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Abstract
Latent state-trait (LST) analysis is frequently applied in psychological research to determine the
degree to which observed scores reflect stable person-specific effects, effects of situations and/or
person-situation interactions, and random measurement error. Most LST applications use multiple
repeatedly measured observed variables as indicators of latent trait and latent state residual factors.
In practice, such indicators often show shared indicator-specific (or methods) variance over time.
In this article, the authors compare four approaches to account for such method effects in LST
models and discuss the strengths and weaknesses of each approach based on theoretical
considerations, simulations, and applications to actual data sets. The simulation study revealed that
the LST model with indicator-specific traits (Eid, 1996) and the LST model with M − 1 correlated
method factors (Eid, Schneider, & Schwenkmezger, 1999) performed well, whereas the model
with M orthogonal method factors used in the early work of Steyer, Ferring, and Schmitt (1992)
and the correlated uniqueness approach (Kenny, 1976) showed limitations under conditions of
either low or high method-specificity. Recommendations for the choice of an appropriate model
are provided.
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Many theories in psychology are concerned with the distinction of temporally stable versus
variable (occasion-specific) components of behavior. As Hertzog and Nesselroade (1987)
pointed out, “Generally it is certainly the case that most psychological attributes will neither
be, strictly speaking, traits or states. That is, attributes can have both trait and state
components” (p. 95). In the late 1980s and early ‘90s, the first attempts were made to use
latent variable techniques such as structural equation modeling (SEM) to analyze the degree
to which psychological measurements reflect stable attributes, occasion-specific
fluctuations, and random measurement error (e.g., Hertzog & Nesselroade, 1987; Ormel &
Schaufeli, 1991).
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Latent state-trait (LST) theory (Steyer, Majcen, Schwenkmezger, & Buchner, 1989; Steyer
& Schmitt, 1990; Steyer, Ferring, & Schmitt, 1992; Steyer, Schmitt, & Eid, 1999) provides a
powerful theoretical framework for defining latent trait, latent state residual, and
measurement error variables. In contrast to traditional factor analytic approaches, LST
theory explicitly defines these latent variables as conditional expectations of observed
variables given persons and situations or as functions of such conditional expectations (for
details see Appendix A as well as Steyer & Schmitt, 1990; Steyer et al., 1992, 1999). As a
consequence, LST theory provides well-defined latent variables that have a clear and
unambiguous interpretation, making this a very strong psychometric theory for analyzing
stable, occasion-specific, and random error components of psychological measurements.

Since the early theoretical work by Steyer and colleagues, there has been an ever growing
interest in LST theory and models. Models of LST theory are widely applied in various
fields of psychology, including research in personality (e.g., Deinzer et al., 1995; Schmitt,
Gollwitzer, Maes, & Arbach, 2005; Moskowitz & Zuroff, 2004; Vautier, 2004), emotion
(e.g., Windle & Dumenci, 1998), subjective well-being (e.g., Eid & Diener, 2004), job
satisfaction (Dormann, Fay, Zapf, & Frese, 2006), marketing (Baumgartner & Steenkamp,
2006), psychoneuroendocrinology (Kirschbaum, Steyer, Eid, Patalla, Schwenkmezger, &
Hellhammer, 1990), psychophysiology (e.g., Hagemann, Hewig, Seifert, Naumann, &
Bartussek, 2005), and psychopathology (King, Molina, & Chassin, 2008). Furthermore, the
past 20 years have witnessed a dramatic increase in the development, testing, and extension
of LST models in such varying contexts as multiconstruct modeling (Dumenci & Windle,
1998; Eid, Notz, Steyer, & Schwenkmezger, 1994; Steyer, Schwenkmezger, & Auer, 1990),
categorical data analysis (Eid, 1995; 1996; Eid & Hoffmann, 1998), latent class analysis
(Eid, 2007; Eid & Langeheine, 1999), hierarchical LST models (Schermelleh-Engel, Keith,
Moosbrugger, & Hodapp, 2004), mixture distribution analysis (Courvoisier, Eid, &
Nussbeck, 2007), autoregressive models (Cole, Martin, & Steiger, 2005; Ciesla, Cole, &
Steiger, 2007; Kenny & Zautra, 1995; Steyer & Schmitt, 1994), latent change models (Eid &
Hoffmann, 1998), latent growth curve analysis (Tisak & Tisak, 2000), person-level LST
analysis (Hamaker, Nesselroade, & Molenaar, 2007), and multimethod measurement
(Courvoisier, 2006; Courvoisier, Nussbeck, Eid, Geiser, & Cole, 2008).

In the present article, our focus is on modeling method effects in LST models. Schmitt
(2006) defined a psychological assessment method as “a set containing a variety of
instruments and procedures that uncover psychological attributes of objects and transform
these attributes into symbols that can be processed” (p. 17). Method effects may arise due to
the use of, for example, different items, tests, raters, or even different situations or occasions
of measurement that contain specific components not shared with other indicators of the
same construct (see Podsakoff, MacKenzie, Lee, & Podsakoff [2003] for a detailed
overview of sources of method variance in the behavioral sciences).

The present study extends on the work by LaGrange and Cole (2008) who recently
compared different approaches to modeling method effects in LST models. As in LaGrange
and Cole’s (2008) study, our focus here is on multiple indicator LST models (Steyer et al.,
1992; 1999). In contrast to single indicator LST models (Kenny & Zautra, 1995, 2001),
multiple indicator LST models make use of multiple repeatedly administered scales or items
to measure latent trait, latent state residual, and measurement error variables. Method effects
are typically present in multiple indicator applications due to the repeated administration of
the same indicators over time (Cole & Maxwell, 2003). The purpose of this article is to (1)
provide a theoretical review of different approaches for handling method effects in LST
analyses, (2) examine the performance of these approaches based on a simulation study and
applications to real data, and (3) discuss advantages and limitations based on the theoretical
considerations and empirical findings of this study.
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In contrast to Courvoisier et al. (Courvoisier, 2006; Courvoisier et al., 2008) who considered
the case of multiple methods (e.g., raters) each of which provide multiple indicators at each
time point, our main focus here is on the more common situation in which one either studies
(1) multiple indicators pertaining to just a single method or rater over time (e.g., multiple
repeatedly administered self-report items), or (2) different methods (e.g., different raters)
provide just a single indicator at each time point. Such a design is used in the vast majority
of applications of LST models. (Later on, we will return to the advantages of using multiple
indicators for each method based on an application.) As we explain in detail below, even in
LST designs that use just a single method, method effects occur routinely due to having
multiple repeatedly measured indicators.

The LST Model With No Method Factors
The starting point for a multiple indicator LST analysis is a set of repeatedly administered
observed indicator variables Yit (i = indicator, i = 1,…, m; t = time point, t = 1, …, n) that
pertain to the same construct (e.g., anxiety, subjective well-being, extraversion etc.)1.
Indicators for a construct in an LST model could, for example, be different items, scale
scores, or physiological measures, but also scores obtained from different raters.2 In the
most simple LST model, each observed variable measures an (occasion-unspecific) latent
trait factor T and an (occasion-specific) latent state residual factor SRt (e.g., Eid & Diener,
2004):

(1)

where λit represents a trait factor loading, δit represents a state residual factor loading, εit is
an error variable, and all variables are in deviation form (i.e., mean-centered). The latent
trait factor T represents the time-unspecific (stable) component and is by definition
uncorrelated with the latent state residual factors SRt.3 The factors SRt reflect the effects of
the situation as well as person × situation interactions (Steyer et al., 1992, 1999). The error
variable εit is by definition uncorrelated with T and all SRt (Steyer et al., 1992). In line with
Steyer et al. (1999) we additionally make the assumption that (1) all latent state residual
factors SRt are uncorrelated with each other4 and (2) all error variables are uncorrelated with
each other. There are no method factors in this model. Hence, we refer to this model as the
“no method factor” (NM) model. Figure 1 shows a path diagram of the NM model for three
observed variables measured on three time points.

Given the uncorrelatedness of trait, state residual, and error variables, the following variance
decomposition holds for the observed variables:

(2)

This additive variance decomposition allows defining three coefficients of determination
that are of key interest to virtually all LST applications: the consistency (CO), occasion-
specificity (OSpe), and reliability (Rel) coefficients (Steyer et al., 1999). CO indicates to
which degree individual differences are determined by stable person-specific effects:

1Details on the exact definition of the latent variables in LST theory are provided in Appendix A.
2In the classical LST model, the observed variables are assumed to be continuous (e.g., test or questionnaire scores, physiological
measurements on a continuous scale etc.), although Eid (1995, 1996; Eid & Hoffmann, 1998) has shown how to define LST models
for ordered categorical indicators. For the sake of simplicity, we will assume continuous indicators throughout this article.
3The uncorrelatedness of T and SRt follows from the definition of the SRt factors as residuals with respect to T. See Appendix A as
well as Steyer & Schmitt (1990) for details.
4Note that the assumption of uncorrelated SRt factors can be relaxed. Steyer and Schmitt (1994) as well as Cole et al. (2005) discuss
LST models with autoregressive components that do not make the assumption of uncorrelated state residual variables.
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(3)

The OSpe coefficient indicates to which degree individual differences are determined by the
situation and/or person × situation interactions:

(4)

The reliability coefficient indicates the degree to which observed individual differences are
due to reliable sources of variances (rather than measurement error) and therefore equals the
sum of consistency and occasion-specificity coefficient:

(5)

The consistency, occasion-specificity, and (1 – reliability) coefficients sum up to 1, that is,
CO(Yit) + OSpe(Yit) + [1 − Rel(Yit)] = 1.

Substantively, the coefficients of consistency and occasion-specificity are useful to study the
degree of stability versus situation-dependence of psychological measurements. For
example, Windle and Dumenci (1998) examined trait and state residual components of
depressed mood among mothers and their adolescent children and found that depressed
mood was both stable and situation-dependent for both reporters. After removing variance
due to occasion-specificity, the authors demonstrated a clearer link between maternal and
adolescent depression than had previously been established. In sum, the estimation of these
variance components is the main focus of most studies that employ LST models, and these
coefficients are also of key interest to the present study on method effects. In particular, we
are interested in how reliably these coefficients are estimated in different approaches for
modeling method effects.

Method Effects in LST Models
The NM model assumes that the variances and covariances of the observed variables
(indicators) are fully explained by the latent trait factors, state residual factors, and error
variables. Error variables are assumed to be uncorrelated. This implies that indicators may
not share idiosyncratic components with themselves over time. However, in practice, most
indicators contain a unique (method-specific) component that may not be shared with the
remaining indicators (Steyer et al., 1992; Cole et al., 2005). As a consequence, identical
indicators may be more highly correlated with themselves over time than with other
indicators (Cole & Maxwell, 2003).

