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G-Quadruplex and i-Motif Are Mutually Exclusive in ILPR
Double-Stranded DNA
Soma Dhakal, Zhongbo Yu, Ryan Konik, Yunxi Cui, Deepak Koirala, and Hanbin Mao*
Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio
ABSTRACT G-quadruplex has demonstrated its biological functions in vivo. Although G-quadruplex in single-stranded DNA
(ssDNA) has been well characterized, investigation of this species in double-stranded DNA (dsDNA) lags behind. Here we
use chemical footprinting and laser-tweezers-based single-molecule approaches to demonstrate that a dsDNA fragment found
in the insulin-linked polymorphic region (ILPR), 50-(ACA GGGG TGT GGGG)2 TGT, can fold into a G-quadruplex at pH 7.4 with
100 mM Kþ, and an i-motif at pH 5.5 with 100 mM Liþ. Surprisingly, under a condition that favors the formation of both
G-quadruplex and i-motif (pH 5.5, 100 mM Kþ), a unique determination of change in the free energy of unfolding (DGunfold)
by laser-tweezers experiments provides compelling evidence that only one species is present in each dsDNA. Under this condi-
tion, molecules containing G-quadruplex are more stable than those with i-motif. These two species have mechanical stabilities
(rupture force R 17 pN) comparable to the stall force of RNA polymerases, which, from a mechanical perspective alone, could
justify a regulatory mechanism for tetraplex structures in the expression of human insulin.
INTRODUCTION
A DNA sequence with tandem G-rich repeats can fold into
a tetraplex structure called G-quadruplex (1), which consists
of a stack of four guanine residues interconnected by
Hoogsteen basepairs (2–4). These G-rich sequences are
prevalent in the human genome, particularly in promoter
regions (5). Given the demonstrated biological roles of
G-quadruplexes in gene-expressing and processing events
(6–8), it is imperative to determine the mechanical stabili-
ties of G-quadruplex in the context of naturally occurring
double-stranded DNA (dsDNA). Such information can be
used to evaluate tetraplexes as regulatory elements for repli-
cation and transcription processes in which the mechanical
interaction between secondary DNA structures and motor
proteins may play a significant role.

In the complementary strand of G-rich repeats, another
tetraplex structure, i-motif (9), can form. An i-motif is
composed of a stack of hemiprotonated cytosine-cytosine
(C:CHþ) pairs. Due to the hemiprotonated nature of the
C:CHþ pairs, the formation of i-motif often requires acidic
conditions. However, depending on particular C-rich
sequences, i-motif can fold close to neutral pH (10). Folding
at similar pH has also been observed in a DNA template
with negative superhelicity (11) or in a molecular crowding
environment (12,13), two physiologically relevant condi-
tions. With the recent discovery of proteins that can bind
specifically to i-motif-forming DNA fragments, the biolog-
ical relevance of this structure has begun to emerge (14–16).

The majority of investigations into the DNA tetraplexes
have focused on the properties of G-quadruplexes in the
context of single-stranded DNA (ssDNA). Recent reports
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have started to show the formation of G-quadruplexes in
the context of dsDNA templates. For example, interconver-
sion between duplex and quadruplex structures has been
observed on a DNA hairpin (17) or in a DNA fragment
without flanking dsDNA handles (18–22). To address the
effect of dsDNA junctions on the DNA tetraplex (23),
researchers have investigated the formation of G-quadru-
plex on dsDNA fragments flanked by long dsDNA handles
under specialized conditions, such as in a molecular crowd-
ing environment or on a negative supercoiled template
(11,24). Interestingly, a single-molecule fluorescence
resonance energy transfer analysis on a 96-bp duplex
DNA in the c-kit region showed that G-quadruplex can
form in the presence of a complementary strand without
these specialized settings (25). Likewise, the formation
of G-quadruplexes has been demonstrated in dsDNA by
dimethyl sulfate (DMS) footprinting and stop assay analyses
under similar conditions (24,26). These observations
suggest that G-quadruplexes can readily compete with the
reannealing of dsDNA in vitro.

With the formation of a G-quadruplex, the complementary
C-rich strand becomes single-stranded, which should facili-
tate the folding of i-motif. However, tetraplex investigations
in the dsDNA context are often performed at neutrality,
a condition in which it is difficult to form an i-motif. As
a result, it is still an open question whether an i-motif can
fold in the complementary single-stranded region after
a G-quadruplex is formed in the opposite strand. The answer
to this question has two important implications. First,
the formation of an i-motif is expected to change the forma-
tion kinetics or thermodynamic stability of a proximal
G-quadruplex in the opposing strand. This may influence
the biological functions of the G-quadruplex. Second, it
is likely that i-motif has its own biological roles in gene
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regulation. Together with G-quadruplex, this can introduce
a functional versatility for DNA tetraplexes. Compared
with the study of G-quadruplex in the dsDNA context,
however, relatively few investigations have focused on the
formation of i-motif in dsDNA (11,21).

