Commencing from a balanced Hopf–Turing

default state (not shown), step reductions in D2 interneuronal

gap-junction coupling take the cortex through a chaotic

phase (D2 = 0.5, 0.4 cm2), but further reductions in diffu-

sive coupling cause the cortex to collapse into a low-firing

coma-like state (D2 = 0.35 cm2). In this case, weakened

Turing mediation cannot unleash an unconstrained Hopf

oscillation because the only surviving Hopf instability is the

heavily damped DH mode on the bottom branch.

Overview of gap-junction effect on seizure

We now summarize the impact of gap-junction modulation

on cortical behavior. For the multi-root region of Fig. 1, the

final state of the cortex depends on the relative stabilities of

the homogeneous, Hopf, and Turing states of the awake

(activated) and comatose (quiescent) phases. We can obtain

guidance as to which mode will dominate by examining the

dispersion diagrams of Figs. 2 and 3.

For the ‘‘awake’’ state at small diffusion (D2 = 0.1cm2,

bottom row of Fig. 2), the bottom-branch homogeneous

stability is swamped by the top-branch Hopf instability,

resulting in whole-of-cortex large-amplitude oscillations

(seizure). Increasing D2 causes the full-blown seizure to

weaken as the bottom-branch Turing instability becomes

steadily less damped, allowing it to compete with, and

eventually dominate, the Hopf mode (see top row:

D2 = 0.7cm2). We now see a state of oscillating Turing

patterns that we identify as the ‘‘default–wake’’ state. For

intermediate values of D2, neither instability dominates,

and a Turing–Hopf turbulent phase with chaotic spatio-

temporal patterns emerges. We identify this turbulent phase

as the incoherent prelude to seizure.

Moving the cortex towards a state of anesthesia has a

pronounced effect on the upper-branch dispersion graphs.

Comparing Figs. 2a and 3a, we see that a homogeneous

(‘‘saddle’’) instability has replaced the upper-branch Hopf

instability. For D2 = 0.35cm2 (bottom row of Fig. 3), the

lower branch is a fixed-point attractor with damped Hopf

and Turing modes, so the cortex settles into a homogenous

low-firing quiescent state. Thus, for the anesthetized cor-

tex, closing gap junctions does not promote seizure activ-

ity. As D2 increases, the Turing and Hopf modes, although

still damped, interact to destabilize the homogeneous state,

resulting in the mixed-mode chaotic state. A further

increase in D2 produces the small-amplitude oscillations of

the Turing-dominated ‘‘default’’ state.

Our theoretical model may explain the conflicting

experimental results reported in the literature. Comparing

Figs. 2 and 3, we conclude that the dynamic impact of

closing gap junctions is complex, and depends sensitively

on how close the cortical operating point is to the fold in
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the cortical domain. Closing gap junctions may suppress

seizure by inducing coma, but equally, gap-junction clo-

sure could allow emergence of an uncontrolled Hopf

instability. Nevertheless, at the opposite extreme, fully

open gap junctions should provide Turing mediation and

protection against giant temporal oscillations.

Discussion

In this paper we have argued that the presence of a con-

tinuous network of gap-junction connections between cor-

tical interneurons could play a crucial role in maintaining

cortical stability. The relative abundance of inhibitory-to-

inhibitory gap junctions (Fukuda et al. 2006; Bennett and

Zukin 2004) provides the strong inhibitory diffusion

required for the spontaneous emergence of Turing patterns

of ‘‘up’’ (elevated) and ‘‘down’’ (suppressed) states of cor-

tical activity. This pattern-forming tendency competes with,

and modulates, the temporal rhythms arising from a Hopf

instability. We suggest that a balanced competition between

both types of instability is essential for a healthy functioning

brain, and that loss of Turing control can lead to the unre-

strained growth of the Hopf mode, leading to gross scale,

synchronized waves of seizure activity.

In this paper we have not differentiated between phys-

iological and pathological oscillations. We picture the

distinction between the slow oscillations of slow-wave

sleep and those found in seizures as being primarily one of

degree rather than kind. During seizures, there are as yet

unknown processes that result in uncontrolled neuronal

recruitment, manifest as larger, steeper waves.