In LST analyses, method effects may be present for at least two reasons. First, if
questionnaire items serve as indicators, these items may, for example, differ in wording
(e.g., some items may be positively, others negatively worded) or content. Slight differences
in item content are usually desired features of a scale in order to achieve greater construct
validity of that measure (Cronbach, 1990). Second, even stronger indicator-specific effects
must be expected if different indicators of the same construct were obtained from distinct
methods or raters (e.g., self- vs. other ratings; Geiser, Eid, Nussbeck, Courvoisier, & Cole,
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2010). The use of multiple, possibly very different methods to measure the constructs of
interest has been strongly advocated since Campbell and Fiske’s (1959) seminal article on
the multitrait-multimethod (MTMM) matrix (Eid & Diener, 2006). As Cole and colleagues
(2007) note, “In an ideal world, all researchers would use at least three (and preferably
more) completely orthogonal methods to measure all constructs in every study” (p. 382).
When different methods are used as indicators, the convergent validity of such methods will
often be rather low (e.g., Fiske & Campbell, 1992), and, as shown below, this must be taken
into account when conducting an LST analysis in order to avoid bias in parameter
estimation.

In sum, method effects are a ubiquitous phenomenon in longitudinal research, whether
different indicators represent different items, raters, or other types of methods. The issue of
method effects has been extensively discussed in the general literature in the context of
longitudinal structural equation models (e.g., Cole & Maxwell, 2003; Jöreskog, 1979a, b;
Marsh & Grayson, 1995; Raffalovich & Bohrnstedt, 1987; Sörbom, 1975; Tisak & Tisak,
2000). Although LST models with method factors were presented early in the history of LST
theory (Steyer et al., 1992), the problem of method effects has not received much explicit
attention in the context of LST analyses. Most LST studies have treated such effects as a
nuisance or “side-effect”, and various authors have addressed this problem in very different
ways (see Appendix B for an overview of applications of LST models and the type of
approaches used in these studies to deal with method effects). The only paper we know of
that has explicitly studied the performance of different approaches to modeling method
effects in the context of LST analysis is a recent study by LaGrange and Cole (2008). Before
we summarize LaGrange and Cole’s findings, we discuss different approaches to modeling
method effects in LST analyses.

Approaches for Addressing Method Effects in LST Models
The Correlated Uniqueness Approach

A frequently used way to account for shared method variance in longitudinal models is to
allow the error variables of the same indicator to correlate over time (so-called auto-
correlated errors or correlated uniquenesses [CU]; see Figure 2). This approach has been
proposed early in the literature on longitudinal structural equation models (e.g., Jöreskog,
1979a, b; Sörbom, 1975) and is known as CU approach in the context of multitrait-
multimethod (MTMM) analysis (Kenny, 1976; Marsh & Grayson, 1995). Correlated error
variables of the same indicators account for the higher correlations of identical indicators
over time when shared indicator-specific variance is present. This approach to modeling
method effects has been applied to LST analyses, for example, by Steyer et al. (1990) as
well as Yasuda, Lawrenz, van Whitlock, Lubin, and Lei (2004).

Although straightforward, the CU approach has a number of theoretical and practical
limitations. One theoretical limitation is that, as pointed out by a reviewer of this paper, an
LST model with added correlations between the error variables can no longer be considered
an LST model according to Steyer et al.’s theoretical LST framework. In the presence of
correlated residuals, the initially well-defined latent variables in LST models lose their clear
meaning, because person-specific method effects become confounded with random
measurement error. As explained in more detail in Appendix A, this is at odds with the
fundamental theoretical concepts of LST theory (Steyer et al., 1992, 1999). A practical
consequence is that CU models typically lead to an underestimation of the reliabilities of the
indicators when method effects are present (e.g., Eid, Lischetzke, Nussbeck, & Trierweiler,
2003), because they do not consider method effects as part of the true score (systematic)
variance of a variable, but confound reliable person-specific method effects with random

Geiser and Lockhart Page 5

Psychol Methods. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



measurement error. In addition, method variance cannot be expressed as a separate variance
component.

As pointed out by Lance, Noble, and Scullen (2001), another problem is that CU models
become less and less parsimonious as the number of indicators increases because more and
more error correlations have to be estimated. Finally, an important limitation of the CU
approach is that it assumes method effects to be orthogonal. This assumption is violated if
two indicators share method effects over and above one or more other indicators. This will
often be the case when structurally different methods will be used as indicators (e.g., other
ratings may be more similar to each other than to self-ratings). Conway et al. (2004) showed
that application of the CU approach can result in biased estimates of convergent and
discriminant validity in MTMM models when methods are actually correlated.

In sum, the CU approach treats method effects as a mere nuisance and part of the “error”.
From a psychometric point of view, however, it seems to be desirable to separate all reliable
sources of variance from random measurement error, rather than treating method effects as
part of the error variable. In addition, in many applications, the assumption of orthogonal
method effects may not be appropriate theoretically. Most importantly, an LST model with
correlated residuals is, strictly speaking, not a “true” LST model from a theoretical
perspective. Despite these limitations, the CU approach continues to be widely used in
longitudinal studies (Cole et al., 2007; Conway et al., 2004) and recent methodological work
has advocated its use in longitudinal research (Cole & Maxwell, 2003), including LST
modeling (LaGrange & Cole, 2008).

The Orthogonal Method Factor Approach
Steyer et al. (1992) had originally suggested accounting for method effects in LST models
by specifying as many method factors as there are different indicators (a method factor for
each indicator; see Figure 3), thereby extending the basic LST measurement equation as
follows:

(8)

where Mi is a method factor common to all indicators with the same index i and γit is the
method factor loading. The method factors are assumed to be uncorrelated (“orthogonal
methods”, OM) with each other and with all other latent and error variables in the model.
The factors Mi have also been interpreted as “specific traits”, as they represent the stable
part of a specific indicator that is unique to that indicator and not shared with the remaining
indicators (Steyer et al., 1992).

In contrast to the CU approach, the model in Equation 8 separates stable indicator-specific
(methods) effects from random error. It is more restrictive (and therefore more
parsimonious) than the CU model for I > 3. The OM model does not, however, solve the
problem of potentially correlated method effects, as it also assumes method effects to be
orthogonal5.

More importantly, the OM model suffers from similar theoretical limitations as the CU
model. Although the model had originally been presented by Steyer et al. (1992), strictly
speaking, it cannot be considered a “true” LST model according to Steyer et al.’s (1992)

5We do not consider a model with I correlated method factors here given that such models have been shown to suffer from severe
conceptual problems, as well as difficulties in identification, estimation, and interpretation in the context of MTMM and LST analyses
(see, e.g., Conway et al., 2004; Grayson & Marsh, 1994; Kenny & Kashy, 1992; LaGrange & Cole, 2008; Marsh, 1989; Marsh &
Bailey, 1991).
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LST framework6. The reason is that this framework requires all latent variables to be
explicitly defined in terms of conditional expectations or well-defined functions of
conditional expectations of observed variables (see Appendix A). The method factors Mi,
however, cannot be defined based on the conditional expectations considered in LST theory
(for details see Appendix A as well as Eid, 1996). As a first consequence, the meaning of
these factors is not entirely clear (i.e., are they residuals with regard to the general trait
factor? Do they represent method effects or specific traits?) and their presence in an LST
model also renders the meaning of the remaining, formerly well-defined latent variables
ambiguous.

A second consequence is that there is no solid theoretical basis for assuming the method
factors Mi to be uncorrelated with each other and with the remaining factors in the model.
This assumption is made merely for convenience and to enhance the identification status of
the model, but there are no clear psychometric reasons why the factors should be
uncorrelated. In addition to these conceptual problems, the OM model often leads to an
overfactorization in practical applications (i.e., at least one of the method factors often has
no significant loadings or variance; e.g., Eid, 2000; Steyer & Schmitt, 1994). This issue may
be related to the weak psychometric foundation of these factors. We consider this model
here despite these limitations given that, to date, it is the most frequently used approach to
deal with method effects in LST analyses (29.09 % of applications that we found in which
method effects were explicitly modeled used this approach).

The M − 1 Approach
Given the theoretical and empirical issues with the OM approach, Eid, Schneider, and
Schwenkmezger (1999; Eid, 2000) developed an approach that selects a “gold standard” or
reference indicator. The latent trait factor pertaining to the reference indicator is chosen as
comparison standard, so that for this indicator, no method factor is included. Hence, the
model specifies one method factor less than methods/indicators used in the study and will
therefore be referred to as M − 1 approach (see Figure 4). Stable method effects in the
remaining indicators are examined relative to the reference indicator. Therefore, all non-
reference indicators load onto (1) the reference trait factor and (2) a residual method factor.
All method factors can be correlated, but method factors are by definition uncorrelated with
the reference trait factor. Let r denote the reference indicator. Then the M − 1 model can be
written as follows:

(9)

where I (i ≠ r) denotes an indicator variable, which has the value 1 if i ≠ r and the zero if i =
r. We indicate the reference trait factor as Tr to make clear that this factor is not a common
trait factor in this approach, but is specific to the reference indicator. TRi indicates the
method factor for a non-reference indicator i, i ≠ r. TRi here stands for “trait residual for
indicator i”, as the method factors in this model are defined as regression residuals with
regard to the reference trait factor Tr (see Appendix A as well as Eid et al. [1999] for the
exact mathematical definitions). We chose the label TRi (rather than Mi) to make the
meaning of this method factor as a trait residual clearer and to emphasize that these method
factors differ from the method factors Mi in the OM approach.

Eid et al.’s (1999) approach has the advantage that all factors in this approach are well-
defined latent variables that are in line with the core framework of LST theory: The method
factors are defined as linear regression residuals with respect to a reference latent trait

6The OM aproach is no longer supported by Steyer and colleagues. Instead, these authors now favor models in which method effects
are constructively defined as latent difference variables (Pohl et al., 2008; Pohl & Steyer, 2010).
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variable and therefore have a clear theoretical status and interpretation: They represent that
part of the trait variance in the non-reference indicators that is not shared with the trait
variance in the reference indicator. Further, due to the consideration of just M − 1 method
factors, an overfactorization is avoided. In addition, this approach addresses the issue of
potentially correlated method effects as it allows method factors to be correlated.