Here, by employing laser-tweezers-based single-mole-
cule methods and DMS/bromine (Br2) footprinting
approaches, we obtained compelling evidence that either
G-quadruplex or i-motif, but not both, is formed in a long
dsDNA construct that contains an insulin-linked polymor-
phic region (ILPR) fragment, without template superhelicity
or molecular crowding environment. We observed that
G-quadruplex is more stable than i-motif in the presence
of a respective complementary strand.
MATERIALS AND METHODS

Unless otherwise specified, all DNA fragments were purchased from Inte-

grated DNATechnology (Coralville, IA) and purified on a 10% polyacryl-

amide gel electrophoresis (PAGE) gel before use. All chemicals (with

purity > 95%) were purchased from VWR (West Chester, PA) and used

directly without further treatment unless otherwise specified.
DMS and Br2 footprinting

We first labeled a 87-mer ssDNA strand containing an ILPR G-quadruplex

forming sequence (underlined; 50- CTA GAC GGT GTG AAA TAC CGC

ACA GAT GCG ACA GGGG TGT GGGG ACA GGGG TGT GGGG

ACA GCC AGC AAG ACG TAG CCC AGC GCG TC; G-rich strand) or

an ILPR i-motif forming sequence (underlined; 50- GAC GCG CTG GGC

TAC GTC TTG CTG GC TGT CCCC ACA CCCC TGT CCCC ACA

CCCC TGT CGC ATC TGT GCG GTA TTT CAC ACC GTC TAG;

C-rich strand) at the 50 end with 32P by incubating the DNAwith T4 poly-

nucleotide kinase (New England Biolabs, Ipswich, MA) and [g-P32] ATP

(Perkin-Elmer, Waltham, MA). Labeled DNA was purified using G-25

columns (GE Healthcare, Buckinghamshire, UK).

For the DMS footprinting, the radiolabeled G-rich strand was mixed with

its unlabeled complementary C-rich strand in equimolar ratio (1 mM each in

30 mL) in 10 mMTris (pH 7.4) or 10 mMMES (pH 5.5) buffer with 100 mM

KCl, 100 mM LiCl, or without salt. The mixtures were heated at 95�C for

10min andquickly quenched by submersion in an ice-water bath or in awater

bath set at 30�C. Then 0.3 mLDMSwas added to the above sample and incu-

bated for 1.5 min at room temperature. The reaction was stopped by addition

of 300 mL of a stop buffer (250 mg/mL salmon sperm DNA, 30% b-mercap-

toethanol, and 300 mM sodium acetate) followed by addition of 750 mL of

absolute ethanol. The detailed procedure for Br2 footprinting has been

described elsewhere (27,28). Briefly, the radiolabeledC-rich strand and unla-

beled complementary G-rich strand were prepared separately in 10 mM of

sodium phosphate buffer (pH 5.5 or 7.0) supplemented with 100 mM KCl

or LiCl. The samples were heated at 95�C for 10min followed by rapid cool-

ing in a water bath set at 30�C. This was followed by mixing of the comple-

mentary strand at equimolar concentration (1 mM) in a 30 mL reaction

volume. The samples were incubated at the same temperature for a specific

time (15 min to 5 days). Cytosine-specific cleavage was performed by incu-

bating the DNA samples with molecular Br2 generated in situ from the reac-

tion between KBr (0.6 mL, 20 mM) and KHSO5 (0.6 mL, 10 mM). The

reactions were performed for 10 min at room temperature, terminated by

addition of a stop buffer (250 mg/mL sheared salmon sperm DNA, 300 mM

NaAc, and 4 mMHEPES) followed by addition of 750 mL absolute ethanol.

The DNA samples from DMS or Br2 footprinting reactions were ethanol-

precipitated and washed twice with 70% ethanol. The dry DNA pellet was
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suspended in 70 mL freshly prepared piperidine (10%) for 30 min at 90�C. It
was dried by vacuum centrifuge and the resultant DNA fragments were

resolved on a 6% denaturing PAGE (19:1 bis/acrylamide) gel. The gel

was dried, exposed to a PhosphorImager screen overnight (~12 h), and

scanned with a Typhoon 8600 instrument (GE Healthcare). Kodak digital

camera software (Eastman Kodak, Rochester, NY) was used to acquire

the line scans (Fig. 1) and measure the band intensities.

To prepare the GA ladder, a radiolabeled 87-mer G-rich strand was mixed

with salmon sperm DNA (0.1 mg/mL) in 10 mL reaction volume; 1 mL of

1 M formic acid (pH 2.0) was added to the above reaction mixture and incu-

bated at 37�C for 30 min, followed by piperidine cleavage (150 mL, 10%

piperidine) at 90�C for 30 min. The sample was cooled in an ice-water

bath for 5 min and precipitated with n-butanol. The DNA pellet was resus-

pended in 1% sodium dodecyl sulfate (150 mL), followed by another precip-

itation with n-butanol. Finally, the DNA pellet was resuspended in a loading

buffer for PAGE analysis.

