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Abstract
Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas
striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost
all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors
influencing brain dopamine levels have been shown to improve/worsen performance in many
behavioral experiments. On the one hand, Nadler and her colleagues (2010) showed that positive
affect (which is thought to increase cortical dopamine levels) improves a type of categorization
that depends on explicit reasoning (rule-based) but not a type that depends on procedural learning
(information-integration). On the other hand, Parkinson’s disease (which is known to decrease
dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-
out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during
reversal learning (Cools et al., 2006). This article uses the COVIS model of categorization to
simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-
man-out task. The results show a good match between the simulated and human data, which
suggests that the role of dopamine in COVIS can account for several cognitive enhancements and
deficits related to dopamine levels in healthy and patient populations.
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1 Introduction
Dopamine (DA) is a prominent neuromodulator that is found in many different brain areas.
Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability
whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging
role, almost all cognitive activities should be affected by dopamine levels in the brain. Not
surprisingly, factors influencing brain dopamine levels have been shown to affect
performance in many behavioral experiments (for a review, see Cools, 2006). For this
reason, computational cognitive neuroscience models increasingly include a role for DA in
their processing (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Casale,
2003; Moustafa & Gluck, 2010).
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Because DA plays such an important role in cognition, cognitive neuroscientists have
worked on identifying experimental manipulations and conditions that can affect brain DA
levels. For instance, positive affect (e.g., good mood) is thought to increase the amount of
cortical DA (Ashby, Isen, & Turken, 1999). As another example, Parkinson’s disease (PD)
is caused by the death of DA producing cells in the substantia nigra pars compacta (SNpc)
and the ventral tegmental area (VTA), which result in reduced DA levels in the striatum and
the prefrontal cortex (Cools, 2006). In this article, we simulate the effects of positive affect
and PD on cortical and basal ganglia DA levels in a computational model based on the
COVIS theory of categorization (Ashby et al., 1998). The results of three simulations show
that DA levels in COVIS modulate performance in a manner that mimics the effect of DA
imbalance in humans.

2 The COVIS theory of category learning
COVIS (Ashby et al., 1998) is a neurobiologically detailed theory of category learning that
postulates two systems that compete throughout learning – an explicit, hypothesis-testing
system that uses logical reasoning and depends on working memory and executive attention,
and an implicit system that uses procedural learning. The explicit, hypothesis-testing system
of COVIS is thought to mediate rule-based category learning. Rule-based category-learning
tasks are those in which the category structures can be learned via some explicit reasoning
process. Frequently, the rule that maximizes accuracy (i.e., the optimal rule) is easy to
describe verbally. In the most common applications, only one stimulus dimension is
relevant, and the observer’s task is to discover this relevant dimension and then to map the
different dimensional values to the relevant categories. The Wisconsin Card Sorting Test
(WCST; Heaton, Chelune, Talley, Kay, & Curtiss, 1993) is a well-known rule-based task.
More complex rule-based tasks can require attention to multiple stimulus dimensions. For
example, any task where the optimal strategy is to apply a logical conjunction or disjunction
is rule-based. The key requirement is that the optimal strategy can be discovered by logical
reasoning and is easy for humans to describe verbally.

The implicit procedural-learning system of COVIS is hypothesized to mediate information-
integration category learning. Information-integration tasks are those in which accuracy is
maximized only if information from two or more stimulus components (or dimensions) is
integrated at some pre-decisional stage. Perceptual integration could take many forms –
from treating the stimulus as a Gestalt to computing a weighted linear combination of the
dimensional values. Typically, the optimal strategy in information-integration tasks is
difficult or impossible to describe verbally. Rule-based strategies can be applied in
information-integration tasks, but they generally lead to sub-optimal levels of accuracy
because rule-based strategies make separate decisions about each stimulus component,
rather than integrating this information.

3 Dopamine imbalances and their effect on rule-based tasks
3.1 Dopamine depletion

The effect of DA depletion in rule-based tasks can be assessed by reviewing the literature on
PD. Rule-based tasks demand attention, working memory, and logical reasoning and PD
patients display many of the same deficits in these tasks as patients with frontal lobe damage
(Owen, Roberts, Hodges, & Robbins, 1993). This section reviews empirical evidence for
rule-related deficits in PD patients, with a focus on ineffective use of feedback and proactive
interference. Note that other rule-based PD deficits, such as rule-based category learning and
perseverative tendencies in the WCST have already been simulated by a COVIS-based
model (Helie, Paul, & Ashby, 2011).
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Cools, Altamirano, and D’Esposito (2006) asked subjects to predict the outcome of a rule-
based gambling task where one stimulus was associated with a reward while the other was
associated with a punishment. The stimulus-outcome assignments periodically changed
during the task (reversal trials). On reversal trials, subjects received either unexpected
positive or unexpected negative feedback. Interestingly, PD patients performed worse in the
unexpected negative feedback condition than controls. This suggests that PD patients may
have an inability to leverage negative feedback appropriately in this reversal learning
paradigm. Similarly, another study using a probabilistic task (Frank, Seeberger, & O’Reilly,
2004) found that PD patients were better at learning from positive than from negative
feedback. Together, these results suggest that learning from negative feedback is less
effective relative to positive feedback in PD patients. Control (age-matched) subjects in both
tasks did not show such differential learning performances with positive and negative
feedback.

PD patients also suffer from proactive interference in rule application. In testing PD patients
in the Odd-Man-Out (OMO) choice discrimination task (a task where subjects need to pick
the odd-man-out in a grouping of three stimuli), Flowers and Robertson (1985) found that
PD patients were relatively unimpaired on the first block of trials using one rule (i.e.,
performance was quite close to controls), but were subsequently impaired in later blocks
using either a different rule, or the same original rule. In fact, their performance decrement
was only slightly improved when told explicitly what rule to use when selecting the OMO
stimulus: subjects never reacquired the same performance level as at the beginning of the
test. In a similar task where subjects were required to alternate their response strategy on a
trial-by-trial basis, PD patients produced more false alarms than controls, but only for long
time intervals between targets (Ravizza & Ivry, 2001). Taken together, these results show
that PD patients are sensitive to proactive interference in which early response strategies
negatively impact later performance.