A limitation of the M − 1 approach is that it requires the selection of a reference indicator
that serves as the comparison standard (the first indicator in Figure 4). The selection of a
reference or gold-standard indicator may not always be easy, particularly when all items or
scales are conceived of as equivalent (or interchangeable). Furthermore, the specification
with a reference indicator implies that the latent trait factor in the model becomes specific to
the first indicator. That is, the latent trait factor is now identical to the latent trait component
pertaining to the first indicator and no longer reflects a common latent trait factor (see
Appendix A). This implies that the trait factor is “method-specific”, that is, it contains the
stable method variance pertaining to the reference variable (Geiser et al., 2008). The
“method effects” (or “specific trait effects”) are defined relative to a reference trait variable.
We return to these issues in the discussion where we provide detailed guidelines as to the
choice of a reference indicator/method when using this approach in LST analyses.

The Indicator-Specific Trait Factor Approach
The indicator-specific trait (IT) factor approach (see Figure 5) takes the stable idiosyncratic
effects of each variable into account by allowing each variable to load onto its own
(indicator-specific) trait factor Ti (Eid, 1996; Marsh & Grayson, 1994; Steyer et al., 1999;
for applications see Bonnefon et al., 2007; Eid & Diener, 2004):

(10)

The additional index i in Ti makes clear that the trait variable is no longer a general trait
factor, but is specific to indicator i in this model. All Ti factors can be correlated. The IT
model has several advantages. First, as in the M − 1 approach, all latent variables in the IT
model can be constructively defined based on the fundamental concepts of LST theory (see
Appendix A). Second, neither correlated errors nor additional method factors need to be
specified. The degree of method-specificity is reflected in the magnitude of the correlations
among the IT factors. In the case of perfect unidimensionality of traits (no stable method
effects), the population correlations of the IT factors would be equal to 1 and the model
would reduce to the NM model (the LST model with a general trait factor and no method
factors, Figure 1). Low correlations among the IT factors indicate strong method effects
(i.e., the stable components of each indicator are only to a small degree shared with the other
indicators). As in the M − 1 approach, the trait factors are indicator-specific and therefore
contain the method-specific effects of their respective indicators7.

The model with IT factors most directly reflects the idea that different indicators may
represent different traits rather than the exact same trait. This makes this model attractive
especially in cases where a researcher would a priori assume that indicators represent

7One might be tempted to extend the model to separate “common” trait effects from “method-specific” effects by specifying a second
order factor on the basis of the indicator-specific trait factors. Such a model has been discussed by Marsh and Grayson (1994) and
applied by Schmukle and Egloff (2005). However, Eid (1996) has shown that this extended model cannot be formulated on the basis
of the random experiment considered in LST theory. As a consequence, the second order factor as well as the first order residual
factors in this model are not well-defined latent variables and have no clear psychometric meaning. We therefore do not consider such
a model here. A more well-defined approach could for example define a common trait factor as the average of the indicator-specific
latent trait variables. A related approach has been discussed by Pohl and Steyer (2010) in the context of MTMM analyses. However,
this is not the central focus of the present paper and we therefore do not consider this extension here.
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distinct traits or facets of a broadly defined construct or when different indicators represent
different methods or raters each of which may capture different aspects of a construct.
Although allowing for IT factors, the model still assumes that different indicators measured
at the same measurement occasion share the same occasion-specific influences, an
assumption that may or may not be reasonable in practice—as is demonstrated in one of the
empirical applications below.

Differences in the Definition of CO: Common, Unique, and Total Consistency
An important difference between the four models concerns differences in the types of
consistency coefficients available in each model. Estimates of consistency are among the
key parameters of interest in an LST analysis, as they inform us about the degree to which
indicators measure stable aspects of behavior (as opposed to occasion-specific influences).
Hence, it is useful for researchers to know which types of consistency coefficients are
available in which approach and how these are correctly interpreted.

For LST analyses in general—and for the purpose of the present study in particular—it is
useful to consider three different types of consistency coefficients: common consistency,
unique consistency, and total consistency8. Following Steyer et al. (1992), we define
common consistency (CCO) as that part of the variance of an indicator that is stable over
time and shared across indicators. We define unique consistency (UCO) as that part of the
variance of an indicator that is stable over time, but not shared with other indicators9 or a
reference indicator. Finally, we define total consistency (TCO) as the sum of CCO and
UCO. Hence, TCO represents the total stable part of the variance of an indicator.

One aspect in the comparison of different approaches is to which extent (and in which way)
they allow defining and estimating CCO, UCO, and TCO. This comparison is of interest
because it (1) sheds more light on conceptual differences between the four approaches in
general and (2) shows that the models differ in the composition and meaning of these
coefficients as explained below.

The bottom portion of Table 1 shows the properties of these three coefficients for each
model. In the NM model, only CCO can be defined, as the model assumes that indicators are
homogeneous and that there are no stable method effects over time. Hence, there are no
method factors, and CCO = TCO in this model. Note that both coefficients might be biased
in the NM model in practice if stable indicator-specific method effects are actually present,
because the NM model does not account for these effects.

The CU approach allows defining CCO, but not UCO (and consequently not TCO). The
reason is that in this model, stable method effects are reflected in error correlations and are
not represented by latent method factors. Hence, no variance component for unique
consistency can be defined and the total consistency of an indicator cannot be estimated.
Another consequence is that the reliability of an indicator will be underestimated in the CU
model whenever stable method effects are present, because UCO as a reliable source of
variance is not separated from error. The underestimation of the reliability will increase as
the amount of stable method variance increases, because more and more reliable variance is
treated as part of the error.

8It should be noted that, as a consequence of the fact that only the NM, M − 1, and IT models are LST models according Steyer et
al.’s (1992) framework, in a strict sense, the different types of consistency coefficients presented here have a clear meaning only in
these models, but not in the CU and OM models.
9The UCO coefficient has also been referred to as method-specificity coefficient in the LST literature (e.g., Steyer et al., 1992; Eid et
al., 1999). We prefer the term unique consistency coefficient because (1) this label makes clear that this variance component reflects
part of the stable variance of an indicator and (2) occasion-specific (i.e., non-stable) method effects are not captured by this
coefficient.
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The OM approach allows calculating all three types of consistency coefficients:

(11)

(12)

(13)

Eid et al.’s (1999)M − 1 approach also allows defining all three types of consistency
coefficients. However, these are defined differently and two of them have a different
meaning than the corresponding coefficients in the OM approach. We therefore indicate
these coefficients with an asterisk (*) to make clear that they differ conceptually from the
coefficients in Equations 11–13:

(14)

(15)

(16)

CCO* indicates the proportion of variance of an indicator that is explained by the reference
trait factor Tr (rather than by a common trait factor as in the OM approach). For reference
indicators, this coefficient equals the total consistency (see Equation 16), because there is no
method factor for these indicators. UCO* indicates that part of the stable variance of an
indicator that is not shared with the stable variance of the reference indicators. This
coefficient is only defined for non-reference indicators. The total consistency, TCO*, has the
same meaning as (and is thus comparable to) TCO in the OM approach: it represents the
total proportion of stable indicator variance.

In the IT model, CCO and UCO cannot be defined, as this model neither contains common
trait factors nor method factors. Hence, only TCO can be estimated, which, in this model, is
given by:

(17)

The definition of OSpe does not differ between the approaches. Table 1 summarizes key
properties of the four approaches.
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Importance of Comparing Different Approaches
It is well-known from the literature on MTMM analysis (e.g., Kenny & Kashy, 1992; Marsh,
1989; Widaman, 1985) that there are theoretical differences between different approaches to
modeling method effects (Cole et al., 2007; Geiser, Eid, & Nussbeck, 2008; Geiser, Eid,
West, Lischetzke, & Nussbeck, 2010; Pohl, Steyer, & Kraus, 2008). Not all models lead to
meaningful and interpretable results in all applications (Marsh, 1989). Therefore, it is critical
that theoretical differences between models be taken into account when selecting a model
(Eid et al., 2008). In addition, research on the performance of confirmatory factor models for
MTMM data has shown that models with method factors may show serious problems in
convergence, estimation, and interpretation (Marsh, 1989; Marsh & Bailey, 1991). LST
models as such are complex latent variable models in which each observed variable loads
onto two factors. Adding additional components (e.g., method factors) to the model makes
the model even more complex and may lead to additional complications in estimation and
interpretation. Furthermore, different approaches may perform differently under different
conditions (e.g., small versus large sample sizes; high vs. low method-specificity).
Knowledge about such differences can increase the odds that an approach will perform well
in a particular application and can therefore help researchers to successfully analyze their
data. This is especially true given that many LST applications use relatively small sample
sizes (see Appendix B). Finally, to our knowledge, it has not yet been studied to which
extent different approaches for dealing with method effects properly recover the key
parameters of interest in an LST analysis, namely the consistency, occasion-specificity, and
reliability coefficients.

LaGrange and Cole (2008) recently studied the performance of four different multimethod
approaches in the so-called trait-state occasion (TSO) model (Cole et al., 2005). The TSO
model is an extension of the basic LST model that allows for autoregressive components
among the latent state residual factors. In their simulation study, LaGrange and Cole
considered four different approaches using a design with four time points and a sample size
of N = 500, respectively. Based on their results, they recommended the CU and OM
approaches.

Limitations of LaGrange and Cole’s study are that they (1) did not systematically vary the
level of method-specificity so that it remains unclear whether their recommendations
generalize across different levels of method variance, (2) considered only one sample size
condition (N = 500), and (3) did not study the performance of the IT model. A literature
review of applications of LST models (see Appendix B) revealed that sample sizes used in
LST studies vary widely (range N = 38 through N = 37,041). Not all LST models may
perform well, for example, at small sample sizes. Furthermore, it can also be assumed that
the amount of method variance varies across studies. The amount of method variance is an
important factor in LST studies as some models can theoretically be expected to show fewer
problems at different levels of method specificity than others as explained in detail below.
Further, the IT model appears to be a promising alternative to other approaches as it deals
with indicator-specificity in a straightforward way and is in line with LST theory.

Study 1: Simulation Study
The goal of the simulation study was to extend and increase the generalizability of previous
simulation work (LaGrange & Cole, 2008) by systematically varying (1) the amount of
method variance (unique consistency) and (2) the sample size. We deemed these conditions
of primary relevance for the following reasons. We expected the amount of method variance
to have a substantial impact on model performance in some of the models. In particular, we
expected to see more problems at lower levels of method variance in models that include
method factors (the OM and M − 1 models). The reason is that the estimation of model
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parameters related to method factors likely becomes more unstable when method-specificity
is low because method factor loadings and method factor variances will be estimated to
values that are relatively close to zero in these cases. This may cause method factors to
collapse, causing convergence problems, improper solutions and/or parameter bias. These
problems were expected to be more frequent at lower sample sizes that involve more
sampling fluctuations than larger samples.