How might inhibitory diffusive coupling strength be varied

in a real brain? In addition to direct manipulation via exogenous

application to cortical tissue of gap junction blockers (e.g.,

quinine, mefloquin, carbenoxolone) and openers (trimethyla-

mine), there is a wide range of naturally occurring endogenous

conditions—both physiological and pathological—that are

associated with transient gap-junction closing (e.g., intracellu-

lar acidosis, hypercalcemia, and cyclic AMP-dependent protein

kinase activation) and opening (alkalosis, hypocalcemia)

(Connors and Long 2004). Rapid transmission of inhibition

may also be facilitated via other neurobiological mechanisms

such as ephaptic coupling, and glial-modulated chemical dif-

fusion through the extracellular space (Bullock et al. 2005).

Conversely, seizure propensity may be exacerbated if the rapid

transmission of diffusive inhibition is impaired by, for example,

interneuronal pathology or tissue scarring.

Healthy brain activity relies on transient, fluctuating,

coherent interplay between segregated neuronal popula-

tions. We suggest that a dynamically maintained Turing–

Hopf balance ensures that the brain remains delicately

responsive to changes in stimulus: the Turing mode creates

spontaneous spatial aggregates, while the Hopf oscillation

synchronizes small-amplitude temporal fluctuations both

within and across aggregates. But if the Hopf mode is

allowed to dominate, the fluctuations can grow into large-

amplitude whole-of-cortex oscillations that manifest as

coherent traveling waves that we identify as seizure. If our

model is correct, then the transition—from the healthy

coherent state of balanced cortical idling (top row of

Fig. 2) to the unhealthy hypercoherent seizure state of

Hopf dominance (bottom three rows of Fig. 2)—will be

marked by a turbulent intermediate regime that is charac-

terized by profoundly reduced spatial coherence (fourth

row). This prediction, that the coherent seizure state should

be preceded by an incoherent precursor, is broadly con-

sistent with recent phase coherence analyses of MEG and

EEG recordings from epileptic patients (Chávez et al.

2003; Mormann et al. 2003; Amor et al. 2009). The con-

formance with experiment suggests that the model may

provide some insight into why blockade of gap junctions is

not necessarily therapeutically useful for the treatment and

prevention of seizure events in the brain.

Although our cortical model is deliberately incomplete

(e.g., it lacks anatomical structure and a thalamus), it

exhibits a surprisingly diverse range of dynamic spatio-

temporal behaviors, some of which may be physiologically

relevant. (We note that some form of seizure activity is

found in the nervous systems of all species of animals, thus

seizure propensity cannot depend on precise neuroana-

tomical detail.) This diversity arises naturally if we assume,

as a general principle, that the brain is able to organize

itself so that it can harness and make useful any incipient

instabilities available to it, such as Turing patterning and

Hopf oscillations. It is then plausible that a failure in the

balancing of the unstable modes could lead to pathological

states such as seizure.
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Appendix

Phase coherence calculations for Figs. 2 and 3

Consider a (real) time-series X(t). Its Hilbert transform is a

complex time-series known as the analytic signal; by

computing the four-quadrant arctangent of the ratio of its

imaginary and real parts we obtain a time-series for /(t),

the instantaneous phase angle. The phase similarity

between two time-series X(t) and Y(t) can be determined by

examining the time-series of their phase differences

D/ðtÞ ¼ /XðtÞ � /YðtÞ: If X and Y are tightly phase-cou-

pled, then plotting eiD/; the difference signal mapped to the
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unit circle, will give a tightly clustered angular distribution

of phasors, whereas if X and Y have a relative phase rela-

tion that is incoherent, the difference phasors will be ran-

domly distributed around the complex circle.

We define the mean phase coherence R of the X and Y

time-series as the length of the time-averaged phasor for

the angular distribution of phase differences, R ¼ jheiD/ij:
If X and Y are tightly phase coupled, then R & 1, and if

they are uncoupled, R & 0.

