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Analytical Tools To Distinguish the Effects of Localization Error,
Confinement, and Medium Elasticity on the Velocity Autocorrelation
Function
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ABSTRACT Single particle tracking is a powerful technique for investigating the dynamic behavior of biological molecules.
However, many of the analytical tools are prone to generate results that can lead to mistaken interpretations of the underlying
transport process. Here, we explore the effects of localization error and confinement on the velocity autocorrelation function, C,.
We show that calculation of C, across a range of discretizations can distinguish the effects of localization error, confinement, and
medium elasticity. Thus, under certain regimes, C, can be used as a diagnostic tool to identify the underlying mechanism of
anomalous diffusion. Finally, we apply our analysis to experimental data sets of chromosomal loci and RNA-protein particles

in Escherichia coli.

INTRODUCTION

The cytoplasm is a crowded and heterogeneous medium (1).
To understand how this complex and dynamic environment
affects biological processes, single particle tracking (SPT)
can be used to characterize the motion of molecules inside
the cell (2,3). In a typical experiment, the position R() of
a fluorescently labeled molecule is determined in each
frame of a time-lapse movie. From these positions, the
ensemble-averaged mean-square displacement (MSD)

((R(r) = R(0)))

can be calculated and used to classify the behavior as
normal diffusion (when the MSD scales linearly with time
interval 7) or anomalous diffusion (when the MSD scales
nonlinearly) (4-6). Anomalous subdiffusion is characterized
by a power-law scaling: MSD ~7%, where 0 < a < 1. This
type of motion has been observed for endogenous granules
and chromosomal loci in many different cell types (7-16).

Although identifying anomalous behavior is an important
step, the challenge now lies in determining the underlying
mechanism. Several possible biological mechanisms,
including binding interactions (17), cytoskeletal obstacles
(18,19), and cytoplasmic viscoelasticity (20), can give rise
to anomalous subdiffusion in the cell. These physiological
scenarios, which are not mutually exclusive, can have
various kinetic consequences on molecular motion. Thus,
in addition to biological perturbations, one approach to
investigate the origin of anomalous subdiffusion is to iden-
tify mathematical models that describe a molecule’s kinetic
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behavior. Three distinct models—continuous time random
walk (CTRW), obstructed diffusion, and fractional Lange-
vin motion (fLm)—have been developed to explore
different sources of anomalous diffusion (4,5).

‘We note that these models do not necessarily correspond
to unique biological mechanisms. In a CTRW, a particle
moves anomalously due to a broad distribution in waiting
times between jumps (21). Obstructed diffusion occurs in
spatially disordered media, where a particle encounters
obstacles (22). Finally, a particle undergoing fL.m exhibits
long-range temporal correlations in its trajectory. This
“memory” leads to anomalous diffusion (23). Despite
distinct statistical properties, each of these models predicts
the same long-time ensemble-averaged behavior. Therefore,
the ensemble-averaged MSD alone cannot distinguish
between these models. Recently, there has been much effort
to develop additional metrics that can identify the kinetic
origin of anomalous subdiffusion (15,21,24-28).

Previously, we identified the velocity autocorrelation
function (C,),

CP(r) = ((r+7)-¥(1)), 4))

where

—

W(t) = < [R(t+6) = R(1)]

S| =

is the molecule’s velocity, as a diagnostic tool that can
distinguish among distinct mechanisms for anomalous sub-
diffusion (15,20). Specifically, a negative peak in C, is
indicative of an fLm process because the elastic properties
of the medium induce antipersistent behavior in a molecule’s
trajectory. However, a negative C, can also arise in other
contexts. For example, large errors in localization (29),
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which are common for biological samples with poor signal-
to-noise (S/N) ratios, and extreme spatial confinement (30)
can each generate a negative peak in C,. If not properly
identified, these alternative sources of an fLm-like signature
can lead one to incorrectly conclude that a molecule behaves
subdiffusively due to a viscoelastic medium. Here we
discuss how localization error and confinement affect C,
and suggest criteria for determining when these effects are
(or are not) responsible for generating a negative peak in
C, from experimental data sets.

METHODS

Tracking of chromosomal loci and RNA-protein particles was performed as
described in Weber et al. (15). Briefly, live bacterial cells containing fluo-
rescently tagged loci or particles were imaged with a 200-ms exposure
time (tg) at frame intervals (¢7) ranging from 1 s to 10 min. The position
of a fluorescent focus was determined by nonlinear least-squares fitting to
a two-dimensional Gaussian function. Calculations of the ensemble-aver-
aged mean-square displacement and velocity autocorrelation function
were done using custom-written software in MATLAB (The MathWorks,
Natick, MA). Brownian dynamics simulations were performed as described
in Weber et al. (20).