To calculate the fold protection for both DMS and Br2 footprinting exper-

iments (Fig. 1), we measured the net intensity of the bands in the four

G4/C4-tracts or the two cytosine bands close to the C4 regions (green

open circles in Fig. 1 C) in each lane, normalized against the intensity of

the guanine band in the TGT loop in DMS footprinting or the cytosine

band in the ACA loop in Br2 footprinting. We determined the fold protec-

tion by dividing the band intensity of corresponding G/C in the control lane

(Liþ lane for the DMS footprinting at the same pH or the pH 7.4 lane for the

Br2 footprinting) by the lane of interest. A similar approach was used to

calculate the fold protection of each G/C residue in each G4/C4 tract in

the footprinting gel (see Fig. 3 A). The fold protection for a given time

(see Fig. 3 B) was averaged from the four G4/C4 tracts with the error bar

representing the standard deviation (SD).
DNA construct preparation

Two DNA oligonucleotides containing ILPR G-quadruplex (50-CACA
GGGG TGT GGGG ACA GGGG TGT GGGG T) and i-motif (50-CTAGA
CCCC ACA CCCC TGT CCCC ACA CCCC TGTGGTAC) forming

sequences were annealed with an equimolar ratio to form dsDNA in

a 10 mM Tris (pH 8.0) buffer by heating at 97�C for 10 min, followed by

slow cooling to 25�C in ~6 h. At each end of the dsDNA, an XbaI or

a KpnI restriction site was introduced to allow the cloning of the DNA into

the polycloning site of the plasmid pFOXCAT-362hIns (a gift fromMichael

German’s laboratory) (29). The plasmidwith the ILPRG-quadruplex/i-motif

insert was then transformed to Escherichia coli (GM2163 strain; Fermentas)

for amplification. Bacterial cells were collected through centrifugation after

overnight shaking in LBgrowthmedium, and the plasmidwas extractedwith

a Maxiprep kit (Qiagen, Valencia, CA). The ILPR G-quadruplex/i-motif

insert was validated byDNA sequencing (DNASequencing Facility, Univer-

sity ofMaine, Orono,ME). The plasmid containing the ILPRG-quadruplex/

i-motif-forming sequence was digested with AflIII (New England Biolabs),

labeled with biotin-dUTP (eENZYME, Gaithersburg, MD) using a Klenow

enzyme (NewEnglandBiolabs) followed by ethanol precipitation. TheDNA

was then digested by SacI (New England Biolabs), and the larger DNA frag-

ment (~4 kb) was purified by an agarose gel. The fragment DNAwas labeled

with digoxigenin at the SacI end with dig-dUTP (Roche, Indianapolis, IN)

using terminal transferase (Fermentas, Glen Burnie, MD). Finally, the

sample was purified by ethanol precipitation. To prepare a DNA construct

without G-quadruplex/i-motif-forming sequences, the pFOXCAT-362hIns

plasmid without insert was digested with AflIII and labeled with biotin-

dUTP, followed by digestion with SacI and labeled with dig-dUTP as

described above.
Single-molecule experiments

The laser-tweezers instrument used for the single-molecule experiments is

described elsewhere (30,31). To start the single-molecule experiments, the



FIGURE 1 Chemical footprinting of an 87-bp ILPR dsDNA under different pH and salt conditions at 23�C. Black vertical lines depict the G4 and C4

tracts involved in the tetraplex formation. The predominant species is shown at the bottom of each lane. The blue dotted arrows indicate the increasing

band intensities. (A) DMS footprinting of the 87-bp dsDNA in 10 mM of MES buffer at pH 5.5 (lanes 1–3) and 10 mM of Tris buffer at pH 7.4 (lanes

5–7). Lane 4 is the GA ladder for the G-rich strand. The orange dotted and gray traces are line scans for lanes 1 and 3, respectively. Fold protections at

pH 7.4 (lane 3 versus lane 1, blue open bars) and pH 5.5 (lane 7 versus lane 5, red solid bars) in 100 mM Kþ are shown to the left. The red solid dots

to the right of the gel show the guanine residues in the TGT loops. (B) Br2 footprinting of 87-bp dsDNA in a pH 7.4 or pH 5.5 sodium phosphate buffer

with 100 mM ions. The premixed sample was denatured at 95�C for 10 min and rapidly quenched in a water bath set at 30�C before Br2 treatment. The

similar band intensities of all cytosines in the i-motif-forming region (see the quantitation to the left of the gel) indicate that i-motif was not formed under

these experimental conditions. The red solid dots to the right of the gel show the cytosine residues in the ACA section. (C) Br2 footprinting of dsDNA at pH

5.5 (lanes 1 and 2) and pH 7.4 (lane 3). G-rich and C-rich strands were heated separately to 95�C and rapidly quenched in a water bath set at 30�C before

mixing. The black trace to the left of the gel is the line scan for lane 1. Fold protections at pH 5.5 with 100 mM Kþ (lane 3 versus lane 1, pink solid bars) and

100 mM Liþ (lane 3 versus lane 2, black open bars) are shown at the left side. The red solid dots to the right of lane 2 depict cytosines in the ACA loops. The

green open circles to the left of lane 1 indicate the cytosines closest to the i-motif-forming region, which are used to quantify the hybridization of flanking