An interesting question in this regard was whether the OM or the M − 1 model would show
a better relative performance under conditions of low method-specificity. We expected the
M − 1 model to perform better relative to the OM model because (1) the M − 1 model uses
fewer method factors and (2) the method factors in the M − 1 model are clearly defined as
trait residuals and are in line with LST theory, whereas the theoretical status of the OM
method factors is less clear (see Appendix A). Problems related to conditions of low method
variance were expected to be less severe for the NM, CU, and IT models, because these
models do not include method factors that could become unstable or collapse under
conditions of low method variance.

Furthermore, we expected conditions of high method variance (and low common
consistency) to cause instability and estimation problems primarily in the OM and CU
models, because (in contrast to the M − 1 and IT models), these models assume common
trait factors. These common trait factors were expected to become increasingly unstable as
common consistency decreases and method variance increases. Problems under conditions
of high method-specificity were also expected for the NM model, as this model (1) also
includes common trait factors and (2) does not account for method effects at all and thus
becomes increasingly misspecified as the amount of method variance increases.

Finally, we expected the IT model to be least problematic overall, because it (1) contains
only well-defined latent variables and (2) captures method variance in terms of correlations
between indicator-specific trait variables. This model should work well whether method
effects are high or low, because the trait factors in this model are indicator-specific and will
thus show substantial loadings whether different indicators show low convergent validity
(high method variance) or high convergent validity (low method variance).

We also studied different sample size conditions in order to further increase the
generalizability of our simulation findings. Important questions in this regard where, (1)
What is the minimum required sample size for the reliable application of different LST
models? and (2) Which model performs well under which sample size condition?

Method
Simulation design—We generated data based on the OM model (Figure 3). The OM
model was used because (1) to date it represents the most frequently used approach to deal
with method effects and (2) it easily allowed us to systematically vary the amount of method
variance. We specified six different conditions in which the indicators contained different
amounts of indicator-specific method variance (from low to very high method-specificity): 5
%, 10 %, 20 %, 25 %, 35 %, and 40 %. Common trait variance was varied accordingly with
values of 45 %, 40 %, 30 %, 25 %, 15 %, and 10 %, so that methods and trait variance
would always make up 50 % of the total indicator variance. Hence, 50 % of the indicator-
variance was considered to be stable over time in each population model. The amount of
occasion-specific variance as well as error variance of the indicators was held constant at 30
% and 20 % in all conditions, respectively, so that indicator reliability would equal .8. We
studied ten different sample size conditions (N = 50, 100, 200, 235, 300, 400, 500, 700,
1000, and 2000). These sample size conditions represent the range of sample sizes in the
LST literature10 of the sample sizes found in empirical LST studies (see Appendix B). For
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each of the 6 (method variance) × 10 (sample size) conditions, we generated 1,000 data sets,
assuming multivariate normality. Simulated data for all five models (NM, CU, OM, M − 1,
and IT) were generated and fit using the external Monte Carlo function in Mplus (Muthén &
Muthén, 1998–2010); subsequent analyses of model parameters were performed in SAS.

Outcome variables—We studied the proportion of non-converged and improper cases as
well as parameter estimate bias for all conditions. We counted a replication as non-
converged if a solution could not be reached by Mplus after 1000 iterations. All converged
solutions that produced warning messages about non-positive definite residual or latent
variable covariance matrices were classified as improper cases.11 Parameter estimate bias
was examined for the consistency, occasion-specificity, and reliability coefficients as
defined above. Bias was calculated as

and averaged across indicators.

Results
Model convergence—Figure 6A shows the proportion of non-converged solutions across
all conditions. Overall, convergence problems were mainly an issue at sample sizes below N
= 300. The model with the highest overall frequency of convergence problems was the OM
model. Convergence problems were largest for this model in the two most extreme
conditions (lowest and highest amount of method variance). The CU model showed a
relatively high frequency of convergence problems when method variance was large or
moderate, but was well-behaved when method variance was small. The M − 1 model
showed some convergence problems when method effects were small, whereas it showed
few problems at conditions of moderate to high method variance. The IT and NM models
were least problematic in terms of model convergence.

Improper solutions—The vast majority of improper solutions represented solutions with
non-positive definite residual covariance matrices (i.e., negative residual variance
estimates). Non-positive definite latent variable covariance matrices only occurred for the IT
model. Further, they only occurred under conditions of low method specificity (5 or 10 %)
and small sample size (N ≤ 100). This can be explained by the fact that for low method
specificity, IT factors are more homogenous and become strongly correlated. In small
samples, sampling fluctuations can cause some of the IT correlations to be estimated to
values close to (or even above) 1.0. In addition, linear dependencies may arise due to high
correlations, which can also result in non-positive definite latent variable covariance
matrices.

Figure 6B presents the proportion of improper solutions for all models across conditions. All
models showed severe problems at the lowest sample size of N = 50. For the higher sample
size conditions, there were differences between models as well as between conditions. The
highest proportion of improper solutions occurred for the NM model at conditions of

10The condition with N = 235 was included because this represented the median sample size found in our original literature review
prior to conducting the simulation study. After acceptance of this article, we updated our literature review. The median sample size
changed slightly to N = 249.
11This criterion leads to a rather conservative estimate of improper solutions, because not all cases with non-positive definite matrices
are actually associated with offending (i.e., out-of-range) parameter estimates (e.g., negative variances). Sometimes, these messages
are caused by linear dependencies that do not lead to inadmissible parameter estimates. We decided to use this strict criterion because
researchers typically refuse to interpret a solution that yields these types of warning messages.
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moderate to high method specificity, whereas this model was well-behaved when method
effects were small. For the remaining models, improper solutions were common only at the
lower sample size conditions. The OM model generally produced a high number of
replications with improper parameter estimates, in particular when either trait or method
variance were small. The CU model tended to show more improper estimates when method
variance was large relative to trait variance, and was well-behaved otherwise. In contrast,
the M − 1 model showed more problems when method variance was small (5 %), and was
unproblematic in the remaining conditions. The IT model showed the lowest frequency of
improper solutions of all models, and it tended to show no improper solutions at all for N ≥
200.

Parameter estimate bias—Average parameter estimate bias was studied for the
coefficients of consistency (as far as applicable), occasion-specificity, and reliability. The
bias averages are presented for proper solutions only (the corresponding values for all
converged cases including improper solutions can be found in the online supplemental
material). In general, trends where similar for all versus proper-only solutions, albeit bias
was generally more pronounced if improper cases where included.

Common consistency bias (see Figure 7A) was examined for the NM, OM, and CU models
only, because CCO is not defined in the IT model and is defined relative to a comparison
indicator in the M − 1 model and thus not directly comparable. CCO tended to be strongly
overestimated in the OM and CU models at lower sample sizes when method variance was
large (≥ 35 %). In the NM model, strong bias occurred except when method variance was
small (5 or 10 %). The direction of bias in the NM model was inconsistent (the model
sometimes over- and sometimes underestimated TCO), so that we examined the distribution
of parameter estimates in detail for this model for different conditions.

Figure 8 shows the distributions of the trait loading, state residual loading, and residual
variance for the first indicator in the N = 400 condition (results were very similar across
indicators and sample sizes so that this example can be seen as representative). It can be
seen that as method specificity increased, parameter estimates in the NM model became
increasingly dispersed and for the conditions with high method variance followed bi- or
trimodal distributions, showing that parameter estimates were completely unreliable for this
model when method variance was moderate to high.12 Given these extreme parameter
distributions, average bias estimates are not really meaningful for this model at moderate to
large method variance and explain the inconsistency in the direction of average bias.

Unique consistency bias (see Figure 7B) was examined for the OM model only, because
UCO is not defined (or defined differently) in the other models. UCO bias occurred mainly
under conditions of low method variance (5 and 10 %), where UCO tended to be
overestimated, particularly in the 5 % method variance condition.

Total consistency bias was studied for the NM, OM, M − 1, and IT models (see Figure 9A).
The NM model showed strong bias for moderate to high method variance, whereas bias in
the OM, M − 1, and IT models was relatively small (mostly below 10 %). We therefore also
include a figure without the NM model to allow for a more detailed comparison of the
remaining models (Figure 9B). There was a consistent tendency across conditions for the
OM model to show a larger positive bias than the M − 1 and IT models. Besides the NM
model, the OM model was the only model that showed a bias above 10 % for some of the

12We suspect that the mixture distributions of the parameter estimates seen at high levels of method variance indicate that the
estimation routine attempts to compensate for the extreme misspecification in different ways across replications, sometimes over- and
sometimes underestimating consistency.
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conditions. Bias in the OM model was especially pronounced in the conditions with high
method (and low trait) variance.

Occasion-specificity bias (see Figure 10A for all models and 10B without NM) was
examined for all models and was below 10 % for all conditions and all models except the
NM model. The NM model showed large bias in all conditions except when method
variance was as low as 5 or 10 %. However, average bias and direction of bias in the NM
model has to be interpreted with caution given the bimodal parameter distributions in the
high method specificity conditions (see Figure 8).

Reliability bias (see Figure 11) was also studied for all models. It can be seen that reliability
was properly estimated by all models under all conditions except the NM and CU models,
both of which consistently underestimated reliability. Underestimation in the CU model
increased systematically as method variance increased, with the strongest bias of −50 %
found for the highest (40 %) method variance condition. Again, given the bimodal
distribution of the residual variance estimates in the NM model for moderate to high levels
of method variance (see Figure 8), the average bias estimates are not really meaningful for
this model.

Discussion
The results of the simulation study where well in line with our theoretical expectations. The
overall best performing model was the IT model, with the least problems in terms of
convergence, improper solutions, and parameter bias. The second best model was the M − 1
model, which, as expected, only showed some problems at low samples sizes when method
effects where very small. The CU model performed reasonably well in general, but showed
problems when method effects where strong (and trait effects weak). Furthermore, as
theoretically expected, the CU model systematically underestimated the reliabilities of the
indicators across all conditions. The OM model consistently performed worse than all other
models (except for the NM model), which may be surprising, because it represents the data
generating model. As predicted, it showed the most problems when method variance was
either very low or very high. We suspect that these conditions cause instability in the model
that lead to various kinds of problems. The NM model, which ignores method effects and
thus becomes increasingly misspecified as the amount of method variance increases,
performed worst in terms of improper solutions and bias. This model produced completely
unreliable parameter estimates when method effects where moderate to large.