3.2 Dopamine elevation
While the studies described above dealt with DA depletion, DA elevations are also thought
to have an important impact on rule-based processing. Ashby and his colleagues (1999)
reviewed evidence suggesting that cortical dopamine levels are elevated during periods of
positive affect. First, dopamine neurons are known to increase their firing following
unexpected rewards (e.g., Schultz, Dayan, & Montague, 1997), and the giving of an
unexpected reward (e.g., a gift) is a common method of inducing positive affect in test
subjects (e.g., Ashby et al., 1999). Second, drugs that mimic the effects of dopamine (i.e.,
dopamine agonists) or that enhance dopaminergic activity, elevate feelings (e.g., Beatty,
1995). These drugs include morphine and apomorphine (agonists), cocaine (which blocks
reuptake), amphetamines (which increase dopamine release), and naturally produced
endorphins (e.g., Beatty, 1995; Harte, Eifert, & Smith, 1995). Finally, dopamine antagonists
(i.e., neuroleptics) are thought to flatten affect.

Many studies have shown that positive affect improves creative problem solving, facilitates
recall of some material, and generally facilitates cognitive flexibility, and Ashby et al.
(1999) proposed that these performance improvements were largely due to the elevations in
cortical dopamine levels that occur as a result of the improved affect. More recently, Nadler,
Rabi, and Minda (2010) studied the effects of positive affect on rule-based and information-
integration category learning. Before categorization training, standard methods were used to
induce a neutral or positive affect in each subject (i.e., listening to music and watching
videos). Results showed that relative to the neutral affect controls, positive affect subjects
performed better in rule-based categorization, but not in information-integration
categorization.
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4 A computational implementation of COVIS
The computational version of COVIS described in this section is an extension of Ashby,
Paul, and Maddox (2011) and Helie et al. (2011). It includes three separate components –
namely a model of the hypothesis-testing system, a model of the procedural-learning system,
and an algorithm that monitors the output of these two systems and selects a response on
each trial. The following subsections describe these components.

4.1 The hypothesis-testing system
The hypothesis-testing system in COVIS selects and tests explicit rules that determine
category membership. The simplest rule is one-dimensional. More complex rules are
constructed from one-dimensional rules via Boolean algebra (e.g., to produce logical
conjunctions, disjunctions, etc.). The neural structures that have been implicated in this
process include the prefrontal cortex, anterior cingulate, head of the caudate nucleus, and
hippocampus (Ashby et al., 1998, 2005; Helie, Roeder, & Ashby, 2010). The computational
implementation of the COVIS hypothesis-testing system is a hybrid neural network that
includes both symbolic and connectionist components. The model’s hybrid character arises
from its combination of explicit rule selection and switching and its incremental salience-
learning component.

To begin, denote the set of all possible explicit rules by R = {R1, R2, …, Rm}. In most
applications, the set R will include all possible one-dimensional rules, and perhaps a variety
of plausible conjunction and/or disjunction rules. On each trial, the model selects one of
these rules for application by following an algorithm that is described below.

Suppose the stimuli to be categorized vary across trials on r stimulus dimensions. Denote the
coordinates of the stimulus on these r dimensions by x̲ = (x1, x2, …, xr). On trials when the
active rule is Ri, a response is selected by computing a discriminant value hE(x̲) and using
the following decision rule:

(1)

where εE is a normally distributed random variable with mean 0 and variance . The

variance  increases with trial-by-trial variability in the subject’s perception of the stimulus
and memory of the decision criterion (i.e., perceptual and criterial noise). In the case where
Ri is a one-dimensional rule in which the relevant dimension is i, the discriminant function
is

(2)

where Ci is a constant that plays the role of a decision criterion. Note that this rule is
equivalent to deciding whether the stimulus value on dimension i is greater or less than the
criterion Ci. The decision bound is the set of all points for which xi – Ci = 0. Note that |
hE(x̲) | increases with the distance between the stimulus and this bound.

Suppose rule Ri is used on trial n. Then the rule selection process proceeds as follows. If the
response on trial n is correct, then rule Ri is used again on trial n + 1 with probability 1. If
the response on trial n is incorrect, then the probability of selecting each rule in the set R for
use on trial n + 1 is a function of that rule’s current weight. The weight associated with each
rule is determined by the subject’s lifetime history with that rule, the reward history
associated with that rule during the current categorization training session, the tendency of
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the subject to perseverate, and the tendency of the subject to select unusual or creative rules.
These factors are all formalized as described next.

Let Zk(n) denote the salience of rule Rk on trial n. Therefore, Zk(0) is the initial salience of
rule Rk. Rules that subjects have abundant prior experience with have high initial salience,
and rules that a subject has rarely used before have low initial salience. In typical
applications of COVIS, the initial saliencies of all one-dimensional rules are set equal,
whereas the initial saliencies of conjunctive and disjunctive rules are set much lower. The
salience of a rule is adjusted after every trial on which it is used, in a manner that depends
on whether or not the rule was successful. For example, if rule Rk is used on trial n − 1 and a
correct response occurs, then

(3)

where ΔC is some positive constant. If rule Rk is used on trial n − 1 and an error occurs, then

(4)

where ΔE is also a positive constant. The numerical value of ΔC should depend on the
perceived gain associated with a correct response and ΔE should depend on the perceived
cost of an error.

The salience of each rule is then adjusted to produce a weight, Y, according to the following
rules. For the rule Ri that was active on trial n,

(5)

where the constant γ is a measure of the tendency of the subject to perseverate on the active
rule, even though feedback indicates that this rule is incorrect. If γ is small, then switching
will be easy, whereas switching is difficult if γ is large. COVIS assumes that switching of
executive attention is mediated within the head of the caudate nucleus, and that the
parameter γ is inversely related to basal ganglia DA levels.

Choose a rule at random from R. Call this rule Rj. The weight for this rule is

(6)

where X is a random variable that has a Poisson distribution with mean λ. Larger values of
λ increase the probability that rule Rj will be selected for the next trial, so λ is called the
selection parameter. COVIS assumes that selection is mediated by a cortical network that
includes the anterior cingulate and the prefrontal cortex, and that λ increases with cortical
DA levels. For any other rule Rk (i.e., Rk ≠ Ri or Rj),

(7)

Finally, rule Rk (for all k) is selected for use on trial n + 1 with probability

(8)

where a is a parameter that determines the decision stochasticity. When a < 1, the decision is
noisy and the probability differences are diminished (making the decision probabilities more
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uniform). When a > 1, the decision tends to become more deterministic. Hence, COVIS
assumes that a increases with cortical DA (Ashby & Casale, 2003). This algorithm has a
number of attractive properties. First, the more salient the rule, the higher the probability
that it will be selected, even after an incorrect trial. Second, after the first trial, feedback is
used to adjust the selection probabilities up or down, depending on the success of the rule
type. Third, the model has separate selection and switching parameters, reflecting the
COVIS assumption that these are separate operations. The random variable X models the
selection operation. The greater the mean of X (i.e., λ) in Eq. 6, the greater the probability
that the selected rule (Rj) will become active. In contrast, the parameter γ from Eq. 5 models
switching, because when γ is large, it is unlikely that the system will switch to the selected
rule Rj. It is important to note, however, that with both parameters (i.e., λ and γ), optimal
performance occurs at intermediate numerical values. For example, note that if λ is too
large, some extremely low salience rules will be selected, and if γ is too low then a single
incorrect response could cause a subject to switch away from an otherwise successful rule.