DNA strands (see text).
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end-labeled DNA construct was incubated with anti-digoxigenin (Dig)

antibody-coated polystyrene particles (2.10 mm diameter; Spherotech,

Lake Forest, IL) for ~1 h to bind the DNA molecules to the bead surface

via Dig/anti-Dig antibody linkage. The anti-Dig antibody-coated beads

carrying the DNA molecules and the streptavidin-coated beads (0.97 mm

diameter; Spherotech) were dispersed in 700 mL of 10 mM buffer (Tris

or MES) with 100 mM ions (Kþ or Liþ) at pH 5.5 or 7.4. They were sepa-

rately injected in a reaction chamber. The two types of beads were sepa-

rately trapped by two laser foci in the reaction chamber. The bead carrying

the DNA molecules on its surface was moved toward the streptavidin-

coated bead so that the free end of the attached DNA molecule could

bind to the latter bead via the biotin/streptavidin linkage. Once the

DNA was tethered between the beads, the anti-Dig antibody-coated bead

was moved away at a load rate of ~5.5 pN/s to stretch the tethered

DNA until a secondary structure in the DNA construct was ruptured. After

a specific force was reached (maximum 60 pN), the force was relaxed to

zero at the same load rate to allow the structure to refold before subse-

quent stretching. The single tether was confirmed by a single broken event

for the tethered DNA construct. The raw data were recorded at 1000 Hz in

LabVIEW (National Instruments, Austin, TX) and Savitzky-Golay filtered

to 100 Hz by MATLAB (The MathWorks, Natick, MA), followed by anal-

yses using IGOR (WaveMatrics, Portland, OR) programs. The rupture

force was measured directly from the force-extension (F-X) curves, and

the change in contour length (DL) was calculated from the two data points
flanking the rupture event using the worm-like chain model (32) given

below:

x

L
¼ 1� 1
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kBT
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�1
2

þF

S
; (1)

where x is the end-to-end distance, kB is the Boltzmann constant, T is the

absolute temperature, P is the persistent length (51.95 nm (32)), F is the

force, and S is the elastic stretch modulus (1226 pN (32)). To obtain

the SD in the single-molecule experiments, we performed at least three

independent sets of experiments.
Control experiments for single-molecule studies

We performed a number of control experiments at the single-molecule

level to validate that the unfolding events observed were due to the unfold-

ing of G-quadruplex or i-motif structures. We conducted these experi-

ments by choosing a buffer condition in which the formation of

G-quadruplex or i-motif is discouraged. Alternatively, mechanical unfold-

ing was performed on the DNA construct containing dsDNA handles only

(see ‘‘DNA construct preparation’’ above and Table S1 in the Supporting

Material).
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Calculation of the percentage of formation

For any unfolding events observed in a given buffer, the percentage of un-

folding events was calculated as the ratio of the DNA tethers that contain

folded secondary structures versus the total number of DNA tethers. To

avoid the repetitive counting, each molecule was only counted once. The

results for these experiments are summarized in Table 1 and Table S1.
Deconvolution of populations

In a histogram with two populations (Fig. 2 C (middle panel) and D (bottom

panel), and Fig. S2), the overall population was fit with a two-peak

Gaussian function. To account for the stochastic behavior of individual

molecules, the population under the intersection region was randomly

assigned to one of the populations based on the ratio determined by the

Gaussian fitting. The change in contour length (DL) and unfolding force

histograms were plotted separately for individual populations according

to this random assignment. The change in free energy of unfolding

(DGunfold) was calculated using Eq. 2 (see below) for each population after

this deconvolution.
RESULTS

Chemical footprinting shows that the ILPR
G-quadruplex or i-motif is stable in the context
of dsDNA

To investigate the effect of the complementary strand on
the ILPR tetraplex formation, we first performed DMS
footprinting on a 87-bp DNA, 50-CTA GAC GGT GTG
AAA TAC CGC ACA GAT GCG ACA GGGG TGT
GGGG ACA GGGG TGT GGGG ACA GCC AGC
AAG ACG TAG CCC AGC GCG TC, which consists of
a 50-32P labeled G-rich strand and an unlabeled complemen-
tary C-rich strand (Fig. 1 A). This fragment contains an
ILPR G-quadruplex-forming sequence (underlined)
(24,33,34) sandwiched between a 33-bp sequence and
a 29-bp sequence. After these two strands were mixed, incu-
bated at 95�C, and rapidly cooled in an ice-water bath (the
mix/heat/cool procedure; Fig. 1 A), they were subjected
to DMS footprinting (see Materials and Methods). It is note-
worthy that fast temperature quenching was carried out to be
consistent with our mechanical unfolding experiment in
which the DNA molecules were quickly (~5.5 pN/s) relaxed
to zero force after unfolding (see below). PAGE gel showed
less DMS modification for the four G4 tracts, as manifested
by the reduced band intensity due to less piperidine
cleavage, in a 10 mM MES buffer (lane 1 in Fig. 1 A: pH
TABLE 1 Change in contour length (DL), rupture force (Funfold), free

formation (% formation) for fully folded tetraplex structures under d

pH Salt ions DL (nm) Funfold (pN) DG

7.4 Kþ 6.7 (50.2) 24 (51)

5.5 Liþ 7.2 (50.1) 28 (52)

5.5 Kþ 6.7 (50.2) 17 (51) (left peak) 7.4 (

36 (51) (right peak) 10.4 (

Values in parentheses are SDs.
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5.5 with 100 mM Kþ) or in a 10 mM Tris buffer (lane
5: pH 7.4 with 100 mM Kþ; for detailed quantitation, see
Materials and Methods). Compared with the control in
which G-quadruplex is not expected to form (lanes 2 and
6: without salt; lanes 3 and 7: with 100 mM Liþ), the
increased cleavage protection in the four G4 tracts suggests
the formation of a G-quadruplex employing these G4 tracts.
Calculation of the fold protection showed ~2.5-fold higher
protection of these G4 tracts in Kþ compared with Liþ at
the same pH.