As shown by our literature review (see Appendix B), small sample sizes are quite common
in LST research. It is therefore of interest which sample size can be seen as “large enough”
to use the models discussed here. Our simulation suggests that samples sizes as small as N =
50 may not be appropriate for LST analyses in general, at least not under the conditions
studied here, as most models showed severe estimation problems under this condition. On
the other hand, there were many situations in which models tended to perform well at a
sample size as small as N = 100. This was particularly true for the IT model. For most other
models that account for method effects, problems tended to vanish or were at least
significantly reduced when sample sizes where moderate to large, say N ≥ 300.

Study 2: Applied Examples
We present real data applications to two method types: items and raters. The first data set
uses multiple, supposedly homogeneous items as indicators. For this case, we expect
relatively minor, yet non-negligible method effects. The second data example uses ratings
from multiple sources. Given that multiple reporters often show rather low convergent
validity even when they provide responses on the same measure (e.g., Geiser et al., 2010),
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we expected method effects to be rather strong in this example. Both studies can be seen as
typical examples of LST applications in terms of sample size, number of waves, and number
of indicators. These applications are of interest for three reasons: they (1) allow us to
examine the models’ behavior in practice under two different but common (and natural)
conditions (homogeneous vs. heterogeneous indicators), (2) illustrate the practical use and
meaning of different types of consistency coefficients in different models and (3)
demonstrate the need for more complex models in cases were it may not be reasonable to
assume homogeneity of occasion-specific effects across indicators (Data Example #2).

Method
Data Example 1: Multiple items—In our first example, we analyzed data from N = 360
firefighters taken from a larger health promotion study (Moe et al., 2002). Data for this
study were collected annually for 6 years; we use the first three waves of data in our
example. For our analyses, we selected three items of the General Health subscale of the
SF-36 (Ware, Snow, Kosinski, & Gandek, 1993).13 Item 1 asked respondents to give a
broad assessment of their current states of health (“In general, would you say your health
is”) on a scale of 1 (‘Excellent’) to 5 (‘Poor’). Item 2 (“I am as healthy as anybody I know”)
and Item 3 (“My health is excellent”) were slightly more specific and were scored on a scale
of 1 (‘Definitely True’) to 5 (‘Definitely False’). We chose these three items for two reasons.
First, they were each positively worded and were rather homogeneous in terms of content.
Hence, these items allowed us to demonstrate that even in this case, method effects may be
non-negligible. Second, despite the apparent homogeneity of the items, Item 1 can be seen
as a marker variable for measuring general health. Furthermore, Item 1 is measured on a
different response scale than the two other items. This made it easy for us to select this item
as a reference indicator in the application of the M − 1 approach to these data. Substantively,
these data are interesting for an LST analysis because these analyses allow us to find out to
which degree the rating of perceived general health depends on momentary (occasion-
specific) influences versus a stable person-specific level.

Data Example 2: Multiple raters—Data for this example come from the first three
waves of the Adult and Family Development Project (Chassin, Rogosch, & Barrerra, 1991),
a longitudinal study of the intergenerational effects of familial alcoholism. 454 children
(mean age = 12.7), along with each of their mothers and fathers, provided annual, in-person
reports of the target children’s externalizing symptomatology using the Child Behavior
Checklist (CBCL; for details of scoring, see Achenbach & Edelbrock, 1981, or Chassin et
al., 1991). The current analyses are based on N = 294 complete cases for which self-,
mother-, and father reports on the same 22 items were available. An interesting substantive
question that can be answered by LST analysis is whether externalizing problem behavior is
best conceived of as a stable trait or whether it is more situation-dependent.

Results
Goodness of fit—We fit all five models to each data set. Table 2 shows the goodness of
fit statistics for all models. It can be seen that in both applications, all models that take
method effects into account fit the data well. In contrast, the NM model showed a very bad
fit in Application 1. In Application 2, the NM model did not even converge to a solution
after 1,000 iterations14. Although we consider only two applications here, these findings

13Item level analyses should in general take the ordinal scale level of the measures into account. For the sake of simplicity and to save
space, we treated the indicators as continuous in the present application. Nonetheless, we urge researchers to use appropriate
estimation methods for ordinal variables in actual substantive applications at the item level (see Eid, 1996, as well as Eid & Hoffmann,
1998, for a detailed description of LST models for ordinal variables).
14The non-convergence of this model is likely due to strong method effects in this application due to the use of multiple reporters.
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demonstrate once again that method effects are an important issue in LST models, even
when indicators are supposedly unidimensional items (as in Application 1). Inspection of the
descriptive model comparison indices (the AIC and BIC coefficients) revealed that although
these indices are close for all models, the IT model showed the best relative fit in both
applications. This result is interesting, given that this model also showed the best
performance in our simulation study.

Variance components—Table 3 provides the estimated consistency, occasion-
specificity, and reliability coefficients in each model. As can be seen, non-negligible method
effects occurred in both studies, although as expected, method effects were stronger in the
multirater data example. This can be seen most easily from the higher UCO coefficients in
the OM and M − 1 models in the second application. In the CU model, the higher method-
specificity is reflected in higher error correlations in the multirater example (.47 ≤ r ≤ .69)
compared to the multi-item application (.03 ≤ r ≤ .39; none of the error correlations for Item
3 were significant at an alpha level of .05). The IT model depicts method effects in terms of
correlations between the indicator-specific traits. In the multirater example, these were lower
(.37 ≤ r ≤ .51) than in the multi-item application (.73 ≤ r ≤ .89), showing once again that
method-specificity was stronger in the multirater case.

Note that the estimates of common and unique consistency in the OM model differ from the
corresponding estimates in the M − 1 model. This is expected given that these coefficients
are defined relative to a reference indicator in the M − 1 approach and consequently also
have a different interpretation: CCO* represents the amount of stable variance shared with
the reference indicator, whereas UCO* represents the amount of stable variance not shared
with the reference indicator. Consequently, these estimates cannot be directly compared
(although TCO, OSpe, and Rel can).

Discussion
Two specific issues that occurred in the application of the OM model are particularly
noteworthy. In the first application, the method factor for the third item (“My health is
excellent”) had no significant variance and none of the loadings on this factor was
statistically significant. Hence, in this application, one method factor seemed to be
redundant. As mentioned above, this problem is not uncommon in practical applications of
this model. In the application to the multirater data, all method factors were significant in the
OM model. However, the residual variance of the father report score at time 1 was estimated
to be zero and consequently, the reliability was estimated to be 1.00 for this indicator. This
can be seen as a close-to-improper solution, as it seems unrealistic to assume perfect
reliability of father reports of externalizing problem behavior.

The CU model, which in this application is statistically equivalent to the OM model, showed
a similar issue in the first application: Neither one of the error correlations related to Item 3
were statistically significantly different from zero. Furthermore, the CU model consistently
provided unrealistically low reliability estimates compared to the remaining models,
especially in the multirater case.

Occasion-specific effects were estimated to be low by all models in both applications. In the
multi-item application, only the third item showed a substantial amount of occasion-specific
variance (Ospe ≥ .23 in all models at all time points), whereas especially Item 1 did not
seem to be prone to occasion-specific influences (Ospe ≤ .11). This makes sense
theoretically as the first two items (especially Item 1) refer more to the general health status
(and thus should be less influenced by occasion-specific deviations from the general health
status of a person), whereas for Item 3 it is less clear whether it refers to a momentary or
general evaluation of perceived health.
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Method-specific occasion-specificity—An interesting result that requires our specific
attention is that in the multirater application, all models indicated that occasion-specific
effects were small (mean Ospe = .08, range: .01 ≤ Ospe ≤ .23) and even statistically non-
significant for a number of indicators. Furthermore, none of the occasion-specific factors
had a significant variance estimate. This result is surprising as one would theoretically
expect that self- and parent reports of externalizing problem behaviors show a non-trivial
amount of occasion-specific variance. Given that all models fit the data well, one might be
tempted to conclude that this expectation is disconfirmed and that occasion-specific effects
are indeed negligible—suggesting that the self- and parent report measures of externalizing
problem behavior are for the most part trait-measures. However, this would be an erroneous
conclusion. Conventional LST models assume that occasion-specific effects are
unidimensional across all indicators measured at the same time point. In our example, this
implies that the situation and its impact on the measurements of externalizing behavior are
identical for self-, mother, and father reports.

The assumption of homogenous occasion-specific effects is reasonable in many cases when
indicators are homogeneous (e.g., tau-equivalent scales or items obtained from a single
rater). It is likely violated, however, when indicators represent distinct methods (e.g.,
different raters as in our second application). Different raters are likely in different (inner or
outer) situations even if their ratings are collected at exactly the same time point.
Consequently, standard LST models confound method-specific occasion-specific influences
with measurement error. Thus, they may strongly underestimate the amount of occasion-
specific variance when the scores of multiple raters are used as indicators of latent trait and
latent state residual variables. An additional consequence is that the reliabilities of the
indicators are likely underestimated, as rater-specific occasion-specific influences become
part of the error variable (when in fact they should be considered part of the true variance of
the indicators).

The IT model for modeling method-specific occasion-specificity—To illustrate
the issue of method-specific occasion-specificity, we fit an additional, extended IT model to
the externalizing problem behavior data (illustrated for just two methods in Figure 10). In
contrast to the conventional IT model, this LST model used multiple indicators per rater
(i.e., three indicators for child ratings, three indicators for mothers, and three indicators for
fathers at each time point). Although the ratings of children, mothers, and fathers were still
modeled simultaneously, a separate IT structure was assumed for each type of rater. The
advantage of this model is that occasion-specific effects can be modeled as being rater-
specific, thereby avoiding an underestimation of the true amount of occasion-specific
variance. The rater-specific occasion-specific residual factors measured at the same
measurement occasion can be correlated across raters. These correlations indicate to which
degree occasion-specific effects generalize across different raters. Only if these correlations
equal one could we assume occasion-specific effects to be homogeneous across raters—as is
done in the conventional LST model with just a single indicator per rater. 15

In our example, we actually used an extended variant of the model shown in Figure 10 that
included three (instead of just two) methods to model child, mother, and father ratings
simultaneously. Hence, there were separate trait and separate occasion-specific residual
factors for each type of rater. To fit this model to the externalizing problem behavior data
set, we constructed three item parcels (instead of just one single score) for each rater. This

15Courvoisier (2006) as well as Courvoisier et al. (2008) also proposed a multiple indicator LST approach. Courvoisier et al.’s
approach differs from the approach presented here in that their approach contrasts different methods against a reference method. The
purpose of the model presented here is simply to illustrate that conventional LST models may be inappropriate for modeling occasion-
specific effects if different indicators represent different methods that do not share the exact same occasion-specific effects.
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was done by randomly assigning the 22 items to three sets and then calculating the mean of
the items in each item set, respectively. Parcels consisted of identical items across raters and
time points.