4.2 The Procedural System
The current implementation of the procedural system is called the Striatal Pattern Classifier
(SPC: Ashby & Waldron, 1999; Ashby, Ennis, & Spiering, 2007). The SPC learns to assign
responses to regions of perceptual space. In such models, a decision bound could be defined
as the set of all points that separate regions assigned to different responses, but it is
important to note that in the SPC, the decision bound has no psychological meaning. As the
name suggests, the SPC assumes the key site of learning is at cortical-striatal synapses
within the striatum.

The SPC architecture is shown in Figure 1 for an application to a categorization task with
two contrasting categories. This is a straightforward three-layer feedforward network with
up to 10,000 units in the input layer and two units each in the hidden and output layers. The
only modifiable synapses are between the input and hidden layers. The more biologically
detailed version of this model proposed in Ashby et al. (2007) included lateral inhibition
between striatal units and between cortical units. In the absence of such inhibition, the top
motor output layer in Figure 1 represents a conceptual placeholder for the striatum's
projection to premotor areas. This layer is not included in the following computational
description.

The key structure in the model is the striatum (i.e., the putamen; Ell, Helie, & Hutchinson, in
press; Waldschmidt & Ashby, 2011), which is a major input region of the basal ganglia. In
humans and other primates, all of extra-striate cortex projects directly to the striatum and
these projections are characterized by massive convergence, with the dendritic field of each
medium spiny cell innervated by the axons of approximately 380,000 cortical pyramidal
cells (Kincaid, Zheng, & Wilson, 1998). COVIS assumes that, through a procedural-learning
process, each striatal unit associates an abstract motor program with a large group of sensory
cortical neurons (i.e., all that project strongly to it).

The dendrites of striatal medium spiny neurons are covered in protuberances called spines.
These play a critical role in the model because glutamate projections from sensory cortex
and DA projections from the SNpc converge (i.e., synapse) on the dendritic spines of the
medium spiny cells. COVIS assumes that these synapses are a critical site of procedural
learning.

4.2.1 Activation equations—Sensory cortex is modeled as an ordered array of up to
10,000 units, each tuned to a different stimulus. The model assumes that each unit responds
maximally when its preferred stimulus is presented, and that its response decreases as a
Gaussian function of the distance in stimulus space between the stimulus preferred by that
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unit and the presented stimulus. Specifically, when a stimulus is presented, the activation in
sensory cortical unit K on trial n is given by

(9)

where α is a constant that scales the unit of measurement in stimulus space and d(K,
stimulus) is the distance (in stimulus space) between the stimulus preferred by unit K and
the presented stimulus (smaller α produces a smaller unit of measurement). Eq. 9 is an
example of a radial basis function, a popular method for modeling the receptive fields of
sensory units in models of many cognitive tasks.

COVIS assumes that the activation in striatal unit J (within the middle or hidden layer) on
trial n, denoted SJ(n), is determined by the weighted sum of activations in all sensory
cortical cells that project to it:

(10)

where wK,J(n) is the strength of the synapse between cortical unit K and striatal cell J on
trial n, IK(n) is the input from visual cortical unit K on trial n, and εI is normally distributed

noise (with mean 0 and variance ; in all the present simulations,  = 0.9).

In a task with two alternative categories, A and B, the decision rule is:

(11)

Hence, smaller  tend to produce more deterministic behaviors. The synaptic strengths
wK,J(n) are adjusted up and down from trial-to-trial via reinforcement learning, which is
described below.

4.2.2 Learning equations—The three factors thought to be necessary to strengthen
cortical-striatal synapses are 1) strong pre-synaptic activation, 2) strong post-synaptic
activation, and 3) DA levels above baseline (e.g., see Arbuthnott, Ingham, & Wickens,
2000; Ashby & Helie, 2011). According to this model, the synapse between a neuron in
sensory association cortex and a medium spiny neuron in the striatum is strengthened if the
cortical neuron responds strongly to the presented stimulus, the striatal neuron is also
strongly activated (i.e., factors 1 and 2 are present) and the subject is rewarded for
responding correctly (factor 3). On the other hand, the strength of the synapse will weaken if
the subject responds incorrectly (factor 3 is missing), or if the synapse is driven by a cell in
sensory cortex that does not produce much activation in the striatum (i.e., factor 2 is
missing).

Let wK,J(n) denote the strength of the synapse on trial n between cortical unit K and striatal
unit J. COVIS models reinforcement learning as follows:

(12)
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The function [g(n)]+ = g(n) if g(n) > 0, and otherwise g(n) = 0. The constant Dbase is the
baseline DA level, D(n) is the amount of DA released following feedback on trial n, and αw,
βw, γw, θNMDA, and θAMPA are all constants. The first three of these (i.e., αw, βw, and γw)
operate like standard learning rates because they determine the magnitudes of increases and
decreases in synaptic strength (in all the simulations herein, αw = 0.35, βw = 0.45, and γw, =
0.15). The constants θNMDA and θAMPA represent the activation thresholds for post-synaptic
NMDA and AMPA (more precisely, non-NMDA) glutamate receptors, respectively. The
numerical value of θNMDA > θAMPA because NMDA receptors have a higher threshold for
activation than AMPA receptors. This is critical because NMDA receptor activation is
required to strengthen corticostriatal synapses (Calabresi, Pisani, Mercuri, & Bernardi,
1992). Note that the values assigned to θNMDA and θAMPA are used to discriminate between
the postsynaptic activation of the different striatal cells. As such, mid-level values should be
selected (because values too high or too low will not allow for such discrimination).

The second line in Eq. 12 describes the conditions under which synapses are strengthened
(i.e., striatal activation above the threshold for NMDA receptor activation and DA above
baseline) and lines three and four describe conditions that cause the synapse to be weakened.
The first possibility (line 3) is that post-synaptic activation is above the NMDA threshold
but DA is below baseline (as on an error trial), and the second possibility is that striatal
activation is between the AMPA and NMDA thresholds. Note that synaptic strength does
not change if post-synaptic activation is below the AMPA threshold.