Next, we performed Br2 footprinting to probe the forma-
tion of i-motif in the same dsDNA, which contains a 50-32P
labeled i-motif forming C-rich strand (14,27,35), and an
unlabeled complementary G-rich strand (see sequence
above). However, samples treated with the same procedure
(mix/heat/cool) used in the DMS footprinting did not
show any formation of i-motif in the pH 5.5 buffer with
100 mM KCl (Fig. 1 B). Whereas lane 2 suggests that the
folding of i-motif in the presence of a complementary strand
cannot compete with the duplex formation during the mix/
heat/cool process, lane 4 implies that with the same
process, the coexistence of the i-motif and the G-quadruplex
that formed in the complementary strand is not favored.
This surprising result indicates that in the single-stranded
region complementary to the strand where G-quadruplex
has already formed (Fig. 1 A), i-motif does not fold even
under favorable pH, possibly due to steric hindrance (see
Discussion).

We further evaluated the stability of a preformed i-motif
in the presence of a complementary strand. To that end, the
G-rich and C-rich strands were heated at 95�C and cooled
separately before mixing at 30�C for 15 min (the heat/
cool/mix procedure). Notice that this procedure is
different from the previous practice in which two comple-
mentary strands were mixed before the heating and cooling
steps. Compared with the cytosines in the ACA loops, lanes
1 and 2 in Fig. 1 C show significantly reduced (~9-fold) Br2
cleavage of cytosines closest to the i-motif-formation
regions (cytosines highlighted by the green open circles).
These observations are in accordance with the previous
finding that cytosines in dsDNA are ~10 times more pro-
tected than those in the ssDNA context (28). In the
i-motif-forming region, the protection of the C4 tracts (high-
lighted with vertical black lines) with respect to the loop
cytosines was obvious in the pH 5.5 MES buffer with either
energy of unfolding (DGunfold), bias ofDGunfold, and percentage

ifferent pH and ionic conditions at 23�C

unfold (kcal/mol) Bias of DGunfold (kcal/mol) % Formation

7.8 (51.4) �0.5 18

8.7 (51.0) 1.0 34

50.5) (left peak) 1.2 14

51.2) (right peak) 1.1 19



FIGURE 2 Single-molecule investigation of G-quadruplex/i-motif in ILPR dsDNA. (A) Schematic of the laser-tweezers setup. The interconversion

between tetraplex and duplex is highlighted in the red dotted box. (B) An overlay of seven F-X curves from the same molecule at pH 5.5 in a 10 mM

MES buffer with 100 mM Kþ. The stretching and relaxing curves are indicated by blue dotted and red solid arrows, respectively. Top and bottom insets

are blowup regions that show the refolding (black) and unfolding (green bold line) events, respectively. (C) Change in contour length (DL) histograms.

(D) Unfolding force (Funfold) histograms for fully folded species. (E) Unfolding work histograms obtained from the hysteresis area between the stretching

and relaxing F-X curves. The vertical shaded strips in E represent the work (mean 5 SD) equivalent to the DGunfold (dashed green and gray lines in the

bottom panel correspond to the blue dotted and red solid histograms, respectively). Experiments were performed in 10 mM of Tris buffer (top panel:

pH 7.4, 100 mM Kþ), or 10 mM of MES buffer (middle panel: pH 5.5, 100 mM Liþ; bottom panel: pH 5.5, 100 mM Kþ). Histograms are fitted with

one- or two-peak Gaussian functions.
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100 mM Kþ (lane 1, Fig. 1 C) or Liþ (lane 2), which shows
that under the heat/cool/mix procedure, the preformed
i-motif is stable in the presence of the complementary strand
for at least 15 min. Further evidence indicated that such
a preformed i-motif was stable in dsDNA even after
5 days (see below). As a control, no protection of cytosines
was observed in the pH 7.4 Tris buffer (lane 3, Fig. 1 C) in
which ILPR i-motif was not expected to form (27). These
experiments demonstrate the strong stability of the ILPR
G-quadruplex and the preformed i-motif in the dsDNA
context.
Laser-tweezers experiments confirm the
presence of ILPR tetraplexes in a dsDNA template

The formation of folded structures in the duplex ILPR DNA
was confirmed by laser-tweezers-based single-molecule
experiments (30,31) (Fig. 2 A). The dsDNA construct con-
sisted of the ILPR tetraplex-forming sequence, 50-CACA
GGGG TGT GGGG ACA GGGG TGT GGGG T, which
was sandwiched between two dsDNA handles of 1800 bp
and 2000 bp in length, respectively (see Materials and
Methods). This construct was tethered between two opti-
cally trapped beads through one of the strands to prevent
the accumulation of template superhelicity. The two beads
were moved apart to stretch the DNA construct until an
unfolding event was observed (Fig. 2 B) in a 10 mM Tris
(pH 7.4) or 10 mMMES (pH 5.5) buffer with different ionic
conditions (100 mM Kþ or Liþ). Histograms of the change
in contour length (DL) due to the unfolding, the rupture
force histograms, and the unfolding work histograms are
plotted in Fig. 2, C–E.