The extended IT model with multiple indicators for each type of rater also fit the data well,
χ2(252) = 341.44, p < .01, CFI = .98, RMSEA = .04, SRMR = .04. In line with theoretical
predictions, it turned out that, regardless of the type of rater, all occasion-specific factors had
highly significant variances. Furthermore, most indicators did show a substantial amount of
occasion-specific variance (mean Ospe = .2, range: .03 ≤ Ospe≤ .44). These values are
substantially higher than the occasion-specificities estimated in each of the conventional
LST models. This is even more impressive if one takes into account that this model used
parcels (i.e., “test thirds” of the initial scale) so that each indicator represented only one third
of the full scale. Furthermore, reliability estimates (mean Rel = .78, range: .6 ≤ Rel≤ .95)
also were higher in this model than reliabilities in the conventional IT model (mean Rel = .
72, range: .56 ≤ Rel≤ .89), although each indicator represented only a third of the full scale.
The occasion-specificities and reliabilities of the full scales are thus strongly underestimated
by the conventional LST analysis with single indicators per rater.

In addition, the latent correlations between occasion-specific factors pertaining to different
methods were only of small to moderate size (.11≤ r≤ .43), and two of them were not
statistically significant (p≥ .22). These findings clearly demonstrate that unidimensionality
of occasion-specific effects is not a reasonable assumption in this example, as all of the
correlations between occasion-specific factors were far below 1.00. Only the more complex
model with multiple indicators per each rater could thus adequately reflect the degree of
occasion-specificity and reliability of these data.

Overall Discussion
Our review of the diverse literature of LST applications revealed that nearly 80 % of
applications used one or more of the four approaches discussed in this paper to account for
method effects. 16 The largest proportion of LST applications (29.09 %) to date have used
the OM approach originally proposed by Steyer et al. (1992) and recently advocated by
LaGrange and Cole (2008). Our simulation study and applications showed, however, that
this approach may not always be the best choice. In particular, this model performed rather
poorly in our simulation study under conditions where method effects accounted for either a
small (5–10 %) or a large (35–40 %) portion of the total indicator variance, and estimates
based on this model also raised concerns as to the adequacy of this model in our applications
to actual psychological data. In summary, the model appeared to be rather unstable at
conditions of high or low method-specificity, at least at small to moderate sample sizes (up
to about N = 500 for some conditions). The apparent instability of the OM model under
conditions of low method variance and low trait variance is likely caused by method and
trait factors becoming weakly identified and thus unstable in those situations.

This finding has practical implications, given that many (if not most) empirical applications
have to deal with only a small amount of method-specific variance. This is because users
oftentimes construct their measures (e.g., test halves) in such a way as to maximize their
homogeneity. Of course, homogeneity of indicators definitely is a desirable feature, and we
encourage authors to select unidimensional measures. Nonetheless, our literature review
suggests that even when test halves were designed to be perfectly homogeneous, method
effects still occurred and had to be accounted for in the majority of cases. In addition, rather

16Interestingly, it appears from our review that almost all applications that did not account for method effects used physiological
measures such as cortisol level etc. as indicators for which method effects did not seem to play a role.
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weak method effects are also expected in designs with long lags between the measurements
occasions. The OM approach seems to be prone to estimation problems in these cases and
may not return reliable parameter estimates.

In addition, it is frequently observed in empirical applications (and was again observed in
one of the applications reported in this paper) that one of the method factors in the OM
model “collapses” and returns no significant variance or loadings (e.g., Schermelleh-Engel
et al., 2004; Steyer & Schmitt, 1994). We may speculate that this result is more likely to
occur in cases where method effects are modest, as this condition may lead to lower stability
in the methods related estimates in this model and may even cause problems of empirical
underidentification. Such empirical underidentification problems may be the cause of the
high rate of non-converged solutions we identified for this model in our simulation study—
despite the fact that the model was used to generate the data.

An important practical question is: Should researchers interpret the results if one of the
method factors in the OM model vanishes empirically, and if so, how? Should one assume
that the corresponding indicators are free of method-specific influences? Should those
indicators be seen as gold-standard indicators as in the M − 1 approach? We doubt that this
would be a sensible interpretation, given that the lack of a method factor for a particular set
of indicators is empirically driven rather than theoretically well-founded and might just
represent a chance finding. In addition, this result changes the interpretation of the model
parameters in a significant way: If one method factor “disappears”, then the trait factor in
the model is no longer interpretable as a “general trait” that is common to all indicators, but
it actually becomes specific to the set of indicators that have no significant method factor as
in the M − 1 approach. Hence, researchers need to be cautious in their interpretation of the
parameters of this model in these cases, as the interpretation will be different from their
original expectation.

In summary, we cannot unanimously recommend the OM model for LST applications. One
reason for the frequent “successful” use of this approach in the literature may be that many
applications used only two measurement occasions. For such models to be identified, all
loadings on the method factors must be fixed, which may increase the model’s stability.

Another popular approach studied in this paper is the CU model that allows for correlated
errors of the same indicators over time. This approach has generally been found to perform
well in the context of MTMM research (e.g., Marsh & Bailey, 1991) and is widely used in
longitudinal studies. LaGrange and Cole (2008) also recommended this approach in the
context of LST modeling. The results of our study are somewhat mixed for this model.
Although overall, the CU approach performed better than the OM approach, the CU model
did not perform well under conditions with rather large method effects, at least for small to
moderate sample sizes.

In addition, the CU approach is plagued by a number of theoretical and conceptual
problems, some of which are well-known (e.g., Lance et al., 2002). The CU approach
confounds stable indicator-specific variance (i.e., unique consistency) with random
measurement error. In the present study, this was shown by downward-biased estimates of
indicator reliabilities in all simulation conditions as well as both real data applications. As
theoretically expected, the underestimation of the reliabilities systematically increased with
increasing method variance. Hence, the CU model does not allow properly estimating
indicator reliabilities, and it also does not allow estimating the total consistency of an
indicator, given that the unique consistency is represented by error covariances (rather than a
latent variable). This is troublesome, given that researchers are often interested in proper
estimates of the reliabilities and total consistencies of their indicators. These conceptual
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issues make the CU model a less attractive option for LST analyses from a psychometric and
practical point of view.

In addition to these issues, we note that the CU approach appears to be prone to similar
interpretation problems as the OM approach when method effects are weak. With small
method effects, the error correlations associated with one set of indicators may be close to
zero and non-significant—as was the case in our first empirical application. As has been
shown by Cole, Ciesla, and Steiger (2007), failure to include all relevant error correlations in
a model leads to a change in the interpretation of the factor that is supposed to be an
underlying general factor across all items. With regard to the CU model, this again means
that the trait factor becomes specific to those indicators with no significant error correlations
—which is very likely not in line with what the researcher had intended.

Finally, and probably most importantly, both the OM and CU models should be used with
caution because they do not belong to the family of “true” LST models in the sense that the
latent variables in these models cannot be derived based on the core LST framework
provided by Steyer et al. (1992, 1999). Only in the NM, M − 1, and IT models are the latent
variables well-defined on the basis of the fundamental latent variables of LST theory.

In summary, we recommend that the CU model be used only when the M − 1 approach or
the IT model to be discussed next do not fit the data. This may be the case, for example,
when method effects do not follow a unidimensional structure across time. The CU model
might help as a last resort in these cases, as it does not require method effects to be
unidimensional. On the other hand, the CU model makes the assumption that method effects
are orthogonal, which may also be violated in practice. Hence, researchers need to carefully
consider whether this approach is appropriate for their data.

Our findings suggest that the M − 1 and the IT approach are more theoretically sound, less
prone to empirical problems and may be more broadly applicable than the OM and CU
approaches. Both models performed well across most conditions studied in our simulation as
well as in both real data applications, although the M − 1 model showed some problems at
small sample sizes when the amount of method variance was small. From a theoretical point
of view, the M − 1 approach seems to be most useful when a researcher can identify one
indicator as clearly outstanding relative to the remaining indicators. This could, for instance,
be a scale that researchers in the field agree upon as a gold standard measure, an item that is
theoretically most appropriate for measuring the construct, or a marker variable that has
proven to be a particularly good indicator in prior studies. For example, in our application to
the firefighter data, there were clear substantive reasons for choosing the general statement
of health as a reference indicator because it was structurally different from the two more
specific indicators and could be seen as best representing the construct “perceived general
health”. In the multi-rater data example, there were also clear arguments as to why the child
report of externalizing symptomatology was chosen as reference indicator; the child is
differentiated from both parents by developmental stage and thus represents a unique
method source.

If no indicator or method is particularly outstanding or special, the choice of a reference
indicator may be more difficult. For example, items may be randomly sampled from an item
pool, and consequently, none of the items may be particularly outstanding. A promising
approach for applications with no clear reference indicator seems to be the model with IT
factors that does not require the selection of a reference method. Although the IT approach
performed very well in general, theoretically, it seems to be a particularly good choice when
method effects are expected to be rather strong. Strong method effects may imply that
different indicators reflect distinct facets of a construct (or even distinct constructs) and
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therefore should be modeled as separate traits (see Fiske & Campbell, 1992, for a related
discussion). Under these conditions, however, researchers should carefully examine whether
the assumption of unidimensionality of occasion-specific effects across indicators made by
all conventional LST models is still reasonable. As shown by our application to multirater-
data, one complication in this regard is that violations of this assumption may not be
detectable based on model fit; all models that accounted for method effects fit the data well
and were virtually indistinguishable based on fit indices (this was also found in the
simulation study). Therefore, researchers need to refer to substantive theory to check
whether the obtained estimates of occasion-specificity and reliability are reasonably large. If
this does not seem to be the case, multiple indicator LST models that do not require the
assumption of homogenous occasion-specific effects across all indicators may be more
appropriate.

With small amounts of method variance, the IT factors will be highly correlated, signaling
rather high homogeneity of indicators (e.g., in our application of firefighters’ health). This is
not a problem per se if model convergence is achieved and all estimates are proper.
However, it could be an undesirable feature when trait factors are used as independent
variables in extended analyses with covariates. Here, issues of multicollinearity may arise
that may complicate the analysis and interpretation of the results (Eid et al., 1999). One
approach to the problem of collinearity is the specification of a higher order trait factor on
which the correlated first order IT factors load (for an example, see Schmuckle & Egloff,
2005). This second order “common trait” could then be used as a single predictor in an
extended analysis. However, as has been shown by Eid (1996), such a factor cannot be
constructively defined based on the fundamental latent variables considered in LST theory.
As a consequence, although we can attach an “intuitive meaning” to this factor (“it is what
the first order trait factors share in common”), this factor does not have a clear meaning (in
terms of a conditional expectation or function of a conditional expectation of an observed
variable; see Appendix A for details). This does not mean that such an approach should not
be used. However, it means that researchers should be aware that with such a model they
leave the ground of well-defined latent variables as provided in classical LST theory and
have to be more careful with the interpretation of such a factor (Eid, 1996).