4.2.3 Dopamine model—The Eq. 12 model of reinforcement learning requires that we
specify the amount of DA released on every trial in response to the feedback signal (the
D(n) term). The key empirical results are (Schultz et al., 1997): 1) midbrain DA cells fire
spontaneously (i.e., tonically), 2) DA release increases above baseline following unexpected
reward, and the more unexpected the reward the greater the release, and 3) DA release
decreases below baseline following unexpected absence of reward, and the more unexpected
the absence, the greater the decrease. One common interpretation of these results is that over
a wide range, DA firing is proportional to the reward prediction error (RPE):

(13)

A simple model of DA release can be built by specifying how to compute Obtained Reward,
Predicted Reward, and exactly how the amount of DA release is related to the RPE. Our
solution to these three problems is as follows.

In applications that do not vary the valence of the rewards (e.g., in designs where all correct
responses receive the same feedback, as do all errors), the obtained reward Rn on trial n is
defined as +1 if correct or reward feedback is received, 0 in the absence of feedback, and −1
if error feedback is received. COVIS computes the predicted reward on trial n from the
single-operator learning model (Bush & Mosteller, 1955):

(14)

It is well known that when computed in this fashion, Pn converges exponentially to the
expected reward value and then fluctuates around this value until reward contingencies
change.

Bayer and Glimcher (2005) reported activity in midbrain DA cells as a function of RPE. A
simple model that nicely matches their results is:
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(15)

where Dmax, Dslope, and Dbase are constants. This model is illustrated in Figure 2. Note that
the baseline DA level is Dbase (i.e., when the RPE = 0) and that DA levels increase linearly
with the RPE. In general, higher values of Dmax allow for a larger increase in DA following
unexpected reward, higher values of Dbase allow for a larger decrease of DA following the
unexpected absence of reward, and higher values of Dslope increase the effect of RPE on DA
release. Thus, increasing the value of any of these constants should improve learning in the
procedural system (up to a point).

4.3 Resolving the competition between the hypothesis-testing and procedural systems
Since on any trial the model can make only one response, the final task is to decide which of
the two systems will control the observable response. In COVIS, this competition is resolved
by combining two factors: the confidence each system has in the accuracy of its response,
and how much each system can be trusted. In the case of the hypothesis-testing system,
confidence equals the absolute value of the discriminant function | hE(n) |. When | hE(n) | =
0, the stimulus is exactly on the hypothesis-testing system’s decision bound, so the model
has no confidence in its ability to predict the correct response. When | hE(n) | is large, the
stimulus is far from the bound and confidence is high. In the procedural system, confidence
is defined as the absolute value of the difference between the activation values in the two
striatal units:

(16)

The logic of Eq. 16 is similar to that of the hypothesis-testing system: When | hP(n) | = 0, the
stimulus is equally activating both striatal units, so the procedural system has no confidence
in its ability to predict the correct response, and when | hP(n) | is large, the evidence strongly
favors one response over the other. One problem with this approach is that | hE(n) | and |
hP(n) | will typically have different upper limits, which makes them difficult to compare. For
this reason, these values are normalized to a [0,1] scale on every trial. This is done by
dividing each discriminant value by its maximum possible value.

The amount of trust that is placed in each system is a function of an initial bias toward the
hypothesis-testing system, and the previous success history of each system. On trial n, the
trust in each system increases with the system weights, θE(n) and θP(n), where it is assumed
that θE(n) + θP(n) = 1. In typical applications, COVIS assumes that the initial trust in the
hypothesis-testing system is much higher than in the procedural system, partly because
initially there is no procedural learning to use. A common assumption is that θE(1) = 0.99
and θI(1) = 0.01. As the experiment progresses, feedback is used to adjust the two system
weights up or down depending on the success of the relevant component system. This is
done in the following way. If the hypothesis-testing system suggests the correct response on
trial n then

(17)

where ΔOC is a parameter. If instead, the hypothesis-testing system suggests an incorrect
response then
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(18)

where ΔOE is another parameter. The two regulatory terms on the end of Eqs. 17 and 18
restrict θE(n) to the range 0 < θE(n) < 1. Finally, on every trial, θP(n+1) = 1 – θE(n+1).
Thus, Eqs. 17 and 18 also guarantee that θP(n) falls in the range 0 < θP(n) < 1. The value
assigned to ΔOC should be positively related to the model persistence toward hypothesis
testing, whereas the value assigned to ΔOE should be positively related to the model
willingness to switch to the procedural system.

The last step is to combine confidence and trust. This is done multiplicatively, so the overall
system decision rule is: emit the response suggested by the hypothesis-testing system if
θE(n) | hE(n) | > θP(n) | hP(n) |; otherwise emit the response suggested by the procedural
system.

5 Modeling dopamine imbalances with COVIS
5.1 Parkinson’s disease

DA cells in the SNpc and the VTA die in PD, which results in decreased DA levels in the
prefrontal cortex and the striatum. In COVIS, DA has a differential effect on the hypothesis-
testing and procedural systems. In the hypothesis-testing system, rule selection should
improve as levels of DA rise in frontal cortex (up to some optimal level), and rule switching
should improve if levels of DA rise in the head of the caudate nucleus. Thus, the selection
parameter λ should increase with DA levels in frontal cortex, and the switching parameter γ
is assumed to decrease with increased DA levels in the caudate nucleus. In addition, DA in
the prefrontal cortex is hypothesized to increase signal-tonoise ratio (Ashby & Casale,

2003). Hence, a in Eq. 4 should increase with DA levels (similar to λ), and  should
decrease with more DA (similar to γ). In the procedural system, DA plays a crucial role in
learning: it provides the reward signal required for reinforcement learning. A decreased DA
baseline or range can affect the ability of the procedural system to learn stimulus-response
associations. Hence, decreasing DA levels in the striatum should decrease the values
assigned to Dbase, Dslope, and Dmax.

5.2 Positive affect
According to Ashby et al. (1999), positive affect increases DA levels in frontal cortex, with
a much smaller effect in the striatum. This is because the concentration of the dopamine re-
uptake molecule DAT is high in the striatum and low in cortex. Thus, dopamine released to
the events that induce the positive affect will be cleared quickly from the striatum and
slowly from cortex. In COVIS, frontal cortex plays a significant role only in the explicit
(hypothesis-testing) system. As argued in Section 5.1, rule selection should improve as
levels of DA rise in frontal cortex (up to some optimal level). Thus, the selection parameter
λ should increase with cortical DA levels. In addition, DA in the prefrontal cortex increases
signal-to-noise ratio (Ashby & Casale, 2003). Hence, a in Eq. 4 should increase with DA

levels (similar to λ), and  should decrease.

