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SUMMARY

Growing microtubule ends serve as transient binding
platforms for essential proteins that regulate micro-
tubule dynamics and their interactions with cellular
substructures. End-binding proteins (EBs) autono-
mously recognize an extended region at growing
microtubule endswith unknown structural character-
istics and then recruit other factors to the dynamic
end structure. Using cryo-electron microscopy,
subnanometer single-particle reconstruction, and
fluorescence imaging, we present a pseudoatomic
model of how the calponin homology (CH) domain
of the fission yeast EB Mal3 binds to the end
regions of growing microtubules. The Mal3 CH
domain bridges protofilaments except at the micro-
tubule seam. By binding close to the exchangeable
GTP-binding site, the CH domain is ideally posi-
tioned to sense the microtubule’s nucleotide state.
The samemicrotubule-end region is also a stabilizing
structural cap protecting the microtubule from
depolymerization. This insight supports a common
structural link between two important biological
phenomena, microtubule dynamic instability and
end tracking.
INTRODUCTION

The microtubule cytoskeleton is essential for establishing the

dynamic intracellular architecture of eukaryotic cells. Microtu-

bules are polar, tube-like polymers consisting of a-/b-tubulin

heterodimers. They explore intracellular space by switching

between phases of growth and shrinkage. This property, called

dynamic instability (Mitchison and Kirschner, 1984), is crucial

to microtubule functions (Desai and Mitchison, 1997). In living

cells, growing microtubule plus ends provide a transient binding

region for a large number of plus-end tracking proteins (+TIPs)

that either regulate microtubule dynamics or mediate interac-
tions with other cellular substructures such as the plasma

membrane, organelles, or kinetochores of chromosomes in

mitosis. +TIPs are therefore crucial for the microtubule cytoskel-

eton’s role in cell division, polarization, and differentiation (Akh-

manova and Steinmetz, 2010; Galjart, 2010).

Biochemical in vitro reconstitutions (Bieling et al., 2008, 2007;

Dixit et al., 2009; Komarova et al., 2009; Montenegro Gouveia

et al., 2010; Zanic et al., 2009; Zimniak et al., 2009) have estab-

lished that members of one class of evolutionarily

conserved +TIPs, the end-binding proteins (EBs), bind autono-

mously, with their N-terminal calponin homology (CH) domain,

to an extended region at the growing microtubule end (Hayashi

and Ikura, 2003). They bind to this end region with more than

10-fold higher affinity compared to the microtubule lattice

(Maurer et al., 2011) and turn over with fast binding/unbinding

kinetics (Bieling et al., 2007). EBs recruit other +TIPs via their

C-terminal EB homology domain,making themhubs for a protein

interaction network at growing microtubule ends. Some of these

recruited proteins have pronounced effects on the dynamic

properties of microtubules (Komarova et al., 2002; Montenegro

Gouveia et al., 2010), suggesting that misregulation of cellular

microtubule dynamics following EB loss of function (Busch and

Brunner, 2004; Komarova et al., 2009; Tirnauer et al., 2002)

arises primarily from defects in recruitment of these proteins.

High-resolution structural studies have provided detailed infor-

mation about the interaction of the EB homology domain with

proteins containing either CAP-Gly domains (Hayashi et al.,

2005; Honnappa et al., 2006) or SxIP motifs (Honnappa et al.,

2009), but the structural basis of selective EB binding to growing

microtubule ends is unknown.

Growth at microtubule ends occurs by the addition of

a-/b-tubulin heterodimers with GTP bound in the exchangeable

site of b-tubulin. Lattice incorporation triggers GTP hydrolysis

so that the vast majority of the microtubule is believed to

consist of GDP-tubulin. The microtubule lattice comprises

two types of tubulin-tubulin contacts: longitudinal contacts

along protofilaments and lateral contacts between the parallel

tubulin protofilaments. In cryo-electron microscopy (cryo-EM)

images, protofilaments at growing microtubule ends appear

more or less straight, either blunt-ended (Mandelkow et al.,

1991), flared (Kukulski et al., 2011), or forming gently curved
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two-dimensional (2D) sheets that close into a straight tube

(Chrétien et al., 1995), whereas depolymerizing GDP microtu-

bules always display individual highly curved protofilaments

curling outward, ‘‘peeling off’’ from the microtubule end (Chré-

tien et al., 1995; Mandelkow et al., 1991). This illustrates a topo-

logical competition between the spontaneous curvature of GDP

protofilaments and the maintenance of lateral contacts neces-

sary for a tubular lattice. Because GDP protofilaments within

the lattice are constrained into a metastable straight conforma-

tion, the stability of the growing microtubule requires the exis-

tence of a capping structure strong enough to keep protofila-

ments straight, protecting the older part of the microtubule

from disassembly. This property is attributed to a layer of GTP-

loaded tubulins at the very end of the microtubule, the so-called

GTP cap (Carlier et al., 1984; Dimitrov et al., 2008; Mitchison and

Kirschner, 1984). The structural origin of the stabilizing effect of

the GTP cap is not understood but is mostly attributed to allo-

steric protofilament straightening as a consequence of nucleo-

tide-dependent longitudinal interactions (Ravelli et al., 2004;

Rice et al., 2008).