RESULTS AND DISCUSSION
Effect of localization error on C,

SPT experiments are inherently limited by the accuracy with
which a particle’s position can be determined. Many tech-
niques have been developed to find the position of a diffrac-
tion-limited molecule in a fluorescence image (31).
Regardless of the method used, there will be some error in
the measured position such that

- -

R<t) - Rtr‘ue(t) + gta

where R, (1) is the true position of the molecule at time ¢
and € is the localization error at that time. This measure-
ment uncertainty is equivalent to adding Gaussian noise of
mean zero and variance <?2> to each true position (32,33).
The magnitude of the localization error depends on the
S/N of the image (34,35). Bright molecules against a low
background will have a smaller localization error than dim
molecules with high background. When € is comparable to
the root mean-square displacement, then the molecule’s
MSD will appear subdiffusive at short times when plotted
on log-log axes, even for a diffusive process (36).

Just as localization error can lead to apparent subdiffusion
in the MSD (36), it can also generate misleading artifacts in
C,. Specifically, large localization errors will increase the
correlation at zero time-lag and decrease the correlation
when the time-lag 7 equals the time over which the velocity
is calculated, 6. Note that ¢ is typically equal to #, the time
between successive frames in a movie, but we define it more
generally, because varying this value is useful in distinguish-
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ing the effects of localization error, confinement, and
medium elasticity on C, (see below). The effects of locali-
zation error can be seen by writing C, in terms of true posi-
tions and localization errors, rather than the measured
positions, and expanding the averaged quantity:

1

= y<(§(7+5) —R(n))-(R(3) — R(0))), @)

1 = B .
- y <[Rtr‘ue(7 + 5) + €r46 — (Rtru()(T) (3)

+ E'T)] : []_é,,.m)((S) + a; - (ﬁtrue(o) + gO)Da

= % ((Royue(T40) —Royue (7)) * (Ryrue (8) — Rope (0)))
+ % ((Riue (T + 0) — Ripue (7)) (& — &)
+ é <(gf+6 - ar) : (ﬁtr'lte(é) - ﬁti‘ue(o))>

t5 (€15 — &) (& — &))- 4)

For a diffusive process, the second and third terms in the
expansion (Eq. 4) are equal to zero. Because the true posi-
tions and localization errors are uncorrelated and both
have a mean of zero, i.e., (Ry.(f)) = 0 and (¢;) = 0, then
(Ryue(t)-€) = 0. Removing these terms, we can reduce
our expression to
1, - = o

co(r) = 57 {(Rurie(7+0) = Rirue (7)) (Ryrie (9)
— 1 ®)
- Rrrue(o))> + y (gr+5 + gT) : (25 + E‘0)

At zero time-lag,

CO(r = 0) = iz [((Rine(8) = Rine(0))*) +2(&)], (6)

5
1 1 2
== {41) <5 - gtE) + 2(¢ >} ; @)

where

- N 2 1
<(Rfr'm)(6) - Rtrue(o)) > = 4D (6 — §IE>

is the MSD in two dimensions at time-lag ¢ with diffusion
coefficient D and finite exposure time 7z (29,35,37,38).
Localization error causes the apparent correlation at 7 = 0
to be greater than the true value. This deviation can lead
to an overestimation of D. At the fast acquisition limit,
when tz — 0, this result is equivalent to that already
described by Martin et al. (36) for the MSD.
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The more problematic consequence of localization error
occurs when 7 = 0, where

CO(r = ) = 5 (Foul28) = Rl ®) Brcd) o

- R’,,.,,e(())» - <€2>],

1[1
=5 [thE - <22>]. ©)

The positive correlation (1/3 Dtg) arises from averaging the
positions of a particle as it moves during the finite exposure
time (29,37,38). When #g is small compared to 6, the first
term is negligible. Thus, a large localization error can
produce a negative value for C, when the time-lag equals
the temporal resolution of the experiment, even for a diffu-
sive process. This artifact raises questions as to the useful-
ness of C, as a diagnostic tool. If a negative peak in C,
does not unambiguously correspond to a viscoelastic
medium, as was originally proposed (15), then C, cannot
reliably distinguish among distinct anomalous mechanisms.

Nevertheless, if the negative peak in C, arises from local-
ization error rather than memory, then the magnitude of
CE,(S)(T = 0) should decrease as ¢ increases because the
localization error in the numerator of Eq. 9 is independent
of time. For experimental data sets, velocity measurements
can be resampled such that § becomes any integer multiple
of the frame interval, tz: 6 = n X tp where 1 < n < N/2 and
N is the total number of frames in the movie. To facilitate
comparisons between simulations and experimental data
using different probes, we normalize our calculations by
Cffs)(q' = 0) (Eq. 7). Thus, the negative peak due to localiza-
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tion error in our normalized C, will decay more slowly than
1/6 but should still approach zero as 6 — .