5.3 Other factors affecting dopamine levels
Many factors are known to affect brain DA levels including age, genetic predisposition,
drug-taking history, and neuropsychological patient status (Ashby et al., 1999). For
example, brain DA levels are known to decrease by approximately 7% per decade of life due
to normal aging, and PD patients are thought to have lost at least 70% of their birth DA
levels (Gotham et al., 1988; Price, Filoteo, & Maddox, 2009). Hence, in COVIS, we model
an ordinal relationship where DA(Positive affect; Pos) ≥ DA(Young adults; YC) ≥ DA(Old
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adults; OC) ≥ DA(PD) (where more DA results in lower γ and ,and higher λ, a, Dbase,
Dslope, and Dmax).1

Note that Dbase and Dmax were calculated to reflect the proportion of DA cells remaining as
a function of age and diagnosis (Helie et al., 2011). For instance, in the studies considered
here, young adults (YC) are usually undergraduate students in their late teens or early 20s.
Hence, they should have approximately 86% of their birth DA levels (assuming they lost 7%
of birth DA per decade of life). Typically, these subjects have been modeled with Dbase =
0.20 and Dmax = 1.00 (e.g., Ashby & Crossley, 2011; Ashby et al., 2011). Likewise, age-
matched controls (OC) are typically about 70 years old and should thus have 50% of their
birth DA level. As such, their Dbase was set to 0.15 and their Dmax was set to 0.60. Finally,
on average PD patients are predicted to have 30% of their birth DA remaining. Hence, their
Dbase was set to 0.10 and their Dmax was set to 0.35. Thus, only five DA-related parameters

were varied in the simulations (i.e., γ, , λ, a, and Dslope).

6 Simulations
In this section, we test the COVIS model of DA imbalance against data from three well-
known tasks, namely rule-based reversal learning, the OMO task, and perceptual
categorization. The first two tasks focused on DA depletion and compared the performance
of YC and OC with PD patients. In contrast, the last task focused on DA elevations and
compared the performance of subjects with neutral and positive affect. The values given to
the DA-related parameters in all simulations are shown in Table 1. Note that only these
parameters were varied to simulate the different subject populations. In addition to these
DA-related parameters, COVIS also requires setting some task-related parameters (which
did not vary when modeling the different subject populations). These are shown in Table 2.
Note that none of the parameters were optimized; reasonable values were assigned using a
rough grid search.

6.1 Ineffective use of negative feedback in Parkinson’s disease
The following simulation addresses the ineffective use of negative feedback by PD patients.
The key result is that an unexpected reward allows the PD patient to learn and to adjust his
or her behavior, but an unexpected punishment is not as effective in eliciting a change in
behavior (Cools et al., 2006). In contrast, age-matched controls are as likely to modify their
behavior following unexpected reward or punishment.

6.1.1 Experiment—Cools et al. (2006) compared the performance of 10 PD patients with
12 aged-matched controls in a reversal-learning task. On each trial the subject saw two
stimuli, one of which was highlighted. The subject’s task was to predict whether the
highlighted stimulus would lead to a reward or a punishment. The outcome (reward or
punishment) was presented after the subject had responded and was non-contingent on the
subject’s prediction. Hence, the subject needed to generate his or her own internal second-
order feedback (e.g., something like “I predicted a reward, the outcome was a reward,
therefore my response was correct”). The stimuli were the same on every trial; the only
thing that changed was which stimulus was highlighted. At the beginning of each block, one
of the stimuli was randomly associated with the reward outcome while the other was
associated with the punishment outcome (this assignment was unknown to the subject).
After a learning criterion was reached, the previously learned association was reversed. The

1Note that DA(Pos) ≥ DA(YC) only for cortical DA parameters (i.e., , λ, and a). For striatal DA parameters (i.e., γ, Dbase, Dslope,
and Dmax), DA(Pos) = DA(YC).

Hélie et al. Page 11

Neural Netw. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



learning criterion was a pseudo-random number of consecutive correct responses that varied
between 5 and 9. Each block was composed of 120 trials, and the maximum number of
reversals within each block was 14. There were two types of blocks: unexpected reward and
unexpected punishment. In the former, the previously punished stimulus was highlighted on
the reversal trial and was followed by a reward outcome. In the latter, the previously
rewarded stimulus was highlighted on the reversal trial and was followed by a punishment
outcome. The dependent measure was the total number of completed stages in each type of
block (a stage is a stimulus-reward assignment). The results are shown in Figure 3 (gray
bars). As can be seen, the PD patients (right panel) completed more stages in the unexpected
reward blocks then in the unexpected punishment blocks. In contrast, the type of block (i.e.,
unexpected reward or unexpected punishment) did not affect the performance of the aged-
matched control subjects (left panel).

6.1.2 Simulation—Two hundred simulations were run for each subject group using the
COVIS model described in Section 4. The procedural system received a display-specific
representation of the stimuli whereas the hypothesis-testing system received a conceptual
representation. Because the stimuli were not perceptually confusable, radial basis functions
were not used in the procedural system. Hence, the stimuli presented to the procedural
system were 4-dimensional binary vectors. The first two rows coded the first stimulus and
the last two rows coded the second stimulus. In both cases, if the stimulus was highlighted a
0 appeared in the first of these two rows and a 1 appeared in the second. If the stimulus was
not highlighted the opposite pattern appeared (i.e., 1 in first row, 0 in second). The stimuli
presented to the hypothesis-testing system were 2-dimensional binary vectors (one position
for each highlighted picture); thus, if stimulus i is highlighted, then row i takes a value of 1.
Note that this representation does not take the arrangement of the two stimuli into account
because it is a conceptual representation. Each system received a separate copy of the
feedback (Helie et al., 2011); however, this experiment required subjects to generate their
own second-order feedback. The neuroscience literature suggests that the prefrontal cortex
can manipulate highly abstract forms of feedback (Wallis & Kennerley, 2010), whereas the
flexibility of the basal ganglia to manipulate feedback is largely unknown (Schultz,
Tremblay, & Hollerman, 2000). This distinction was not relevant in previous COVIS
simulations because the feedback is generally unambiguous (i.e., both brain areas receive the
same feedback), but here the prefrontal cortex and basal ganglia might receive different
types of feedback. Specifically, we assumed that the prefrontal cortex receives the self-
generated second-order feedback (correct or incorrect dependent on the accuracy of its
prediction), whereas the basal ganglia receive the outcome feedback (reward or
punishment). Recall that within COVIS, the prefrontal cortex mediates rule selection
whereas the basal ganglia mediate rule switching. Hence, when the second-order feedback is
negative, but the outcome is positive, the system may try to select a new rule without trying
to switch away from the current rule. This makes the likelihood of successfully changing
rules less likely than when both the feedback and outcome are congruent (i.e., negative
feedback and punishment outcome). Only three free parameters were varied to simulate the
data (i.e., γ, λ, and Dslope; see Table 1). The simulation results are shown in Figure 3 (black
bars).

