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Identity-by-Descent-Based Phasing and Imputation in Founder
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Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables
powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from
genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on
pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a
new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships
in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially
reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies
regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low
error rate. Genet. Epidemiol. 35:853–860, 2011. r 2011 Wiley Periodicals, Inc.
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INTRODUCTION

The haplotype phase, the co-occurrence of alleles on a
chromosome, is a vital piece of information underlying
many powerful gene mapping methods including haplo-
type association, linkage, and genotype imputation
[de Bakker et al., 2005]. While high-density genotyping
arrays provide accurate genotypes on the order of a
million single nucleotide polymorphisms (SNPs) from a
single individual, they do not reveal which alleles of
heterozygous sites reside in the same DNA molecule.

If samples are appropriately related in a known
pedigree, phase can be inferred by segregation, but often
samples are not closely related. In the absence of efficient
experimental methods for haplotype inference [Fan et al.,
2010; Kitzman et al., 2010], the past decade has seen the
development of several computational approaches for
estimating the haplotype phase. These include imperfect
phylogeny [Halperin and Eskin, 2004], haplotype copying
[Li and Stephens, 2003], and localized clustering methods
[Browning and Browning, 2007; Koivisto et al., 2003;
Scheet and Stephens, 2006]. All these assume that one is
analyzing a relatively small, homogenous sample of
individuals from a large outbred population. In such a
case, the individuals are assumed to be distantly related,

descending from a small set of founders hundreds or
thousands of generations ago and possibly having under-
gone observed mutations since their most recent common
ancestor. These assumptions hold to a large extent in many
well-studied populations and sample sets, such as 120
‘‘Utah residents with ancestry from northern and western
Europe’’ [Frazer et al., 2007] or 3,000 people ‘‘born in
England, Wales or Scotland’’ [The Wellcome Trust Case
Control Consortium, 2007]. In contrast, these assumptions
are not met when a large enough proportion of the
population has been genotyped, as is increasingly the case
for isolated founder populations such as Iceland [Kong
et al., 2008] or Finland [Jakkula et al., 2008]. As attention
shifts back from common to rare variants [Manolio et al.,
2009] isolates with founder effects have revived potential
for genetic research, because rare variants can more readily
drift to higher frequencies hence facilitating phenotype
mapping [Holm et al., 2011; Kenny et al., 2009].

Recently, Kong et al. [2008] introduced a ‘‘long-range
phasing’’ approach for inferring the haplotype phase in
sample sets that cover a relatively large proportion of the
population. Their key insight was that, while it is
improbable for a distantly related pair of individuals,
say third or fourth cousins, to share a genomic locus
identical-by-descent (IBD) from this recent common
ancestor, if they do share such a locus, they are likely to

r 2011 Wiley Periodicals, Inc.



share quite a long stretch of neighboring loci, 10–12.5 cM
on average. This long segment of DNA is likely to contain
a thousand or more SNP markers on a commercial
genotyping array making it possible to deduce IBD from
the identity-by-state (IBS) of the observed markers.

Kong et al. demonstrated the method on genotype data
which covered more than 10% of the census population of
Iceland where they estimated that on average 19 geno-
typed individuals share a genomic locus IBD from a
historical common ancestor. This large sample from the
relatively small population of Iceland allowed them to
implement the long-range phasing with a fairly straight-
forward rule-based method which does not take full use of
the data but disregards partly inconsistent information
[Hickey et al., 2011; Kong et al., 2008]. Their method
phases a fixed segment of a chromosome at a time, making
it hard to locate recombination sites and phase markers
around them.

Recently, Genovese et al. [2010] presented a Hidden
Markov Model (HMM) for IBD detection between a pair of
diploid individuals. For phasing multiple individuals,
they formulate a combinatorial problem which again is a
break from probabilistic framework, with similar issues as
with the Kong et al. method.

These observations prompt the development of a fully
probabilistic model for accurate haplotype phasing and
IBD inference in a large, densely genotyped and relatively
closely related set of individuals. Others have recently
described methods for IBD inference in such sample sets
[Browning and Browning, 2010, 2011; Gusev et al., 2009].
Here, we introduce a new model for haplotype phasing,
which is inspired by the long-range phasing approach of
Kong et al. [2008] and by Gallager codes [1962] from
coding theory.