In these histograms, the DL (the ~7 nm population in
Fig. 2 C and Table 1) under all three conditions corresponds
to the unfolding of a structure that contains ~25 nucleotides
(see Fig. S1 for calculation). Within experimental error, this
Biophysical Journal 102(11) 2575–2584
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number is identical for the nucleotides employed in a fully
folded G-quadruplex or i-motif structure in ILPR dsDNA.
We also observed a partially folded C-rich species at pH
5.5 with 100 mM Liþ (DL ~4.5 nm population in the middle
panel of Fig. 2 C), which is consistent with previous findings
(27) under similar conditions.

Unfolding force histograms for the fully folded species
showed a single population in a pH 7.4 Tris buffer with
100 mM Kþ (Funfold ¼ 24 5 1 pN; Fig. 2 D, top) or in a
pH 5.5 MES buffer with 100 mM Liþ (Funfold ¼ 285 2 pN;
Fig. 2 D, middle). Because only G-quadruplex can form
under the former condition, and only i-motif can fold in
the latter buffer (Fig. 1) (27,34), we assigned the folded
species at pH 7.4 as the G-quadruplex and those at pH 5.5
as the i-motif. These assignments were confirmed by control
experiments that showed little formation of any fully folded
structures (3.2% at pH 7.4 with 100 mM Liþ; Fig. S2 and
Table S1), which was expected for the respective tetraplexes
(25,27,34). In comparison, the experiments shown in Fig. 2,
C and D, had a percentage of formation in the range of
18–34% (Table 1). It is noteworthy that the unfolding force
for these ILPR structures has a broad distribution, in
similarity to those of tetraplexes in the ssDNA context
(27,34). This may reflect the fact that DNA tetraplex struc-
tures are rather dynamic (36,37). The single-molecule
experiments described here corroborate the footprinting
findings that either G-quadruplex or i-motif can stably exist
in the dsDNA context.
G-quadruplex and i-motif are mutually exclusive
in ILPR dsDNA fragments

In a pH 5.5 buffer (10 mM MES) with 100 mM Kþ, two
fully folded populations with unfolding forces of 17 (51)
and 36 (51) pN were observed (Fig. 2 D, bottom panel,
and Table 1). AG-quadruplex, an i-motif, or a G-quadruplex
with an i-motif can form in the dsDNA in this buffer. To
identify the exact species, we compared the change in free
energy of unfolding (DGunfold) for structures formed in
each buffer. The mechanical unfolding allowed us to
retrieve DGunfold by applying the Jarzynski equation for
nonequilibrium systems (38,39):

DGunfold ¼ �kBT ln
XN
i¼ 1

1

N
exp

�
� Wi

kBT

�
; (2)

where N is the number of observations, kB is the Boltzmann
constant, T is absolute temperature, andW is the nonequilib-
rium work done to unfold the structure(s), which is equiva-
lent to the hysteresis area between stretching and relaxing
F-X curves (see Fig. 2 B as an example, and Materials and
Methods for the detailed calculation). This method recovers
DGunfold by using an exponentially weighted algorithm to
count for the dissipated work during the nonequilibrated
Biophysical Journal 102(11) 2575–2584
unfolding processes. According to this weighting pattern,
smaller unfolding work contributes more to the change in
free energy. Therefore, DGunfold is expected to be smaller
than the average unfolding work performed under nonequi-
librium conditions. When histograms of this unfolding work
were plotted for species in all three buffer conditions, we
indeed observed that values of DGunfold were significantly
below the average work (shaded strips in Fig. 2 E). In
previous studies, this method allowed accurate retrieval of
the DGunfold for hairpins (39) and tetraplexes in ssDNA
(27,34).

As shown in Table 1, the DGunfold values were similar
between a G-quadruplex (7.8 5 1.4 kcal/mol, pH 7.4
with 100 mM Kþ) and an i-motif (8.7 5 1.0 kcal/mol,
pH 5.5 with 100 mM Liþ). When the two populations at
pH 5.5 with 100 mM Kþ were deconvoluted (Fig. 2 D,
bottom panel, and Materials and Methods), similar values
of DGunfold were obtained for these species (DGunfold for
the high-force population: 10.4 5 1.2 kcal/mol; DGunfold

for the low-force population: 7.4 5 0.5 kcal/mol; Fig. 2
E, bottom panel, and Table 1). The accuracy of these
DGunfold values was reflected by their small biases
(within 51.2 kcal/mol; Table 1), which were calculated
according to the literature (40). In fact, these DGunfold

values are in the same range as that of a stand-alone
G-quadruplex or an i-motif in the dsDNA context (see
above). They are approximately half the value that would
be expected to unfold a G-quadruplex and an i-motif
together (16.5 kcal/mol). These results indicate that only
one tetraplex structure (either i-motif or G-quadruplex,
but not both) is formed in a given dsDNA molecule.
Such a scenario is fully consistent with the footprinting
results (Fig. 1, A and B) that indicate only G-quadruplex,
and not i-motif, is formed in the dsDNAwhen complemen-
tary strands are mixed before the heating and cooling steps
(see Discussion below).
Kinetic experiments reveal that G-quadruplex
is more stable than i-motif in dsDNA