6.1.3 Results and discussion—COVIS produced results that were a good match to the
human data. As in the Cools et al.’s (2006) results, the performance of the simulated PD
patients (right panel) was affected by the valence of the unexpected feedback: unexpected
punishment did not lead to a change in response strategy, which ultimately led to fewer
stages being completed. In contrast, simulated aged-matched subjects (left panel) were not
affected by the valence of the unexpected feedback. These results are explained by the value
assigned to the switching parameter γ, which was much larger in simulated PD patients than
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in simulated age-matched controls. This parameter assignment is responsible for the
perseverative tendencies of simulated PD patients, and resulted in simulated PD patients
being unable to disengage from the current stimulus-reward association in unexpected
punishment situations. However, in unexpected reward situations, the basal ganglia received
positive feedback, which reduced the simulated PD patients’ perseverative tendencies and
facilitated the switch to a new stimulus-reward association. Aged-matched controls do not
suffer from perseverative tendencies (reflected in the value assigned to the switching
parameter γ for this group), so the match between the feedback and outcome did not affect
their behavior. This good fit was achieved by varying only a subset of the COVIS DA
parameters (again, only three parameters were varied). This supports the adequacy of the
COVIS DA model with respect to behavioral performance with DA deficits.

6.2 Proactive interference of rule use in Parkinson’s disease
The following simulation addresses the proactive interference of rules in PD patients. The
key result is that the performance of PD patients is preserved when learning a first rule, but
that learning of subsequent rules is impaired (Flower & Robertson, 1985). Control subjects
do not suffer from such proactive interference.

6.2.1 Experiment—Flower and Robertson (1985) ran the OMO task to measure the
presence of proactive interference in PD patients. The experiment compared the
performance of 49 PD patients with 56 aged-matched controls (OC) and 40 younger controls
(YC; undergraduate students). The stimuli in the OMO task were two decks of 16 cards.
Each card displayed three binary symbols (e.g., circles or triangles) that could each take one
of two different sizes (i.e., small or large). The subject’s task was to choose a dimension
(i.e., symbol or size) and then select the item on each card that was the OMO. For example,
consider a card that showed one large circle, one small circle, and one small triangle. If the
subject chooses the symbol dimension, the small triangle is the OMO. However, if the
subject chooses the size dimension, then the large circle is the OMO. The dimension values
for size were always the same (i.e., large, small), but the dimension values for symbols
varied within each deck (e.g., circle vs. triangle, rectangle vs. diamond, etc.). In the first
block, a deck of cards was selected and the subjects were asked to choose a rule/dimension
and consistently apply the same rule for the entire deck of cards. On the second block, the
second deck of cards was selected and the subjects were asked to use a different rule for the
entire deck of cards (i.e., choose the other dimension). After the second block was
completed, the first deck was retrieved and the subjects were asked to apply the first rule
again (Block 3). The decks of cards (and rules/dimensions) were alternated until each deck
was used four times for a total of 8 blocks. The dependent measure was the number of
correct responses in each block (see Figure 4, left panel). As can be seen, the young and old
controls exhibited stable performance within each block. However, the PD patients suffered
from proactive interference: they made significantly more correct responses in the first block
than in any other block.

6.2.2 Simulation—The performance of 200 subjects in each group was simulated with the
COVIS model described in Section 4. As in the previous simulation, the procedural system
received an object-based representation of the stimuli whereas the hypothesis-testing system
received a feature-based representation. Also as in the previous simulation, radial basis
functions were not used in the procedural system because the stimuli were not perceptually
confusable. Hence, the stimuli presented to the procedural system were 32-dimensional
vectors with a 1 in position i to denote stimulus i (for i = 1, …, 32) and a 0 in every other
position. The stimuli presented to the hypothesis-testing system were 6-dimensional binary
vectors where every two rows represent a single figure from the stimulus (e.g., rows 1 and 2
encode the size and shape of the first figure in the stimulus). For each consecutive pair of
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rows, position i (for i = 1, 2) was assigned either a 1 or 0 to indicate the binary value on each
dimension (size and shape only took one of two values for each figure). Each system
received a separate copy of the feedback. Four free parameters were varied to simulate the

data (i.e., , γ, λ, and Dslope; see Table 1). The simulation results are shown in Figure 4
(right panel).

6.2.3 Results and discussion—As in previous simulations, the model was a good fit to
the data. As in the human data, the simulated younger and older controls showed stable
performance across all blocks. However, the simulated PD patients suffered proactive
interference: this version of the model made significantly more correct responses in the first
block than in any other block. This occurred primarily because the PD version of the model
had more difficulty both selecting a new rule (lower λ) and switching away from the current
rule (higher γ) than the non-PD versions of the model. Note that the first block in this
experiment is privileged because it is the only block in which subjects are not already
applying a rule when the block begins. Thus, in the first block there is no rule to disengage,
so impaired switching and selection have less effect on performance in the first block than
on later blocks. Control subjects (both old and young) do not have switching or selection
difficulties and therefore show no sign of proactive interference. This good fit to the data
was achieved by varying only four DA-related parameters and further supports the adequacy
of COVIS as a model of DA depletion.

6.3 The effect of positive affect on cognitive flexibility
The following simulation addresses the effects of positive affect on cognitive flexibility
using a category-learning task. The key results are that DA elevations improve explicit rule-
based categorization but have no effect on procedural-learning mediated information-
integration categorization (Nadler et al., 2010).