We demonstrate that our method is able to provide
accurate genome-wide haplotype phase and IBD relation-
ship information, both in a simulated founder population
and in real data from the Orkney islands. We also
contribute an open-source software implementing
the described method. Our main contribution is the
model-based approach for long-range phasing, which
has intuitive parameterization, probabilistic output,
and clear structure, which can provide insights to
distribution of haplotypes and lends itself to further
methods development.

MATERIAL AND METHODS

A GRAPHICAL MODEL FOR IBD AND HAP-
LOTYPE PHASE

Following the long-range phasing approach [Kong et al.,
2008], we compare pairs of individuals to locate genomic
segments likely to descend from a recent common ancestor
without internal recombination events. Starting from this
information, we infer the phase of the heterozygous
markers and refine IBD constraints between the haplo-
types of all pairs of individuals. More technically, we use
the HMM to approximate the IBD process along each pair
of diploid genomes [Genovese et al., 2010] and combine all
pairwise HMMs to form a Bayesian network. The most
probable haplotype phases and IBD relationships are
inferred from the unobserved variables of the network
with the Min-Sum (also known as Max-Product or Viterbi)
algorithm [Kschischang et al., 2001].

We approximate the IBD process along a pair of
diploid genomes with a five state continuous time Markov
model running along the chromosome. The states
of the model capture a subset of the possible IBD
relationships between the chromosomes; there is
one state for the case when the two individuals do not
share a haplotype IBD, and one for each of the four cases
when the two individuals share exactly one haplotype
IBD. While there are 15 different ways for a subset of four
haplotypes to be IBD [Thompson, 2008], the others either
involve the two haplotypes within an individual being
IBD, in which case the phasing is trivial, or contain one of
our four cases as a subcase that contains all the phasing
information. The five-state model therefore allows sub-
stantial computational simplification while preserving
sufficient detail for our main goal of long-range haplotype
phasing.

The IBD process is parameterized with rate g, of moving
from the non-IBD state to an IBD-state, and with rate l, of
moving from an IBD state to the non-IBD state. The rates g
and l also define the expected lengths of IBD and non-IBD
segments given IBS. Since the IBD process is continuous
time along the chromosome, it is possible for the IBD
relationship to ‘‘flip’’ to a different pair of haplotypes
between adjacent pairs of markers. The transition prob-
abilities are calculated as exp(tQ), where Q is the rate
matrix and t is the genetic distance between adjacent
markers estimated from the fine scale genetic map [Myers
et al., 2005].

We limit the probability of moving to an IBD state
between adjacent markers to the unconditional probability
of IBD in the population, i.e. the kinship coefficient. For
isolated populations with high kinship and dense geno-
typing arrays, this limit only affects a small portion of
distantly positioned markers.

On each SNP marker, the hidden state of the HMM
emits a pair of diplotypes, that is ordered pairs of
alleles, one diplotype for each individual. The emission
probabilities follow the allele frequencies observed
in the sample and Hardy-Weinberg equilibrium, given
the IBS constraint imposed by the IBD status of the
hidden state. For example, take one individual
who is homozygous for the minor allele and another one
who is heterozygous. If they are IBD on one chromosome,
they must share the minor allele and the emission
probability for the pair of diplotypes is f2(1�f) with minor
allele frequency of f. If they are not IBD, the probability is
f3(1�f).

To use the model for phasing, we combine the
HMMs for all pairs of individuals into a Bayesian network.
The network illustrated in Figure 1, includes observed
variables g for the genotypes and hidden variables
h for the diplotypes and p for the IBD relationship
between pairs of individuals. A variable ha

j encodes
the diplotype for individual a on marker j. The distribution
of the observed genotype ga

j depends essentially
deterministically on the underlying diplotype ha

j but
allowing for some noise from the genotyping assay.
The network also includes an IBD variable pa;b

j for each
SNP j and pair of individuals a and b. This variable
encodes the IBD relationship between the two individuals
at marker j.