We confirmed this prediction by simulations. We simu-
lated movies of diffusing particles with varying S/N, as
described in Weber et al. (15), and calculated C, for integer
values of 0. As shown in Fig. 1 A, C, = 0 for all time-lags
7 > 0 when S/N is large. However, a sharp negative peak is
observed for short 7 at small S/N (Fig. 1 D). Importantly,
this negative peak decays as ¢ increases. This J-dependent
decay is characteristic of the artifactual negative autocorre-
lation caused by localization error.

In contrast, the negative peak in C, of chromosomal loci
in Escherichia coli persists for all ¢ (Fig. 2 A). This obser-
vation is consistent with the ensemble-averaged MSD,
which exhibits robust subdiffusive scaling for all timescales
examined (15). Therefore, the negative value of C, observed
in our experiments is not caused by localization error. RNA-
protein particles also exhibit a negative peak in C, that does
not appear to decay systematically, although the exact
o-dependence is difficult to assess due to the statistical noise
inherent in this smaller dataset (n = 323 vs. n = 7903 for
chromosomal loci; see Fig. 2 B).

In conclusion, the velocity autocorrelation function can
serve as a diagnostic tool to distinguish localization error
from other causes of apparent anomalous subdiffusion.
The artifactual negative peak in C, that arises due to local-
ization error occurs in the same noise range that causes the
MSD to appear subdiffusive (36), even for truly diffusive
processes. Thus, this problem should not arise when the
S/N is high and localization error is low. To experimentally
determine whether the S/N is sufficiently high, the
ensemble-averaged MSD of a live, dynamic sample can be
compared to a fixed, stationary sample. Any apparent

S/IN=7.0

FIGURE 1 Simulation results for C(r)/

CP(r=0) versus 7 for particles undergoing
% normal diffusion with a S/N of (A) o, (B) 7.0, (C)

2035, or (D) 1.4, where S/N =,/MSD(7 = 0)/| €|
and 7z = 0. The term CE,‘s)(q') was calculated for
10 integer values of ¢ from 1 to 50 (blue to red).
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Chromosomal loci

RNA-protein particles

Weber et al.

n = 7903

n=323 s

FIGURE 2 Experimental measurements of
CO(7)/C (1 = 0) versus 7 for (A) chromosomal
loci and (B) RNA-protein particles, calculated for
integer values of ¢ from 1 to 50 s (blue to red).

10 20
T(9)

motion in the fixed sample will be due to measurement
errors. We note that measurement errors can arise not only
from localization error, but also stage drift. Drift can be cor-
rected either by subtracting the motion of bright fiduciary
markers (39) or by correlation analysis of fixed samples
(33). If the apparent motion of the fixed sample is small
compared to the motion in the live sample, then C, can be
used reliably to identify fLm anticorrelations.

We showed previously that the error in our experimental
measurements (which includes both localization error and
stage drift) was more than an order-of-magnitude smaller
than the motion of chromosomal loci (15). Thus, the subdif-
fusive scaling and negative C, that we observe arises from
an fLm mechanism and is not simply an experimental arti-
fact. Furthermore, we have shown here that varying the
velocity discretization 6 can also be used to identify the
true source of a negative value of C,.

Effect of confinement on C,

Burov et al. (30) recently reported that a continuous time
random walk (CTRW) process can exhibit a negative peak
in C, when confined to a finite space. From this observation,
the authors concluded that C, could not distinguish between
CTRW and fLm mechanisms under confinement. Indeed,
confinement and memory can both generate negative peaks.
However, the shape of C 56)(7') versus 7 is different in each
case. In this section, we demonstrate that examination of
C, across a range of discretizations 6 can distinguish
between confinement and memory as physical mechanisms
generating a negative peak in C,.

Consider a particle moving diffusively inside a box. At
short timescales, it will move freely inside the box, only
rarely encountering the boundaries. Its motion will appear
diffusive, with the ensemble-averaged MSD increasing line-
arly with time, as if the box were not present (see Fig. 3 A,
inset). At intermediate timescales, when the distance trav-
eled is comparable to the size of the box, the particle will
begin to experience correlations as it reflects off the bound-
aries. Here, its MSD will cross over from diffusive to subdif-
fusive scaling and its velocity autocorrelation function will
exhibit negative peaks. Finally, at long timescales, the
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particle will bounce off the walls back-and-forth many
times, and so its motion will become uncorrelated again.
However, the confining boundary prevents the particle
from moving outside the box, so the MSD plateaus to
a constant value.