6.3.1 Experiment—Nadler and her colleagues (2010) asked 87 university students to
listen to music and watch videos that had been shown to induce either a neutral or positive
affect in pilot experiments (as measured using a positive affect scale). Following the mood
induction, the subjects were tested using a positive affect scale (to ensure that the
manipulation worked) and then were trained in either a rule-based or information-integration
categorization task for 320 trials. The stimuli in the categorization task were Gabor discs
varying in spatial frequency and orientation. In the rule-based condition, the optimal strategy
was to ignore the orientation of the discs and apply a rule on frequency (i.e., low frequency
stimuli were in category A and high frequency stimuli were in category B). In the
information-integration condition, the optimal strategy required subjects to integrate the
stimulus-values on the two dimensions at a pre-decisional stage and no simple verbal
strategy yielded high accuracy. The dependent measure was categorization accuracy. As
seen in Figure 5 (top panels), positive affect subjects performed better than neutral affect
subjects in rule-based categorization. However, positive affect did not yield any advantage
over neutral affect in information-integration categorization.

6.3.2 Simulation—The performance of 200 subjects in each group was simulated with the
COVIS model described in Section 4. Each stimulus was randomly generated using the
same distributions (re-scaled to occupy a 100 × 100 grid) as in Nadler et al. (2010). In the
procedural system, the two-dimensional stimuli (frequency, orientation) were used to
activate four radial-basis functions located at coordinates (35, 35), (35, 65), (65, 35), and
(65, 65) with a common variance of 125 (on both dimensions; the covariance was 0). In the
hypothesis-testing system, a rule was selected on each trial and the stimulus value on the
rule-dimension was compared with the rule criterion to obtain the discriminant values (as in
Eq. 2).2 On each trial, a stimulus was selected and processed in each subsystem. Each
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system received a separate copy of the feedback. Only two free parameters were varied to

simulate the data (i.e.,  and λ). The simulation results are shown in Figure 5 (bottom
panels).

6.3.3 Results and discussion—As in previous simulations, the model provided a good
fit to the data. As in the human data, positive affect improved rule-based category learning
but not information-integration category learning. This is because simulated positive affect

subjects had more cortical DA (i.e., higher λ and lower ), which facilitated rule selection
in the hypothesis-testing system and reduced criterial noise. However, cortex plays a limited
role in information-integration categorization, which explains the absence of effect in this
condition. This good fit to the data was achieved by varying only two cortical DA-related
parameters and further supports the adequacy of COVIS as a model of the role of DA in
perceptual categorization.

6.4 Parameter sensitivity analysis
As mentioned above, all parameters were selected using a rough grid search approach.
Although the parameter values used to simulate the datasets presented were not necessarily
optimal, the model’s performance is relatively robust to deviations in exact numerical
values. Specifically, different numerical values of the parameters within a reasonable range
tend to change the performance of the model only slightly. For example, learning rates may
change, but not whether the model learns. Thus, we believe that all of the predictions
derived in this article follow in a necessary fashion from the general architecture of the
model and depend only minimally on our ability to find the optimal set of parameter values.

To verify these observations more formally, we implemented a sensitivity analysis for the
simulation of the Nadler and colleagues (2010) data (i.e., Figure 5). The analysis proceeded
as follows. For each of the 13 parameters listed in Tables 1 and 2 as well as four parameters

described in the text (Equation 10 procedural system noise variance parameter, , and
Equation 12 learning rate parameters αw, βw, and γw), we successively changed the
parameter estimate from the value used to generate the predictions shown in the bottom row
of Figure 5 by +10% and −10%. After each change, we simulated the behavior of the model
in the same conditions used to generate the bottom row of Figure 5. Next, after each new
simulation (and for each condition and categorization task of Nadler et al., 2010), we
computed the mean root squared error (MRSE) between the simulated learning curve shown
in the bottom row of Figure 5 and the learning curve produced by the new version of the
model. Across all parameter adjustments (34), and for every categorization task (RB and II)
and condition (positive and neutral affect), the average MRSE was 0.94%, suggesting that
the learning performance deviations are very slight with small changes in each parameter.
To further corroborate this observation, we re-ran the above analysis modifying each
parameter by ±100%. The average MRSE across all simulations with this more extreme
parameter manipulation was 2.61%. These results suggest that, as long as the parameters are
in a reasonable range, no single parameter greatly affects the overall learning performance
of the model.

7 General Discussion
This article proposed a formal account of a variety of effects of DA imbalances on cognitive
processing. The computational model was based on the COVIS model of categorization
(Ashby et al., 1998), and both DA depletion and DA elevation was accounted for by

2The criterion value for each rule was set to the mean value of the stimulus set on the rule dimension.
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increasing or decreasing DA-related parameters. The effect of DA depletion was captured by
simulating the data of young adults, older adults, and Parkinson’s disease patients in a
reversal learning task (Cools et al., 2006) and the OMO task (Flower & Robertson, 1985).
DA elevation was captured by simulating the effect of positive affect in perceptual
categorization (Nadler et al., 2010). The remainder of this article discusses alternative
models of DA fluctuations and theoretical implications of the present work.

7.1 Other computational models of dopamine imbalances
Very few computational cognitive neuroscience models of DA imbalances have been
proposed. In one of the few, Monchi, Taylor, and Dagher (2000) simulated the effects of DA
imbalances to account for the performance of PD patients and schizophrenics in a variety of
working memory tasks. Their model includes three basal ganglia-thalamocortical loops: two
through the prefrontal cortex (one for spatial information and the other for object
information), and one through the anterior cingulate gyrus (for strategy selection). Monchi et
al. modeled the reduced DA innervation of the striatum in PD by reducing the connection
strengths in the model between cortex and the caudate nucleus, and between the caudate
nucleus and the internal segment of the globus pallidus. In contrst, they modeled the effects
of schizophrenia by reducing the gain of the units in nucleus accumbens. The model was
then used to simulate performance in a delayed response task, a delayed match-to-sample
task, and the WCST. In all of these, PD deficits were accounted for by improper encoding of
the stimuli in working memory, and schizophrenia deficits were accounted for by a
difficulty in selecting the appropriate response strategy.

An alternative model was proposed by Frank (2005) to explain cognitive deficits related to
DA depletion in PD patients. This model includes basal ganglia-thalamocortical loops with
an emphasis on a more biologically detailed model of the basal ganglia that included both
the direct and indirect pathways. In Frank’s model, PD is simulated by lesioning SNpc DA
cells to reduce the range of DA in the basal ganglia. This reduction in DA’s dynamic range
reduces activation in the direct pathway (through D1 receptors) and amplifies activation in
the indirect pathway (through D2 receptors). In addition, DA plays the role of the reward
signal in synaptic plasticity. This model has been used to simulate a probabilistic
classification task and a probabilistic reversal learning task. In both tasks, PD deficits were
explained by abnormal direct/indirect pathway interactions.