The conditional probability of pa;b
j given the diplo-

types on current marker and the IBD state on the
previous marker is calculated by inverting the emission
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probabilities of the HMM described above via a version of
Bayes rule that also incorporates the transition probabil-
ities
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To complete the model, the diplotypes ha
j are given an

uniform prior. A more sophisticated prior for the
diplotypes might help with imputation of missing data,
but choice of the correct prior is not obvious as the trivial
allele frequency based prior was empirically found to lead
to strong overcalling of the major alleles when genotype
observations are missing. It is likely that the uniform prior
acts as a counter balance for overcounting the alleles in the
case where more than two individuals share a single allele
IBD, a known problem of pairwise methods in pedigree
analysis.

IMPLEMENTATION

We implemented the SLRP program to find the
approximate Maximum-A-Posteriori (MAP) estimates of
the hidden variables in the Bayesian network of Figure 1,
that is the phased diplotypes h and the IBD assign-
ments p. While in principle it is possible to find the
exact MAP values either deterministically, with the
Junction Tree algorithm, or stochastically with Monte
Carlo methods, we see that the deterministic Min-Sum
algorithm provides sufficiently accurate approximations
quickly and reliably.

The Min-Sum algorithm is a variant of a general class of
message passing algorithms similar to e.g. Cluster
Variation Method, LDPC and Turbo Code decoding,
Forward-Backward, Viterbi and Loopy Belief Propagation
algorithms [Durbin et al., 1998; Gallager, 1962; Kikuchi,
1951; Kschischang et al., 2001; Pearl, 1988]. The algorithm
works by sending vector-valued messages along the edges
of the graphical model until convergence. Intuitively, the
message along an edge describes the source node’s belief
about the MAP value of the target node. After the message

updates have converged, the incoming messages for each
value x at each node j approximate the max-marginal
value Mj(x) 5 maxfP(y1,y2,y)|yj 5 xg. We therefore find
the MAP setting by selecting the value at each node that
maximize Mj(x). The general message update rules along
with the specific formulas for all the messages in the SLRP
model are given in the supplementary material.

The messages must be updated on every step of the
algorithm for all sites and pairs of individuals. This is
extremely demanding even for a modest number of
individuals and sites. To decrease the computational
demand, we do one initial scan over all pairs of
individuals to find the segments that can plausibly
harbor IBD haplotypes. This initial scan is essentially a
Forward–Backward [Kschischang et al., 2001] pass over
each pair after which sites with more than a 50%
probability of being IBD are called plausible IBD segments.
The full-message passing is executed only over the
plausible IBD segments which decreases the computa-
tional and memory requirements to a small fraction at the
cost of not being able to call phase on sites without a recent
ancestor common with someone else in the data set.

One potential issue with the Min-Sum algorithm is
ensuring convergence. With appropriately dampened
message updates [Murphy et al., 1999], we have not
experienced these problems. In our experience, with an
expected non-IBD segment length of 1 cM and an expected
IBD segment length of 10 cM, the SLRP message updates
converge within our default of 30 iterations.

SIMULATED TEST DATA

To test the accuracy of SLRP, we simulated genotype
data with a model resembling isolated human populations
genotyped with current commercial genotyping arrays.
The simulation used SimuPOP [Peng and Amos, 2008] to
follow a panmictic population founded by 100 individuals
growing exponentially to 18,000 in 12 generations.
Recombinations were added during each mating accord-
ing to the published genetic map [Myers et al., 2005] and
the alleles were transmitted perfectly without mutation.
We assume lack of mutations because the expected
number of mutations on the observed sites during the
time of the simulation is negligible (less than one observed

Fig. 1. Bayesian network for the SLRP model of haplotype phasing and IBD inference. The observed genotype of an individual a at

marker j is in variable ga
j , which depends on the diplotype ha

j . Variable pa;b
j indicates the type of IBD between a pair of individuals a

and b at the marker j. IBD, identity-by-descent; SLRP, systematic long-range phasing.