Another option would be to define a common trait as an average of the first order trait
factors. Such an approach has recently been presented by Pohl and Steyer (2010) in the
context of cross-sectional MTMM models. The advantage of this approach is that the
“higher order trait” does have a clear meaning as the average of the (psychometrically well-
defined) first order latent trait variables. The question would of course be whether it is
meaningful to look at this average. This question needs to be carefully addressed based on
substantive theory in each individual application.

Finally, if indicators are very homogeneous, and consequently, collinearity is an issue, one
may opt for the M − 1 approach and define a single specific trait factor based on a reference
indicator. Given that indicators are close to unidimensional, from a substantive point of
view, it may not really matter which indicator is chosen as reference indicator to represent
the trait.

Limitations
One critique of our recommendation of the M − 1 and IT approaches may be that neither of
these approaches allows defining “pure”, “method-free” trait factors, as the trait factors in
both approaches contain method-specific variance. Consequently, common and unique
consistency coefficients either cannot be defined (IT model) or are defined relative to a
reference indicator (M − 1 model). This may be seen as a limitation by researchers who are
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interested in modeling a single common trait factor and/or in separating common and unique
consistency for all indicators.

Another limitation is that in our simulation study, we only considered two factors: method
variance and sample size. Other parameters likely also influence model performance. For
example, it would be interesting to study whether a larger number of measurement occasions
and/or an increased number of high quality indicators could reduce some of the estimation
problems observed at small sample sizes. Future research should also examine how the
inclusion of an autoregressive component as in LaGrange and Cole’s (2008) study interacts
with different sample sizes and levels of method variance.

Conclusion
We fully agree with LaGrange and Cole (2008) that a model should mainly be selected
based on theoretical (rather than empirical) considerations. In line with Eid (1996), we
believe that there is good reason to select an LST model variant in which all latent variables
are explicitly defined as conditional expectations of observed variables. Such models are in
line with the fundamental concepts of LST theory (Steyer & Schmitt, 1990), and they
provide well-defined and clearly interpretable latent variables. This is the case for both the
M − 1 and IT models. Interestingly, these two models also showed the best performance in
our simulation study. Based on our theoretical and empirical results, we recommend that
readers use one of the two approaches depending on their particular research problem to
account for method effects in LST analyses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A Fundamental Concepts of LST Theory and Constructive
Definition of Latent Variables

In this appendix, we summarize the fundamental concepts of LST theory (e.g., Steyer et al.,
1992) and show that all latent variables in LST theory are defined as conditional
expectations of observed variables or well-defined functions of these conditional
expectations. Further, we show that the NM, IT and M − 1 models can be formulated
directly on the basis of these well-defined latent variables. As a consequence, all latent
factors in these models are also well-defined in the sense that they are conditional
expectations of observed variables or well-defined functions of these conditional
expectations. In addition, we explain why the latent variables in the CU and OM models
cannot be derived on the basis of the fundamental concepts of LST theory, so that, in a strict
sense, these models cannot be considered “true” LST models.

Random Experiment
The starting point for introducing the fundamental concepts of LST theory is the definition
of the underlying random experiment (RE). This RE characterizes the empirical
phenomenon of interest in LST research (i.e., the measurement of persons in situations) and
provides the formal theoretical background based on which (1) the relevant latent variables
and (2) appropriate statistical measurement models can be defined. This RE differs from
classical experiments in that it does not involve an experimental manipulation of
independent variables. Instead, this experiment refers to measuring an attribute of the same
person across different situations using multiple measurements (e.g., multiple indicators,
raters, observations, or methods) at each time point. Formally, the RE in LST theory consists
of the following set Ω of possible outcomes (e.g., Eid, 1996; Steyer et al., 1992):

(A1)

where ΩU is the set of observational units u (persons), ΩSitt is the set of situations at time t, t
= 1, …, n, ΩMeat is the set comprising all measurements at time t, and × is the Cartesian
product operator. Because we assume multiple measurements per person at each time point,
each set ΩMeat itself consists of the Cartesian product of subsets ΩMeait:
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(A2)

where the subsets ΩMeait contain the values on the observed indicators i (e.g., item or scale
scores), i = 1, …, m at time t.

As an example, consider the case of m = 2 indicators (i = 1, 2), each of which is measured
on n = 2 time points (t = 1, 2). For this example, Ω can be written as:

(A3)

Further, an element of Ω can be written as ω = (u, sit1, mea11, mea21, sit2, mea12, mea22),
where u indicates the specific person drawn from the set of persons ΩU, sit1 indicates the
specific situation drawn from the set of situations ΩSit1 on the first time point, mea11
indicates the specific score observed for the first indicator (e.g., test or questionnaire) on the
first time point, mea21 indicates the specific score observed for the second indicator on the
first time point, sit2 indicates the specific situation drawn from the set of situations ΩSit2 on
the second time point, mea12 indicates the specific score observed for the first indicator on
the second time point, and mea22 indicates the specific score observed for the second
indicator on the second time point. It is important to note that (1) the term “situation” refers
to both inner and outer influences and (2) the situations do not have to be known. Moreover,
they need not be the same for all persons (Steyer, 1988).

The values of the random variable Yit are the observed scores obtained for indicator i at time
t. The values of the mapping pu: Ω → ΩU are the persons u. The values of the mapping pSitt:
Ω → ΩSitt are the situations in which the persons are measured at a particular measurement
occasion t. The values of (pu, pSitt) are the persons in situations at time t.

Definition of Basic Latent Variables
The latent state variables Sit are defined as:

(A4)

In Equation A4, E (Yit | pu, pSitt) denotes the conditional expectation (regression) of an
observed variable Yit given the person and the situation. The measurement error variables εit
are defined as:

(A5)

Equation A5 shows that εit is defined as a residual with regard to the regressor E (Yit | pu,
pSitt). Taken together, Equations A4 and A5 imply the following basic decomposition of
observed variables in LST theory:

(A6)

where εit by definition has an expected value of zero and is uncorrelated with the regressor
Sit (Steyer, 1989; Zimmerman, 1975). The following simple manipulation of E (Yit | pu,
pSitt) allows defining latent trait and latent state residual variables:
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(A7)

The latent trait variables are defined as the conditional expectation of an observed variable
given the person:

(A8)

The latent state residual variables are defined as the conditional expectation given the person
and the situation minus the conditional expectation of an observed variable given the person:

(A9)

Equation A9 shows that individual values on the variable SRit represent the differences
between latent state and a latent trait scores. Consequently, Sit = Tit + SRit. Combining this
equation with Equation A6 yields the basic decomposition of observed variables in LST
theory:

(A10)

Up to this point, no restrictive assumptions have been made. We have just defined the basic
concepts of LST theory. All latent variables defined above are indicator-specific, that is,
each observed variable is decomposed into its own latent trait, latent state residual, and error
variable. Consequently, no testable assumptions are implied so far. More importantly, at this
point, the variances of the latent variables cannot be estimated without further assumptions
due to underidentification. The next section describes how—based on the concepts above—
restrictive assumptions can be introduced to obtain three identified LST measurement
models, the NM, IT, and M − 1 models. For simplicity, we assume that all observed and
latent variables are in deviation form (i.e., mean centered), so that there are no additive
constants.

Definition of the NM Model
The NM model is defined by the following assumptions:

1. Congenerity of latent trait variables across all m indicators and all n time points:

(A11)

where i, i′ ∈ I ≡ {1,…, m}, t, t′ ∈ K ≡ {1,…, n} and λii′tt′ is a real constant.

2. Occasion-specific congenerity of latent state residual variables:

(A12)

where δii′t is a real constant.

Equation A11 and A12 can be understood as homogeneity assumptions. Equation A11 states
that all indicator-specific latent trait variables differ only by a multiplicative constant.
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Likewise, Equation A12 states that all indicator-specific state residual variables measured on
the same occasion of measurement differ only by a multiplicative constant. It can be shown
that these two assumptions imply the existence of a common (indicator- and occasion-
unspecific) latent trait factor T for all indicators and common (occasion-specific) latent state
residual factors SRt for all indicators measured at the same occasion of measurement (e.g.,
Steyer, 1988). In addition, the following mean and covariance restrictions apply in this
model:17

E(εit) = E(SRt) = Cov(T, SRt) = Cov(T, εit) = Cov(εit, SRt′) = 0, Cov(SRt, SRt′) = 0 for t ≠ t
′, and Cov(εit, εi′t′) = 0 for (i, t) ≠ (i′, t′).

Definition of the IT Model
In the IT model, each indicator loads onto its own latent trait factor, that is, trait factors are
assumed to be indicator-specific. Consequently, the first assumption differs from the first
assumption made in the NM model.

1. Indicator-specific congenerity of latent trait variables:

(A14)

where i ∈ I ≡ {1,…, m}, t, t′ ∈ K ≡ {1, …, n}. In contrast to Equation A11,
Equation A14 postulates homogeneity of trait variables Tit and Tit′ only for
indicators with the same index i, implying the existence of common (but indicator-
specific) trait factors Ti. Hence, this assumption is less restrictive than the
assumption in Equation A11. Common occasion-specific factors are defined in the
same way as for the NM model (see Equation A12). In addition, the following
mean and covariance restrictions apply in this model: E(εit) = E(SRt) = Cov (Ti,
SRt) = Cov(Ti, εit), = Cov(εit, SRt′) = 0, Cov(SRt, SRt′) = 0 for t ≠ t′, and, Cov(εit,
εi′t′) = 0 for (i, t) ≠ (i′, t′).