A MATLAB implementation of the phase coherence

algorithm reads as follows:

Let X : Qe(x0, t) and Y : Qe(xk, t) be a pair of cortical

firing-rate time-series belonging respectively to rows 0 and

k of a given Fig. 2c strip-chart. The x-axis separation

between these two rows is Dx ¼ kdx; and the mean phase

coherence, RðDxÞ; of their time-series gives a measure of

the degree to which cortical activity is correlated for an

electrode pair separated by distance Dx: We fix the x0

reference position to be close to the center of the grid, and

vary the position of the second electrode xk with

k = 0, ±1, ±2, … corresponding to stepped increases in

electrode separation ranging from Dx ¼ 0 to 12.5 cm. In

this way we are able to construct the Fig. 2e graphs

showing the variation of phase coherence with distance.

In these calculations, we took care to skip over first 1 s

of recording to allow time for the initial transients to settle

out. We used a 5-s recording window with 1-s overlap, and

followed Mormann et al. (2000) in applying a Hanning

window, retaining only the middle 80% of each segment to

minimize edge distortions from the Hilbert transform.

Because we expect phase symmetry for rows ±k sym-

metrically displaced either side of the x0 reference position,

we used the standard deviation in their phase coherence

values to estimate the error bars at separation Dx ¼ kdx:
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Chávez M, LeVan Quyen M, Navarro V, Baulac M, Martinerie J

(2003) Spatio-temporal dynamics prior to neocortical seizures:

amplitude versus phase couplings. IEEE Trans Biomed Eng

50(5):571–583. doi:10.1109/TBME.2003.810696

Connors BW, Long MA (2004) Electrical synapses in the mammalian

brain. Annu Rev Neurosci 27:393–418

Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of

coupling, delay, and noise in resting brain fluctuations. Proc Natl

Acad Sci USA 106(25):10302–10307. doi:10.1073/pnas.0901

831106

Dudek FE (2002) Gap junctions and fast oscillations: a role in

seizures and epileptogenesis?. Epilepsy Curr 2(4):133–136. doi:

10.1046/j.1535-7597.2002.t01-1-00051.x

Fox MD, Snyder AZ, Vincent JL, Corbetta M, van Essen DC, Raichle

ME (2005) The human brain is intrinsically organized into

dynamic, anticorrelated functional networks. Proc Natl Acad Sci

USA 102(27):9673–9678. doi:10.1073/pnas.0504136102

Fukuda T, Kosaka T, Singer W, Galuske RAW (2006) Gap junctions

among dendrites of cortical GABAergic neurons establish a

dense and widespread intercolumnar network. J Neurosci 26:

3434–3443

Gajda Z, Gyengesi E, Hermesz E, Ali KS, Szente M (2003)

Involvement of gap junctions in the manifestation and control

of the duration of seizures in rats in vivo. Epilepsia 44(12):

1596–1600

Gajda Z, Szupera Z, Blazso G, Szente M (2005) Quinine, a blocker of

neuronal Cx36 channels, suppresses seizure activity in the rat

neocortex in vivo. Epilepsia 56:1581–1591

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Noise

during rest enables the exploration of the brain’s dynamic

repertoire. PLoS Comput Biol 4(10):e1000196. doi:10.1371/

journal.pcbi.1000196

Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network

structure of cerebral cortex shapes functional connectivity on

multiple time scales. Proc Natl Acad Sci USA 104(24):

10240–10245. doi:10.1073/pnas.0701519104

Hutt A, Longtin A (2010) Effects of the anesthetic agent propofol on

neural populations. Cogn Neurodyn 4(1):37–59. doi:10.1007

/s11571-009-9092-2

Jacobson GM, Voss LJ, Melin SM, Mason JP, Cursons RT, Steyn-

Ross DA et al (2010) Connexin36 knockout mice display

increased sensitivity to pentylenetetrazol-induced seizure-like

behaviors. Brain Res 1360:198–204. doi:10.1016/j.brainres.

2010.09.006

Jacobson GM, Voss LJ, Melin SM, Cursons RTM, Sleigh JW (2011)

The role of connexin36 gap junctions in modulating the hypnotic

effects of isoflurane and propofol in mice. Anaesthesia 66(5):

361–367. doi:10.1111/j.1365-2044.2011.06658.x

Jahromi SS, Wentlandt K, Piran S, Carlen PL (2002) Anticonvulsant

actions of gap junctional blockers in an in vitro seizure model.