855IBD-Based Phasing

Genet. Epidemiol.



mutation during the simulated time on all genotypes
in the sample).

The simulation followed the genealogy of 7,505 SNP
markers spanning the whole of chromosome 20 of length
1.09 M or 62 Mbp. The mean SNP density is thus 6,885 per
Morgan. The tracked markers were chosen to be those
present both in HapMap [Frazer et al., 2007] and on
Illumina 370k genotyping arrays. The founding genotypes
were taken from HapMap using 100 unrelated Utah
residents with Northern and Western European ancestry.
For each of 10 independent simulation runs, we sample a
set of 190 individuals and store the identity of the
founding ancestors for each tracked marker. From this
information, we produce the genotypes, the true phase,
and the true IBD relationships needed for the accuracy
estimates.

REAL TEST DATA

We estimate the accuracy of SLRP on real data by
phasing a set of individuals recruited and genotyped as a
part of the Orkney Complex Disease Study (ORCADES).
ORCADES is an ongoing family-based study in the
isolated Scottish archipelago of Orkney. Orkney comprises
17 inhabited islands with ‘‘Mainland’’ being the largest
with 15,000 current inhabitants out of a total of 19,900. The
genetic history of Orkney is characterized by a fairly stable
population size for the last 1,000 years and by strong
endogamy within different islands and villages. Most of
the present day chromosomes are thought to have come to
Orkney either with the Norse Viking conquest after AD
800 or via Scottish immigration in the centuries around the
transfer of Orkney to Scottish rule in AD 1468. The
participants recruited to the ORCADES study have a
minimum of two grandparents of Orcadian ancestry, with
�93% having three or four Orcadian grandparents
[McQuillan et al., 2008; Wilson et al., 2001]. The samples
were geneotyped for on Illumina HumanHap300v2 array
with 310,844 markers passing QC. The average SNP
density is 8,817 SNPs per Morgan.

The data set used for the evaluation consists of 599
individuals, out of whom 169 have at least one genotyped
parent. We used the genotyped parents to phase the
offspring on sites where the offspring was heterozygous
and at least one of the parents was homozygous. None of
the parents was included in the 599 individuals used for
phasing so as to avoid the trivial case where SLRP is
expected to excel.

We evaluate the phasing accuracy of the method on
simulated and real genotyping data by comparison to
Beagle [Browning and Browning, 2007] and Mach [Li et al.,
2010]. We also compare accuracy of IBD detection to

Beagle IBD and fastIBD and GERMLINE [Gusev et al.,
2009].

RESULTS

The described model results in significantly better
phasing in isolate populations than the state of the art
general purpose phasing algorithms. Simultaneously SLRP
provides both the phased haplotypes and accurate IBD
relationships between the phased chromosomal fragments.
When comparing the different programs, one should
remember that the other methods have been designed
for general outbred populations and usually make a
phasing and imputation call on every site, unlike SLRP
which refuses to make a call when faced with too much
uncertainty. If a phase call is required on every site, the
SLRP output can be post processed with a general purpose
phasing tool, such as IMPUTE2 [Howie et al., 2009], which
can take partly phased haplotypes as input.

PHASING ACCURACY

Table I shows the mean switch error rates and phasing
yield on the simulated data for SLRP, Beagle and Mach.
For complete, error free genotypes SLRP produces a full
order of magnitude fewer switch errors than Beagle.
Approximately 10–30% of the switch errors occur in
locations where SLRP is uncertain about the phase and
has left the marker unphased.

SLRP retains most of its accuracy also when faced with
noisy or missing data. Even with up to 5% missing
genotypes or 0.2% genotyping error rate, SLRP results in
several fold fewer switch errors than the general purpose
methods. Only when the error rate becomes exceedingly
high at 2% does SLRP result in a high switch error rate and
low phasing yield. This feature remains also when most of
the errors are on a subset of markers (20% with 10% error
rate, 80% with 0.1% rate). As with other phasing and
imputation methods, stringent QC of the input data is vital
before applying SLRP.