To identify each species in the pH 5.5 MES buffer with
100 mM Kþ (Fig. 2 D, bottom), we performed kinetic foot-
printing experiments using the heat/cool/mix proce-
dure. First, two complementary strands used in the
chemical footprinting were heated separately at 95�C for
10 min and quenched rapidly in a water bath set at 30�C,
a temperature significantly below the Tm of the ILPR
G-quadruplex (77�C and 88�C for parallel and antiparallel
G-quadruplexes in ssDNA, respectively (34)) or the Tm of
the ILPR i-motif (37�C (27)) in ssDNA. This facilitates
the formation of respective structures in ssDNA. Note that
even for the ILPR i-motif, 30�C is well within the plateau
of the melting curve that indicates fully folded structures
(data not shown) (27). These two ssDNA strands with pre-
formed tetraplex structures were then mixed at equimolar
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ratio and incubated at 30�C to facilitate the hybridization of
flanking dsDNA handles over 5 days. To allow the DMS or
Br2 footprinting on G-quadruplex (lanes 2–6, Fig. 3 A) or
i-motif (lanes 7–11), respectively, either the G-rich or the
C-rich strand in the DNA mixture was 50-32P labeled.
Control experiments were performed at pH 5.5 with
100 mM Liþ for DMS footprinting (lane 1) or at pH 7.4
for Br2 (lane 12) footprinting assays. The quantitation
(see Materials and Methods) showed that whereas the
G-quadruplex population remained relatively constant
over time (dotted line, Fig. 3 B), the i-motif decreased
slowly (solid curve), and its presence was still significant
after 5 days. In addition, the i-motif population monitored
by Br2 footprinting at pH 5.5 with 100 mM Liþ, a condition
in which the G-quadruplex is not expected to form, showed
a similar decrease in the i-motif population (data not
shown) over 15 min to 3 days. These results suggest that
G-quadruplex is thermodynamicallymore stable than i-motif
in the presence of a corresponding complementary strand.

To correlate the kinetic property of tetraplex species ob-
tained from footprinting experiments, we performed
a kinetic analysis on the mechanical unfolding of these
species in the pH 5.5 MES buffer with 100 mM Kþ. After
unfolding a specific tetraplex structure, we varied the incu-
bation time at 0 pN to allow the refolding of the structure.
FIGURE 3 Kinetic analysis of G-quadruplex and i-motif in ILPR dsDNA

at pH 5.5. (A) DMS (lanes 1–6) and Br2 (lanes 7–12) footprinting of an

equimolar mixture of G-rich and C-rich strands after the heat/cool/
mix procedure (see text). All lanes are from experiments performed in

10 mM of MES buffer at pH 5.5 with 100 mM Kþ, except for lane 1

(with 100 mM Liþ) and lane 12 (pH 7.4). Lanes 2–6 and lanes 7–11 repre-

sent footprinting on the dsDNA samples taken from five intervals during

5 days. Open circles at the right of lane 11 depict the cytosines in the

ACA loops. (B) Fold protection of C4 or G4 tracts over time. DMS (solid

circles) and Br2 (squares) footprinting results are fitted with a dotted line

and an exponential curve, respectively. (C) Rupture force histograms for

structures in the ILPR dsDNA by mechanical unfolding experiments per-

formed in 10 mM of MES buffer at pH 5.5 with 100 mM Kþ. The DNA

molecules were incubated at zero force for 1 s (gray) or 60 s (black) before

unfolding.
We then carried out the next round of the stretching proce-
dure, in which the observation of a rupture event would indi-
cate that a tetraplex had been folded during the incubation
(41). When we analyzed the rupture force populations at
two incubation times (1 s and 60 s), we found that the
high-force species increased its population with respect to
the low-force species over time (Fig. 3 C; the ratio of
high-force to low-force population decreased from 1.6 to
1.1). Because the footprinting assays suggested that the
i-motif population decreases with time, we assigned the
high-force species as G-quadruplex and the decreasing
low-force population as i-motif. This assignment is consis-
tent with the fact that the ILPR G-quadruplex (DGunfold,
10.4 kcal/mol; Table 1) has higher stability than the ILPR
i-motif (DGunfold, 7.4 kcal/mol; Table 1) in the same buffer
(27,34). Compared with the DGunfold for tetraplexes in the
context of ssDNA, changes in the free energy of unfolding
for the tetraplexes in dsDNA were significantly smaller.
This could be due to the reannealing of the complementary
strands after unfolding of the tetraplexes (Fig. 2 A; due to the
force-induced melting discussed below, partial, rather than
full, reannealing is more likely), which reduces the free
energy of the unfolded state with respect to the ssDNA.