J Neurophysiol 88(4):1893–1902

Juszczak GR, Swiergiel AH (2009) Properties of gap junction

blockers and their behavioural, cognitive and electrophysiolog-

ical effects: animal and human studies. Prog Neuropsychophar-

macol Biol Psychiatry 33:181–198

Kitamura A, Marszalec W, Yeh JZ, Narahashi T (2002) Effects of

halothane and propofol on excitatory and inhibitory synaptic

transmission in rat cortical neurons. J Pharmacol 304(1):162–171

224 Cogn Neurodyn (2012) 6:215–225

123

http://dx.doi.org/10.1126/science.1114394
http://dx.doi.org/10.1016/S0165-0173(99)00084-3
http://dx.doi.org/10.1109/TBME.2003.810696
http://dx.doi.org/10.1073/pnas.0901831106
http://dx.doi.org/10.1073/pnas.0901831106
http://dx.doi.org/10.1046/j.1535-7597.2002.t01-1-00051.x
http://dx.doi.org/10.1073/pnas.0504136102
http://dx.doi.org/10.1371/journal.pcbi.1000196
http://dx.doi.org/10.1371/journal.pcbi.1000196
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1007/s11571-009-9092-2
http://dx.doi.org/10.1007/s11571-009-9092-2
http://dx.doi.org/10.1016/j.brainres.2010.09.006
http://dx.doi.org/10.1016/j.brainres.2010.09.006
http://dx.doi.org/10.1111/j.1365-2044.2011.06658.x


Kramer MA, Kirsch HE, Szeri AJ (2005) Pathological pattern

formation and cortical propagation of epileptic seizures. J R Soc

Lond Interface 2:113–207. doi:10.1098/rsif.2004.0028

Liley DTJ, Bojak I (2005) Understanding the transition to seizure by

modeling the epileptiform activity of general anesthetic agents.

Clin Neurophysiol 22(5):300–313

Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M

(2007) Electrophysiological signatures of resting state networks

in the human brain. Proc Natl Acad Sci USA 104(32):

13170–13175. doi:10.1073/pnas.0700668104

Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase

coherence as a measure for phase synchronization and its

application to the EEG of epilepsy patients. Physica D 144:

358–369

Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE

(2003) Epileptic seizures are preceded by a decrease in

synchronization. Epilepsy Res 53(3):173–185

Nilsen KE, Kelso AR, Cock HR (2006) Antiepileptic effect of gap-

junction blockers in a rat model of refractory focal cortical

epilepsy. Epilepsia 47(7):1169–1175

Pais I, Hormuzdi SG, Monyer H, Traub RD, Wood IC, Buhl EH et al

(2003) Sharp wave-like activity in the hippocampus in vitro in

mice lacking the gap junction protein connexin 36. J Neurophys-

iol 89:2046–2054

Perez Velazquez JL, Carlen PL (2000) Gap junctions, synchrony and

seizures. Trends Neurosci 23(2):68–74. doi:10.1016/S0166-

2236(99)01497-6

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,

Shulman GL (2001) A default mode of brain function. Proc Natl

Acad Sci USA 98:676–682. doi:10.1073/pnas.98.2.676

Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability

of waves of electrical activity in the cerebral cortex. Phys Rev E

56:826–840

Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale

brain activity in normal arousal states and epileptic seizures.

Phys Rev E 65(4):041924

Shinohara K, Hiruma H, Funabashi T, Kimura F (2000) Gabaergic

modulation of gap junction communication in slice cultures of

the rat suprachiasmatic nucleus. Neurosci 96(3):591–596

Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley DTJ (1999)

Theoretical electroencephalogram stationary spectrum for a

white-noise-driven cortex: evidence for a general anesthetic-

induced phase transition. Phys Rev E 60:7299–7311

Steyn-Ross DA, Steyn-Ross ML, Wilcocks LC, Sleigh JW (2001)

Toward a theory of the general anesthetic-induced phase

transition of the cerebral cortex: II. Stochastic numerical

simulations, spectral entropy, and correlations. Phys Rev E

64:011918

Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Wilcocks LC (2001)