Mach performs well on phasing the isolate sample,
especially when faced with missing or erroneous input.
While the switch error rate is typically two to three times
as much as with SLRP, it is still moderate and stable over
the realistic span of data missingness and error. This
performance is likely due to the limited variability in our
simulated sample, which can be wholly captured with the
Mach model.

The SLRP model disregards the event when an
individual is Homozygous By Descent (HBD), which is
individuals whose two chromosomes are IBD to each
other. This could result in loss of power in IBD detection

TABLE I. Mean number of switch errors per Morgan on simulated chromosome 20 data at sites where SLRP calls a
phase

Perfect 1% Missing 5% Missing 0.2% Errors 2% Errors

Beagle 3.0.4 63.5 68.3 98.5 73.1 182.0
Mach1 11.9 11.8 12.4 13.3 29.0
SLRP 2.7 2.8 3.4 5.1 28.8
SLRP yield (%) 92.8 92.7 91.9 87.8 45.3
SLRP within phased segments 1.7 1.7 2.1 3.6 21.0

SLRP, systematic long-range phasing.
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and in phasing of individuals IBD to the HBD segment.
We studied this by calculating the switch error rate and
phasing yield on sites IBD to HBD regions. To estimate the
significance of the result, we permuted the individuals
1,000 times for each independent simulation and calcu-
lated the yield and phasing error on the used sites. We
observed that HBD does not have effect on phasing
accuracy (P 5 0.24) and the phasing yield is slightly better
on IBD to HBD regions (93% vs. 96%, P 5 0.04). It seems
likely that the certainty of phase on homozygous regions
overcomes the potential power loss due to modeling
inaccuracy of HBD.

Running SLRP on an outbred population with low
levels of long-range IBD does not produce useful results.
When we phased 5,484 individuals from outbred
European populations (WTCCC NBS and 58BC sets
and HapMap CEU children using 7,293 SNP markers
on chromosome 20. Density of 6,748 SNPs per Morgan),
the phase was called for only 15% of the heterozygous
sites.

IBD ACCURACY

The core of the long-range phasing methods is the
identification of IBD stretches from the dense genotyping
data. As a by-product of phasing, SLRP outputs the
inferred IBD relationships between the phased haplotypes.
This information can be used further for mapping disease
loci with population-based linkage analysis or IBD-
mapping methods [George et al., 2000; Purcell et al., 2007].

We compare our method to three other recently
published IBD detection methods, GERMLINE, Beagle
IBD, and Beagle fastIBD [Browning and Browning, 2011,
2010; Gusev et al., 2009]. All of them define IBD similarly
to us, as a segment of chromosome inherited in one piece
from a common ancestor without internal recombinations.
We use the simulated chromosome 20 data to estimate the
sensitivity and the false discovery rate (FDR) for each of
the methods. The results of the comparison are presented
in Table II.

The two notable features of the comparison are the high
accuracy of SLRP compared to greedy pairwise methods
GERMLINE and fastIBD and high sensitivity compared to
Beagle IBD, which integrates over phase uncertainty. What
is somewhat surprising is the poor performance of Beagle
IBD on this data set. Our view is that this is because Beagle
estimates background LD and haplotype frequencies from
the same data that are used for IBD detection. This
background estimation works when there is a negligible

amount of true IBD in the data but falls apart in
cases like ours, where most individuals have at least
one, often many, other individuals IBD on most
of the markers. In this situation, the background
LD and haplotype frequencies are overestimated and
accordingly the IBD probabilities are underestimated. This
discrepancy highlights the difference between isolated
populations and the outbred populations for which Beagle
was designed.

Beagle fastIBD and to some extent GERMLINE provide
good sensitivity but with a cost of FDR. The FDR
advantage of SLRP is probably due to the additional
power gained by requiring consistency between the
haplotype phase and the IBD relationships.

IMPUTATION ACCURACY

Most modern phasing methods are able to impute
genotypes missing at random from the input data.
We compared the imputation accuracy of our method to
Beagle and Mach on simulated data with some
genotypes set as missing. We set either 1% or 5% of the
input genotypes to missing at random and ran the
phasing/imputation as previously. SLRP only imputes
haplotypes for which it has found a long shared segment
with another individual; hence we can often only
impute one allele for a missing genotype. Table III
provides the error rates for the three phasing tools. The
errors are counted as discordances with the observed
genotype at sites that SLRP imputes fully.