Definition of the M − 1 Model
In the M − 1 model, a reference indicator Yrt with corresponding reference trait variable Trt
is selected (Eid et al., 1999). Indicator-specific congenerity of the reference trait variables
Trt is assumed:

1. Congenerity of reference trait variables:

(A15)

where r ∈ I ≡ {1, …, m}, t, t′ ∈ K ≡ {1, …, n}. This homogeneity assumption
implies the existence of a common trait factor Tr for the reference indicators.
Further, the non-reference trait variables are linearly regressed on the reference trait
factor Tr:

2. Linear regression of the non-reference trait variables on the reference trait factor Tr:

17Some of the mean and covariance restrictions in this model (and other models discussed here) directly follow from the definition of
the latent variables in Equations A4, A5, A8, and A9 (i.e., they do not require additional assumptions), whereas others do require the
additional assumption of conditional regressive independence (Steyer & Schmitt, 1990; Steyer et al., 1992). For simplicity and clarity,
we do not distinguish between those restrictions that follow from the basic definitions and those that require additional assumptions.
Interested readers may consult Steyer (1988) or Steyer and Schmitt (1990) for more details.
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(A16)

3. Definition of method variables TRit as residuals of this regression analysis:

(A17)

4. Assumption of congenerity of trait residual variables:

(A18)

where γitt′ is a real constant. Equation A18 postulates homogeneity of method
variables TRit and TRit′ pertaining to the same indicator i, implying the existence
of common trait residual factors TRi. In addition, the following mean and
covariance restrictions apply in this model: E(εit) = E(SRt) = E(TRi) = Cov(Tr, SRt)
= Cov(Tr, TRi) = Cov(Tr εit) = Cov(TRi SRt) = Cov(TRi, εi′t) = Cov(εit SRt′) = 0,
Cov (SRt, SRt′) = 0 for t ≠ t′, and Cov(εit, εi′t′) = 0 for (i, t) ≠ (i′, t′).

The CU Model
The CU model is defined by the same assumptions as the NM model, but relaxes the
assumption of uncorrelated errors such that error variables with the same index i can be
correlated:

(A19)

Equation A19 shows that, in contrast to the IT and M − 1 models, the CU model does not
define person-specific method effects as a well-defined function of the conditional
expectation E(Yit | pu) (i.e., as a function of the latent trait variables Tit), but instead views
person-specific method effects as part of the error variables εit. This view, however, is not in
line with the definition of the error variable in LST theory (see Equation A5). According to
Equation A5, the error variable is defined as that part of an observed variable that is not due
to systematic person or situation effects (i.e., that part of Yik that is not determined by the
regressors pu and pSitt). However, logically, a person-specific method effect must be related
to the conditional expectation given the person E(Yit | pu), because a person-specific method
effect reflects one part of Yik that is systematic and stable over time. Consequently, the
implicit assumption made in the CU model, according to which method effects are part of
the error variable is at odds with the basic definition of the error variable in Steyer et al.’s
(1992) LST theory. Therefore, the CU model cannot be considered an LST model in a strict
sense.

The OM Model
As has been shown by Eid (1996), the common method factors Mi specified in the OM
model cannot be defined as well-defined functions of the conditional expectation E(Yit | pu)
(i.e., as functions of the latent trait variables Tit). Consequently, the theoretical status of the
method factors Mi is unclear, at least according to Steyer et al.’s (1992) classical LST
framework. Moreover, the theoretical status of the remaining latent variables in this model
also becomes dubious when the factors Mi are included, because the Mi factors reflect part
of the stability of the indicators, albeit not in a well-defined way. Consequently, like the CU
model, the OM model cannot be considered an LST model in a strict sense (Eid, 1996).
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Appendix B Summary of Empirical Studies That Have Used Multiple
Indicator LST Models

Article N W I Model Construct

Steyer, Majcen, Schwenkmezger,
Buchner, 1989 64 2 2 NM anxiety

Steyer, Schwenkmezger & Auer,
1990 179 2 2 CU anxiety

Steyer & Schmitt, 1990 152 3 4 CU, IT attitudes toward guest workers

Kirschbaum et al., 1990
48 2 2 NM salivary cortisol

54 3 2 NM salivary cortisol

Ormel & Schaufeli, 1991a
226 3 2 M − 1 psychological distress, locus of control, &

self-esteem

389 5 2 NM psychological distress, locus of control, &
self-esteem

Schmitt & Steyer, 1993
380 2 2 OM social desirability

215 3 2 OM social desirability

Steyer & Schmitt, 1994 502 4 2 M − 1 well being

Eid, Notz, Steyer,
Schwenkmezger, 1994 496 4 2 OM mood level & mood reactivity

Deinzer et al., 1995 502 4 2 OM 12 personality dimensions

Preville et al, 1996 46 3 5 NM cortisol reactivity

Dumenci & Windle, 1996 805 4 4 OM depressive symptoms

Dumenci & Windle, 1998 1061 4 3 OM depressed mood

Windle & Dumenci, 1998 536 4 4 OM depressed mood

Eid & Hoffmann, 1998 370 4 2 IT interest in topic of radioactivity

Eid, Schneider &
Schwenkmezger, 1999 176 3 2 M − 1 self-perceived mood deviation

Steyer, Schmitt & Eid, 1999 503 2 2 IT awakeness vs. sleepiness mood state

Eid & Diener, 1999 180 3 2 IT affect

Schmitt & Maes, 2000 1065 2 2 OM depressive symptoms

Schmitt, 2000 206 3 2 OM mother-daughter attachment & family
cohesion

J. Tisak & M.S. Tisak, 2000
116 3 4 OM affective commitment

117 3 4 OM continuance commitment

Schmukle, Egloff, & Burns, 2002 292 3 2 IT positive affect & negative affect
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Article N W I Model Construct

Mohiyeddini, Hautzinger, &
Bauer, 2002 188 2 2 OM depression

Hagemann et al., 2002 59 4 2 NM resting EEG asymmetry

Blickle, 2003 209 2 4 IT intraorganizational influence attempts

Moskowitz & Zuroff, 2004 119 3 2 IT flux, pulse, & spin

Davey et al., 2004 737 5 3 CU, M − 1 depressive symptoms

Schermelleh-Engel et al., 2004 395 3 3 M − 1 test anxiety

Yasuda et al, 2004 235 3 5 CU affect

Eid & Diener, 2004 249 3 2 IT subjective well-being

Schmitt, Gollwitzer, Maes, &
Arbach, 2005 1258 2 2 M − 1 justice sensitivity

Hagemann et al., 2005 59 3 2 NM resting EEG asymmetry

Schmukle & Egloff, 2005 65 2 2 IT implicit & explicit

Khoo et al., 2006 188 3 4 OM conscientiousness

Baumgartner & Steenkamp, 2006 1991 3 9 modified OM brand loyalty & deal proneness

Dormann et al., 2006 157 4 2 CU job satisfaction

Hellhammer et al., 2007 239 6 2 NM cortisol rise after wakening

Bonnefon, Vautier, & Eid, 2007 484 2 6 IT contrapositive reasoning

Courvoisier et al., 2007a 501 4 2 M − 1 mood

Booth, Granger, & Shirtcliff,
2008 724 4 2 NM cortisol levels

Hermes et al., 2009 38 2 2 NM cerebral blood flow

Olatunji & Cole, 2009a 787 8 2 TSO anxiety

Ziegler, Ehrlenspiel, & Brand,
2009 156 2 4 CU competitive anxiety

Boll et al., 2010 709 2 2 OM differential parental treatment

Courvoisier et al., 2010a 307 6 2 IT mood

Danner et al., 2010 173 2 2 OM intelligence, decision making, learning

Weijters et al., 2010 1506 2 3 CU response style

Courvoisier et al., 2011a 15,282 4 2 IT psychosocial health

Kertes & van Dulmen, 2011 164 3 2 NM cortisol
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Article N W I Model Construct

Lorber & O’Leary, 2011a 396 4 2 OM, IT b aggression

Luhmann, Schimmack, & Eid,
2011a 37,041 16 2 M − 1 affective well-being

Ploubidis & Frangou, 2011 3445 2 30 NM psychological distress

Stalder et al., 2011 64 3 2 CM hair cortisol

Eid, Courvoisier, & Lischetzke,
in pressa 305 6 2 IT mood

Median 249 3 2

Mean 1349.298c 3.474 3.140

Mode -- 3 2

Minimum 38 2 2

Maximum 37,041 16 30

SD 5227.155 2.097 3.847

Note. W = number of waves; I = number of indicators per wave; CU = correlated uniqueness approach; OM = M
orthogonal method factor approach; M − 1 = M − 1 correlated method factor approach; IT = indicator-specific trait factor
approach; TSO = trait state occasion model without method factors; CM = M correlated method factor approach.
a
Denotes studies which tested LST models with an autoregressive component.

b
Not explicitly interpreted as an IT model by the authors of this paper.

c
The mean sample size without including the Courvoisier et al. (2011) and Luhmann et al. (2011) study is N = 447.
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Figure 1.
LST model with no method factors (NM). Yit denotes the ith observed variable (indicator)
measured at time t. T: latent trait factor. SRt: latent state residual factor. λit: trait factor
loading. δit: state residual factor loading.
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Figure 2.
LST model with orthogonal method factors (OM). Mi indicates the method factor for
indicator i. γit: method factor loading.
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Figure 3.
LST model with correlated error variables for the same indicators over time (CU model).
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Figure 4.
LST model with M − 1 correlated method factors (M − 1). TRi indicates the trait-residual
method factor for indicator i. γit: method factor loading. In this example, there is no method
factor for the first indicator (reference indicator Y1t). Consequently, the latent trait factor is
specific to the reference indicator. The method factors reflect the stable part in the non-
reference indicators (Y2t and Y3t) that is not shared with the reference indicator.
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Figure 5.
LST model with indicator-specific trait factors (IT). Ti indicates the trait factor for indicator
i.
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Figure 6.
Non-convergence and improper solutions in the simulation study. A: Proportion of non-
converged replications. B: Proportion of improper solutions among converged replications.
MV = method variance; TV = trait variance.
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Figure 7.
Mean consistency bias in the simulation study. A: common consistency bias. B: unique
consistency bias. MV = method variance; TV = trait variance.
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Figure 8.
Distribution of the trait loading, state residual loading, and residual variance of the first
indicator in the NM model for the N = 400 condition. The red line indicates the true
population value. MV = method variance; TV = trait variance.
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Figure 9.
Mean total consistency bias in the simulation study. A: all models. B: without the NM
model. MV = method variance; TV = trait variance.
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Figure 10.
Mean occasion specificity bias in the simulation study. A: all models. B: without the NM
model. MV = method variance; TV = trait variance.
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Figure 11.
Mean reliability bias in the simulation study. MV = method variance; TV = trait variance.

Geiser and Lockhart Page 47

Psychol Methods. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
IT model for m = 2 methods. This model includes multiple indicators Yimt, indicator-
specific trait factors Tim, and state residual factors SRmt separately for each method. This
accounts for the fact that occasion-specific effects may not generalize perfectly across
different methods. All trait factors can be correlated. Occasion-specific factors pertaining to
different methods at the same measurement occasion can also be correlated, indicating the
generalizability of occasion-specific effects across different methods.
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