More recently, Moustafa and Gluck (2010, 2011) proposed a new computational model of
DA imbalance. Their model is a three-layer feed-forward connectionist network where the
input activates the prefrontal cortex, which in turn activates the striatum to produce a
response. Similar to Frank (2005), the role of phasic DA is to facilitate synaptic plasticity
while the role of tonic DA is to modulate neural activation. However, the Moustafa and
Gluck model allows for differential effects of DA in the prefrontal cortex and striatum by
varying the slope of the transfer functions and learning rates separately for neurons in these
two regions. In Mustafa and Gluck (2011), a model of the hippocampus was added to
preprocess the stimuli. PD is simulated by reducing the four DA-related parameters
(learning and gain in the PFC and striatum), while schizophrenia is simulated by damaging
the hippocampus. The model has been used to simulate instrumental conditioning,
probabilistic classification, and probabilistic reversal learning tasks. PD impairments in
these tasks were explained by noisy activation and learning while impairments related to
schizophrenia were explained by reduced stimulus-stimulus representational learning.

7.2 Theoretical implications
One of the main contributions of the COVIS simulation of DA imbalance is that it brings
into focus the different roles of DA in different brain regions. In the Monchi et al. (2000)
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and Frank (2005) models, the role of DA is restricted to producing abnormal dynamics in
the basal ganglia. Moustafa and Gluck (2010, 2011) were the first to independently simulate
the role of DA in the prefrontal cortex and striatum, but the role of DA was the same in both
regions: activation gain and learning rate. In COVIS, DA can be independently manipulated
in the prefrontal cortex and basal ganglia, but it also has a different role in each region. In
the prefrontal cortex, DA facilitates rule selection and increases signal gain (reducing noise).
In the basal ganglia, DA facilitates rule switching and synaptic plasticity. These differential
roles of DA in the prefrontal cortex and the basal ganglia not only allow for the explanation
of a wider range of tasks and phenomena, but also allow for a more fine-grained account of
the effects of DA level in each task. For instance, COVIS predicts that in rule-based
categorization tasks the primary behavioral effect of DA elevation/depression in the basal
ganglia should be to facilitate/impair rule switching (respectively). In information-
integration tasks, however, DA fluctuations in the basal ganglia should mostly affect
synaptic plasticity (positively or negatively). Previous modeling of DA imbalances did not
allow for this level of specificity. In addition, none of the previous models of DA imbalance
were used to account for DA elevations, such as those occurring with positive affect. Note
that the COVIS dual-process approach successfully modeled reversal learning without a
detailed model of the indirect pathway of the basal ganglia.

7.3 Limitation and future work
While COVIS is successful at accounting for many behavioral phenomena observed
following various DA imbalances, it cannot yet account for the differential behavioral
effects of dopaminergic medication (e.g., Cools et al., 2006; Frank et al., 2004; Gotham et
al., 1988). Two of the models reviewed in Section 7.1 have proposed a computational
account of the effects of dopaminergic medication (Frank, 2005; Moustafa & Gluck, 2010).
We have not made a similar attempt with COVIS for two different reasons. First, Cools et al.
(2006) report that different dopaminergic medications may have different behavioral effects.
For instance, post hoc analyses suggest that only patients treated with pramipexole were
impaired in reversal learning. Most papers where PD patients are tested ON medication
report which medications appear in their samples, but do not delineate the ON medication
patients according to drug. Hence, it would be difficult to simulate the exact behavioral
effects of different PD-related drugs within a particular sample of patients. Second, the issue
of medication is further complicated by the observation that dopaminergic treatments have
different effects depending on the progression of the disease and this interaction very well
could be drug dependent. Thus, while the variable effects of medication on PD performance
were not addressed by the current computational model, future work with COVIS could
attempt to investigate the differential effects of PD medications when these become reliably
reported and controlled in published articles.

Second, it has been hypothesized that schizophrenia may also be characterized by DA
imbalances (e.g., Cohen & Servan-Schreiber, 1992). As such, the Monchi et al. (2000) and
Mustafa and Gluck (2011) models of DA imbalance have also tried to address
schizophrenia. COVIS does not include a detailed model of the hippocampus; however, we
would adopt an approach similar to other models that manipulate DA (e.g., Cohen &
Servan-Schreiber, 1992; Monchi et al., 2000) to reflect the particular imbalance of DA in
schizophrenic patients. For example, DA in the head of the caudate nucleus and the
prefrontal cortex could be manipulated. Future work should allow us to determine whether
these adjustments to DA parameters in COVIS would produce cognitive deficits similar to
those observed in schizophrenia.

Finally, the simulations included in this manuscript were performed using a hybrid
symbolic-connectionist implementation of COVIS. More biologically detailed versions of
both the procedural and hypothesis-testing systems of COVIS have been implemented and
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used to simulate both single-unit recording and behavioral data (Ashby, Ell, Valentin,
Casale, 2005; Ashby et al., 2007). However, only behavioral data were simulated in this
article. Ashby and Helie (2011) argued that, while additional biological details can almost
always be added to a model, one should only include details that will be tested against
empirical data (i.e., the Simplicity Heuristic). Hence, because no spike train or single-cell
recordings were simulated, the hybrid symbolic-connectionist implementation of COVIS
used in this research was appropriate. Even so, future modeling work should focus on
neuroscience data where DA levels are directly controlled, and this research should use a
more biologically detailed version of COVIS.
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Figure 1.
A schematic illustrating the architecture of the COVIS procedural system. (From Helie et
al., 2011.)
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Figure 2.
Model used to relate the amount of dopamine (DA) released as a function of the reward
prediction error (RPE).
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Figure 3.
Human (gray bars) and simulation (black bars) data in the reversal learning task of Cools et
al. (2006).
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Figure 4.
Human (left panel) and simulation (right panel) data in the OMO task of Flowers &
Robertson (1985).
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Figure 5.
Human and simulation data in the perceptual categorization task of Nadler et al. (2010). The
top panels show human results while the bottom panels show the simulation results. RB =
Rule-based (verbalizable); II = Information-integration (non-verbalizable).
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Table 2

Task-related parameters in COVIS

Parameters Cools et al. (2006) Flowers & Robertson (1985) Nadler et al. (2010)

ΔC 0.11 0.09 0.04

ΔE 0.43 0.05 0.01

θNMDA 0.057 0.057 0.150

θAMPA 0.0001 0.0001 0.0010

ΔOC 0.05 0.05 0.04

ΔOE 0.001 0.001 0.010
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