SLRP excels in imputation accuracy over Beagle and
Mach. While SLRP refuses to make an imputation call on
about a quarter of the missing alleles, the error rate of the
calls is an order of magnitude lower than with Mach,
which in turn has error rate one third of that of Beagle.
This accuracy is as expected given the high-phasing
accuracy of SLRP as demonstrated above.

TABLE II. Median false discovery rate and sensitivity for detecting IBD on simulated chromosome 20 data

Perfect (%) 1% Missing (%) 5% Missing (%) 0.2% Errors (%) 2% Errors (%)

Beagle FDR 1.0 1.1 1.3 1.1 1.5
Beagle fastIBD FDR 8.4 8.4 8.7 8.3 6.7
Germline FDR 10.0 9.9 9.5 9.5 6.0
SLRP FDR 1.5 1.5 1.5 1.3 1.7
Beagle Sensitivity 12.1 13.2 22.0 19.3 13.4
Beagle fastIBD Sensitivity 87.1 87.0 87.0 85.8 71.6
Germline Sensitivity 69.8 68.7 62.6 65.4 10.1
SLRP Sensitivity 68.5 68.3 67.6 55.0 17.6

SLRP, systematic long-range phasing; FDR, false-discovery rate; IBD, identity-by-descent.

TABLE III. Output genotype error rate on simulated
chromosome 20 data at sites where SLRP imputes

1% Missing (%) 5% Missing (%)

Beagle 3.0.4 4.04 5.34
Mach1 1.65 1.85
SLRP 0.09 0.11
Yield for alleles 76 74

SLRP, systematic long-range phasing.
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PHASING REAL DATA

With the real data, the performance of the different
methods, shown in Table IV, was similar to the results on
the simulated data. SLRP performed the best by a large
margin, with 3.6 switch errors on average per Morgan,
followed by Mach with 17 errors per Morgan and Beagle
with 23 errors per Morgan. SLRP called phase for 92% of
the heterozygous sites. None of the methods showed
excessive error rate biases on any chromosome.

Because of the family-based sampling in the ORCADES
study, the phased set includes fairly closely related
individuals even after excluding the parents. To test how
the methods behave with fewer more distantly related
samples, we rephased a subset of 327 individuals such that
no two individuals share more than 20% of their genome
as estimated by plink [Purcell et al., 2007]. This limit is
equal to the expected IBD sharing of first cousins. The
selected subset still includes 102 individuals with geno-
typed parents enabling accuracy estimation.

All the phasing methods perform worser with fewer more
distantly related samples than with the closely related data
set. Somewhat surprisingly, the phasing accuracy of SLRP
did not drop significantly but instead the performance loss
manifested as a drop in yield. While SLRP could phase 92%
of the heterozygous sites with the full data, it would only
phase 74% in the more distantly related data set. Of the
other phasing algorithms, Mach makes a third more switch
errors on the distantly related set of individuals but Beagle
seems to suffer by more than doubling its error rate. While
removing the closely related individuals makes the sample
set conform more to the models used by Mach and Beagle,
their increased error rate is likely due to decreased statistical
power provided by the smaller input.

In SLRP, the expected length of the non-IBD IBS segment
allows trading of the phasing accuracy for phasing yield.
We tried to improve the yield by halving this value to
0.5 cM, which did improve the yield on the distantly
related data set to 81% with the cost of one more switch
error per Morgan. The relatively low yield in the distantly
related data set as compared to our simulation is
consolidated by observing that Orkney has had a stable
population size for an extended period of time, resulting in
well-mixed recombinant haplotypes. This is in contrast
with our simulation, which has a rapidly expanding
population resulting in long shared haplotype segments.
It is also possible that the ORCADES data set contains an
unappreciated amount of migrant haplotypes.