At these long timescales, Cffs> (7) quickly decays from 1 at
7=010 0 forall 7 #+ 6 (Fig. 3 A). When 7 = ¢, a sharp peak
of —0.5 occurs due to the confined geometry. Because the
particle explores the entire box, the average position of
the particle at any time 7 is in the middle of the box,

i

R0y = =

where L is the length of the box. Furthermore, its position at
time ¢ will be uncorrelated from its position at time 7, such
that

(R(0)-R(1)) = (R(1))(R(1"))

and finally, because

L L3
/ xXldx = =,
0 3

then (R(1)-R(r)) = L*/3.
Thus, we can calculate CE,é)(T = 5)/C,(,6>(7 =0) as
follows. In the numerator,

CO(r = 0) = = (R20) — R(9)-(R@) ~Ro)),  (10)
= 5 (R0)R®) - (R20)-R(0)

— = (RO)-R(0)) + 5 (B0 RO). (D)

e )
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Finally, we plot the analytical form of C, for an fLm mech-
. anism (see Eq. 1 in Weber et al. (15)) where o = 0.7, demon-
In the denominator, )
strating that the shape of the confined C, falls below the fLm
1,5 - = = C, for time-lags 7 /0 < 1.
(1 =0) = — ((R(6)—R(0))- (R(6) — R 14 v e .
¢,’(r=0) 52 ((R(6)—R(0))-(R(9) ), (14) We contrast these results for a confined diffusive particle
with the same analysis of a free (unconfined) particle mov-
... 1. . ing via fLm. As shown in Fig. 3 C, ct? (T)/CE,(;) (r=0)
= ?<R(5)‘R(5)> - ?<R(6)'R(0)> decays slowly from 1 and reaches a negative value that
1 1 (15) depends on « (see Eq. 1 in Weber et al. (15)). When fLm
-5 (R(0)-R(5)) + 3 (R(0)-(R(0))), C, is plotted against a rescaled time-lag, 7 /6, the individual

=5 l=-3- +=|, (16)

== - A17)

Finally,

7: = —. (18)

This negative correlation arises regardless of the mechanism
of motion, and will appear for diffusive and subdiffusive
processes alike. In Fig. 3 A, we plot Cl(,é)(fr)/Cl(,é) (r=0)
against 7 for integer values of ¢ from Brownian dynamics
simulations of a diffusive particle moving in a confinement
sphere with radius » = 3. The ensemble-averaged MSD is
shown in the inset, compared with a free (unconfined)
particle. In Fig. 3 B, we rescale the x axis by 6 to collapse

curves collapse onto a universal curve that matches our
analytical result (Fig. 3 D). Thus, comparison of the shape
of C, for different values of ¢ to the analytical expression
for C, of an fLm process can distinguish between confine-
ment and memory.

Now we repeat this analysis on experimental data from
chromosomal loci in E. coli. At timescales of ~1-100 s,
loci move distances smaller than the size of the cell,
such that their motion is not affected by the cell wall/
membrane. This can be seen from the constant power-law
scaling of the ensemble-averaged MSD (Fig. 4). The differ-
ence in magnitude of motion along the length and width
axes of the cell has been observed before in E. coli (12)
and Vibrio cholerae (11) and may reflect an underlying
structural anisotropy in the bacterial chromosome. At
longer times, 7 > 100 s, the MSD scaling changes as locus
motion extends to lengthscales comparable to cell size. In
untreated cells, the MSD becomes superdiffusive in the
length direction due to cell elongation. In the width direc-
tion, the MSD reaches a plateau because the cell-width
remains constant over the cell cycle. However, when cell
growth 1is inhibited by the antibiotic rifampin, the MSD

Biophysical Journal 102(11) 2443-2450
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FIGURE 4 Ensemble-averaged MSD for chromosomal loci in untreated
and rifampin-treated cells. The MSD was calculated separately along the
length (x) and width (y) axes of the cell.

reaches a plateau in both directions after ~1000 s. Rifampin
also increases the apparent diffusion coefficient D,,,, as
shown previously (15). Thus, we can observe locus motion
in three different regimes: 1) preconfined, from 1 to 100 s;
2) crossover, from 20 to 2000 s; and 3) confined, from 600
to 28,000 s.

Weber et al.