Toward a theory of the general anesthetic-induced phase

transition of the cerebral cortex: I. A statistical mechanics

analogy. Phys Rev E 64:011917

Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Whiting DR (2003)

Theoretical predictions for spatial covariance of the EEG signal

during the anesthetic-induced phase transition: Increased corre-

lation length and emergence of self-organization. Phys Rev E

68:021902

Steyn-Ross ML, Steyn-Ross DA, Sleigh JW (2004) Modelling general

anaesthesia as a first-order phase transition in the cortex. Prog

Biophys Mol Biol 85:369–385

Steyn-Ross DA, Steyn-Ross ML, Wilson MT, Sleigh JW (2006)

White-noise susceptibility and critical slowing in neurons near

spiking threshold. Phys Rev E 74:051920

Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW (2007) Gap

junctions mediate large-scale Turing structures in a mean-field

cortex driven by subcortical noise. Phys Rev E 76:011916. doi:

10.1103/PhysRevE.76.011916

Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW (2009)

Modeling brain activation patterns for the default and cognitive

states. NeuroImage 45:298–311. doi:10.1016/j.neuroimage.

2008.11.036

Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Wilson MT (2010) A

mechanism for ultra-slow oscillations in the cortical default

network. Bull Math Biol 73(2):398–416. doi:10.1007/s11538-

010-9565-9

Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S

et al (2001) A possible role for gap junctions in generation of

very fast EEG oscillations preceding the onset of, and perhaps

initiating, seizures. Epilepsia 42(2):153–170

Turing AM (1952) The chemical basis of morphogenesis. Philos

Trans R Soc London 237:37–72

Voss LJ, Jacobson G, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML

(2009) Excitatory effects of gap junction blockers on cerebral

cortex seizure-like activity in rats and mice. Epilepsia

50(8):1971–1978. doi:10.1111/j.1528-1167.2009.02087.x

Wentlandt K, Samoilova M, Carlen PL, El Beheiry H (2006) General

anesthetics inhibit gap junction communication in cultured

organotypic hippocampal slices. Anaesth Analg 102(6):1692–

1698. doi:10.1213/01.ane.0000202472.41103.78

Wilson MT, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML (2006)

General anesthetic-induced seizures can be explained by a mean-

field model of cortical dynamics. Anesthesiology 104:588–593

Yang L, Ling DSF (2007) Carbenoxolone modifies spontaneous

inhibitory and excitatory synaptic transmission in rat somato-

sensory cortex. Neurosci Lett 416:221–226

Cogn Neurodyn (2012) 6:215–225 225

123

http://dx.doi.org/10.1098/rsif.2004.0028
http://dx.doi.org/10.1073/pnas.0700668104
http://dx.doi.org/10.1016/S0166-2236(99)01497-6
http://dx.doi.org/10.1016/S0166-2236(99)01497-6
http://dx.doi.org/10.1073/pnas.98.2.676
http://dx.doi.org/10.1103/PhysRevE.76.011916
http://dx.doi.org/10.1016/j.neuroimage.2008.11.036
http://dx.doi.org/10.1016/j.neuroimage.2008.11.036
http://dx.doi.org/10.1007/s11538-010-9565-9
http://dx.doi.org/10.1007/s11538-010-9565-9
http://dx.doi.org/10.1111/j.1528-1167.2009.02087.x
http://dx.doi.org/10.1213/01.ane.0000202472.41103.78

	Gap junctions modulate seizures in a mean-field model of general anesthesia for the cortex
	Abstract
	Introduction
	Theoretical methodology
	Model overview
	Soma potentials and firing rates
	Chemical synapses
	Gap-junction synapses
	Postsynaptic potentials
	Long-range cortico-cortical inputs
	Analytical overview
	Numerical simulations
	Phase coherence

	Results
	At equilibrium, cortex can access multiple steady states
	Resting state of the cortex arises from balanced interaction between Turing and Hopf instabilities
	In activated rest state, blocking gap junctions can both promote and suppress seizures
	Overview of gap-junction effect on seizure

	Discussion
	Acknowledgments
	Appendix
	Phase coherence calculations for Figs. 2 and 3

	References