COMPUTATIONAL COMPLEXITY

The complexity of the SLRP model scales linearly in the
number of markers and quadratically in the number of

individuals. The quadratic scaling causes the program to
be quite slow on inputs with large numbers of individuals.
For phasing and IBD detection in the set of 190 simulated
test individuals used here, SLRP is the second fastest of the
four programs after Beagle FastIBD. SLRP used 65 CPU
minutes for IBD detection and phasing on average while
Beagle fastIBD used 18 CPU minutes and Beagle IBD used
11 CPU minutes for phasing and 87 CPU minutes for IBD
detection. The most time consuming program was Mach,
which took 17 CPU hours to phase each test set. For
phasing the larger ORCADES set with 599 individuals,
Beagle the fastest, using one CPU hour to phase chromo-
some 20, followed by SLRP using 7.5 CPU hours and Mach
taking 37 CPU hours.

The time and memory requirements of SLRP can be
traded with the yield and accuracy by altering the model
parameters, most importantly the expected non-IBD IBS
segment length. Depending on the amount of IBD in the
data set, SLRP spends much of the total time in message
passing within the plausible IBD segments. With longer
expected non-IBD segment length, the initial scan finds
fewer plausible IBD segments hence there is less work to
be done in the actual phasing part of the process.

Several technical tricks, such as limiting the depth of
coverage of the plausible IBD segments and careful
windowing of the message passing, can be used to
improve the efficiency of the SLRP algorithm (see
supplementary methods). Together these options have
enabled us to process a large Finnish data set of more than
13,000 individuals genotyped on more than 300,000 SNP
markers in 2,700 CPU hours using at most 67GB of
memory.

DISCUSSION

Inspired by the long-range phasing approach of Kong
et al. [2008], we have developed a new genotype phasing
model that explicitly considers IBD segments, and have
shown that our implementation of the model, SLRP, gives
excellent performance on simulated and real data for
isolated founder populations.

It is interesting to compare the underlying model used
by SLRP to that used by haplotype copying methods, such
as Mach, PHASE, and IMPUTE [Howie et al., 2009]. SLRP
has a quadratic number of loading variables pa;b each with
a small fixed size state space and number of connections,
whereas Mach etc. have a linear number of loading
variables, each of which can be connected to any other
haplotype. The overall time complexity is similar, but
SLRP explicitly models several individuals sharing a
haplotype, whereas the copying methods model, at any
one place, each haplotype being related to just one other.

The SLRP dependency structure is distantly inspired by
the Low Density Parity Checking codes (Gallager codes)
from coding theory [Gallager, 1962; Kschischang et al.,
2001]. In Figure 1, the diplotypes can be seen as the
received message and the IBD indicators as the parity
constraints, resulting in a MAP decoding algorithm similar
to our Min-Sum algorithm.

In the Bayesian network of Figure 1, it might be argued
that the dependencies between the diplotypes h and the
IBD indicators p should be reversed such that the
diplotypes would depend on IBD status and not vice
versa. While the reversal would make intuitive sense, with

TABLE IV. Switch errors per Morgan on the ORCADES
data over all chromosomes

Full data Distantly related

Beagle 3.0.4 23.5 62.5
Mach1 17.2 23.3
SLRP 3.6 3.8
SLRP yield (%) 92 74

SLRP, systematic long-range phasing; ORCADES, Orkney
Complex Disease Study.
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n individuals it would result in each diplotype h having a
massive conditional probability table (CPT) with 4�5n�1

entries. In the current formulation the CPT for each h has
only four entries. Since the size of the CPT for the IBD
indicators would differ only by a constant factor (16 in
fact), the formulation in Figure 1 is much more compact
and hence more time and memory efficient than the
alternative.

We have shown that the SLRP software and the
associated probability model results in more than twofold
improvement in switch error rate over general purpose
phasing algorithms on samples from isolated founder
populations. The IBD relations between the chromosomes
are an explicit and integral part of the model and it might
be possible to use those in disease gene mapping in isolate
populations [George et al., 2000; Purcell et al., 2007].

WEB RESOURCES

Software implementation of Systematic Long Range
Phasing https://github.com/kpalin/SLRP
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