Fig. 4 summarizes our observations. In a pH 7.4 buffer
with 100 mM Liþ, the duplex DNA was predominant
(Fig. 4, top left), as suggested by the few unfolding events
(Fig. S2 and Table S1) and lack of G4 or C4 protection in
the footprinting experiments (Fig. 1, A and B). At pH 7.4
with 100 mM Kþ, G-quadruplex formed predominantly
(Fig. 4, top right). In a pH 5.5 buffer with 100 mM Liþ,
i-motif prevailed (Fig. 4, bottom left). Finally, at pH 5.5
buffer with 100 mM Kþ, either G-quadruplex or i-motif,
but not both, formed in each dsDNA (Fig. 4, bottom right).
Whereas the G-quadruplex was stable over time, the i-motif
reduced its population during the same period.
DISCUSSION

The fact that i-motif did not fold in the dsDNA context after
the thermal melting procedure (Fig. 1 B) was probably due
to competition from the dsDNA formation during the rean-
nealing. Previously, ILPR i-motif in the single-stranded
C-rich sequence showed a melting temperature of 37�C
FIGURE 4 Major species under different pH and ionic conditions.

Biophysical Journal 102(11) 2575–2584
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(27), which is much lower than the Tm expected for the
dsDNA with the same sequence (80.5�C by nearest-
neighbor calculation (42)). Therefore, there is a temperature
range (37–80.5�C) in which dsDNA prevails over i-motif.
At lower temperatures, the formation of i-motif becomes
rather difficult due to the insurmountable energy barrier to
separate the two complementary strands that have already
been hybridized. On the other hand, ILPR G-quadruplex
formed in the single-stranded G-rich sequence has a Tm of
~77�C and ~88�C for parallel and antiparallel quadruplexes,
respectively (34). Because these Tm values are comparable
to that for dsDNA, a mixture of dsDNA and G-quadruplex
is expected to form during the cooling. Once the G-quadru-
plex is formed (Fig. 1 A), it generates a single-stranded
complementary region in which i-motif may form.
However, Br2 footprinting showed no evidence of i-motif
formation (Fig. 1 B). This result strongly supports our
laser-tweezers finding that only one tetraplex, in this case
G-quadruplex, can form in dsDNA (Fig. 2 E).

During the mechanical folding/unfolding experiments,
we observed that either ILPR G-quadruplex or i-motif
formed in the dsDNA construct (Fig. 2), which had been
stretched above 30 pN in the previous pulling cycle at
room temperature (23�C). Such a result was in contrast to the
footprinting assays, which showed that only G-quadruplex,
but not i-motif, formed in the dsDNA context. We believe it
is the different melting processes that led to the different
observations. It is known that dsDNA can melt by the
force-induced melting process (43,44). As the tension in
the dsDNA increases, it generates locally melted regions
that can lead to the formation of either a G-quadruplex or
an i-motif. In the thermomelting and reannealing processes,
however, the competition from the dsDNA hybridization
prevents the formation of i-motif but allows G-quadruplex
to form (see above). The unprecedented mutual exclusive-
ness between the G-quadruplex and i-motif may be due to
steric hindrance. It is possible that the formation of one
tetraplex restricts the degree of freedom for the folding of
the other species in the complementary strand. This has
interesting biological implications. For example, it provides
versatility in the regulation, because either i-motif or
G-quadruplex may be involved, and each species has
a different set of interacting proteins (14–16,45–47). In
addition, the different stability or formation kinetics in the
G-quadruplex and i-motif may play an important role in
differential regulation of gene expressions.

In contrast to biochemical techniques, the use of the laser-
tweezers approach to determine DGunfold provides a unique
and straightforward way to evaluate the formation of
tetraplexes in dsDNA. The dsDNA construct used in the
mechanical folding/unfolding experiments closely resem-
bles the physiological situation in which tetraplex-forming
sequences in the promoter are always flanked by dsDNA
regions. Likewise, the force-induced melting is physiologi-
cally more relevant with respect to the thermal melting or
Biophysical Journal 102(11) 2575–2584
denaturant melting. Whereas there exists little possibility
for the latter two processes to occur in vivo, numerous
events, such as DNA replication, RNA transcription, and
cell growth and division, can generate tension in a DNA
template, leading to force-induced melting. The other
unique aspect of the laser-tweezers approach is that it can
evaluate the mechanical stability of the DNA tetraplexes.
Here, the ILPR tetraplex structures in the duplex DNA
demonstrate a mechanical stability (Frupture R 17 pN) larger
or comparable to the stall force of polymerases (14–25 pN)
(48–51). From a mechanical perspective alone, this could
justify a possible regulatory role played by a DNA tetraplex
in the expression of human insulin inside cells in which
dsDNA is the predominant form.
CONCLUSION

By combining two complementary techniques, chemical
footprinting and mechanical folding/unfolding, we were
able to obtain convincing evidence that either G-quadruplex
or i-motif, but not both, forms in the double-stranded ILPR
region. Although our experiments were performed at pH
5.5, we anticipate that general aspects of this conclusion
can provide insights into the formation of tetraplexes in
dsDNA at physiological pH conditions under which recent
studies have shown that, in addition to G-quadruplex,
i-motif can also fold (11,52). It is interesting to see whether
this conclusion holds under in vivo conditions, such as on
a DNA template with negative superhelicity or in a molec-
ular crowding environment.
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