In Fig. 5, we plot cl? (T)/C‘@)(T = 0) for the 84’ locus in
E. coli cells against 7 for a range of 6. At short times, when
loci are not yet confined, C, decays slowly to a negative
peak of —0.31 = 0.19 (Fig. 5 A). When the time-lag is re-
scaled, individual C, curves collapse onto a universal curve,
showing excellent agreement with our analytical result for
fLm with o = 0.4 (Fig. 5 B). These results are indistinguish-
able from those for loci in rifampin-treated cells at the same
timescales (data not shown).

At intermediate timescales, when the MSD in the
width axis crosses over from a subdiffusive power-law to
a plateau (Fig. 4), the peak of C, becomes more negative
as the curve decays more rapidly (Fig. 5 C). Here we plot
c’ (r)/C ) (7 = 0) along the width axis for untreated cells.
These results are analogous to those presented in Fig. 3 A for
a confined diffusive particle, except that the value of
C1(;6>(T =) for short 7 is initially negative, and not zero,
because of memory. The collapsed curves (Fig. 5 D) show
poorer agreement with the theory, particularly at time-lags
T/6 < 1.

Finally, at long timescales, when the MSD plateaus in
rifampin-treated cells (Fig. 4), C, decays rapidly to 0 and
reaches a peak of ~—0.5 when 7 = ¢ (Fig. 5 E). The rescaled
curves do not overlap and are significantly lower than

FIGURE 5 Experimental measurements of
8 CO(1)/C® (7 = 0) for chromosomal loci in the
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predicted by fLm for 7 = 6 < 1 (Fig. 5 F). Thus, at long
timescales, confinement can mask the correlations due to
memory. Indeed, as Burov et al. (30) conclude, C, cannot
distinguish between subdiffusive (or diffusive) mechanisms
at timescales for which the MSD is plateaued due to confine-
ment. However, if shorter timescales are accessible, then C,
can serve as a diagnostic tool. If C, exhibits negative peaks
at timescales where the MSD has a power-law scaling, then
these correlations arise from memory due to fLm and not
confinement. A CTRW in this preconfined regime would
produce Csé)(T =0)=0.

Furthermore, our analysis demonstrates the importance of
examining Cl(,(;)(’T) over a range of discretizations. A single
curve with a negative peak can be difficult to attribute to
localization error, confinement, or memory. However, the
collapse of many curves when the time-lag is rescaled to
7/0 is distinct for each case and can be distinguished exper-
imentally, as shown in Fig. 5.

CONCLUSION

As new methods are developed to analyze SPT data, it is
important to understand the regimes within which these
metrics are valid and how experimental uncertainties or addi-
tional biological processes may affect the measurement.
Here, we have explored three phenomena—Ilocalization
error, confinement, and subdiffusion by fLm—that each
produce a negative peak in C,. Given only a single C, curve,
it is difficult to interpret what the underlying cause of anticor-
relation is. However, this ambiguity can be resolved by exam-
ining the shape of C, across a range of discretizations 0.
Furthermore, the behavior of the ensemble-averaged MSD
can also be used to identify the source of a negative peak in C,.

Fig. 6 depicts the ensemble-averaged MSD and C, in
three different regimes: 1) noise-limited; 2) subdiffusive;
and 3) confined. In the noise-limited regime, the slope of
the ensemble-averaged MSD is shallow but increases at
longer times. C, has a sharp negative peak at short time-
lags that decays as 0 increases. In the subdiffusive regime,
the ensemble-averaged MSD follows a power-law and C,
has a stable negative peak independent of 0. Finally, in the
confinement regime, the ensemble-averaged MSD has
reached a plateau and is constant with 7. C, decays quickly
to zero except for a —0.5 value at 7 = 6.

In conclusion, the velocity autocorrelation function can
serve as a diagnostic tool. The effects of localization error,
confinement, and medium elasticity can be distinguished
by analyzing the shape of C, as a function of 6. Applying
this analysis to experimental data, we can unambiguously
conclude that chromosomal loci in E. coli move subdiffu-
sively by an fLm mechanism at timescales of 1-100 s, and
become confined at timescales longer than 1000 s. Calcula-
tion of C, across a range of values of ¢ should be a useful
tool in identifying the source of anticorrelations in the
trajectories of molecules inside living cells.
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FIGURE 6 Ensemble-averaged MSD and C%%)(r)/C'%) (1 = 0) for a pop-
ulation of molecules in three different regimes: noise-limited, subdiffusive,
and confined. (A) Ensemble-averaged MSD versus 7 and (B) C, in the noise-
limited regime, where & = 1. (C) Ensemble-averaged MSD versus 7 and
(D) C, in the subdiffusive regime, where « = 0.7. (E) Ensemble-averaged
MSD versus 7 and (F) C, in the confined regime, where L = 60.
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