Several proposals have been made as to which structure EBs

bind at growing microtubule ends, including that they recognize

2D tubulin sheets (Vitre et al., 2008). Alternatively, low-resolution

EM studies suggested that EBs could bind to the microtubule

seam(s) of microtubules polymerized in vitro (des Georges

et al., 2008; Sandblad et al., 2006). However, seam binding

does not explain the high levels of EB binding to microtubule

ends as measured by fluorescence microscopy of microtubules

polymerizing in vitro (Maurer et al., 2011). Finally, it was also

suggested that EBs might recognize the GTP cap (Zanic et al.,

2009). However, the GTP cap is believed to be rather short, prob-

ably consisting of only around two tubulins per protofilament

(Caplow and Shanks, 1996; Drechsel and Kirschner, 1994).

This would be much shorter than the EB binding region, which

consists of several hundreds of binding sites (Bieling et al.,

2007, 2008; Dixit et al., 2009). Moreover, EBs bind with widely

varying affinities to microtubules grown in the presence of

different GTP analogs—notably with enhanced affinity for

GTPgS microtubules compared to GDP microtubules (Maurer

et al., 2011)—suggesting that EBs might instead sense a tubulin

conformation that is linked to tubulin’s GTPase cycle at growing

microtubule ends. The key structural difference between the

growing microtubule-end region to which EBs bind with high

affinity and the older part of the microtubule is at present still

unknown, largely due to a lack of high-resolution structural

information.

Here, we set out to address this crucial question using

a combination of cryo-EM, subnanometer single-particle recon-

struction, and fluorescencemicroscopy of a reconstituted in vitro

system. We show that EBs bind between protofilaments except

at the microtubule seam. They contact four tubulins and are

ideally positioned to sense the g-phosphate state of the b-tubulin

nucleotide-binding pocket. The EB binding region is character-

ized by enhanced lateral interprotofilament contacts that protect

the microtubule from depolymerization. In combination, our data

reveal an unanticipated relationship between the EB binding

region and a stabilizing cap structure at microtubule ends crucial

for microtubule polymer dynamics.
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RESULTS

The Mal3 CH Domain Binds to GTPgS Microtubules
between Protofilaments except at the Microtubule
Seam
We used cryo-EM to determine how the CH domain of Mal3, the

fission yeast EB, binds to GTPgS microtubules, which were

previously shown to be static mimics of growing microtubule

ends (Maurer et al., 2011). We found that Mal3 favors

the assembly of GTPgS-tubulin into microtubules with mostly

13 protofilaments (Figure S1B available online), consistent

with a previous study of EB1 in presence of GTP-tubulin (Vitre

et al., 2008). Three-dimensional (3D) reconstruction from

segments of 13 protofilament GTPgS microtubules decorated

with an N-terminal fragment of Mal3 containing its CH domain

(Mal3143) generated an asymmetric structure with 15 Å resolution

(Figures 1, S1C, and S1D). Mal3143 binds regularly between

neighboring protofilaments (B lattice, 12 such contacts per 13

protofilament microtubule) except along the seam (the single A

lattice contact between protofilaments) of GTPgS microtubules

(Figure 1B). This selectivity suggests a highly specific binding

site. The longitudinal distance between bound CH domains is

8 nm (corresponding to one tubulin heterodimer), resulting in

a stoichiometry of 12 CH domains per 13 tubulin dimers. This

is in good agreement with the recently reported approximately

stoichiometric binding measured by fluorescence microscopy

(Maurer et al., 2011). A similar pattern of binding—including

absence of interaction at the seam—was seen for Mal3143 on

GDP microtubules (Figures S1E–S1H). This is in contrast to

previous reports (des Georges et al., 2008; Sandblad et al.,

2006) (see Discussion). Our data suggest that the affinity differ-

ence of Mal3 binding to growing microtubule ends compared

to older parts of the microtubule lattice (Maurer et al., 2011)

is not a result of different binding positions nor of dramatic

A-to-B lattice transitions within the microtubule but rather

a consequence of conformational rearrangements within its

binding site.

Mal3 CH Domain Binds at the Corner of Four Tubulin
Dimers
Averaging B lattice contacts of the Mal3 CH domain on GTPgS

microtubules produced an 8.6 Å resolution reconstruction in

which the secondary structural elements of tubulin and the CH

domain of Mal3 are clearly resolved (Figure 2A, gray and green

envelope, respectively; Figure S2; Movie S1). This subnanome-

ter resolution allowed a- and b-tubulins to be distinguished

unambiguously (Figure 2B) and a pseudoatomic model of the

Mal3-binding site to be generated (Figure 2D). The Mal3 CH

domain contacts four different tubulin dimers (Figures 2A and

2C), providing an explanation for how the CH domain distin-

guishes between B lattice contacts and the microtubule seam:

the binding site is formed by two adjacent a-tubulin contacts

(toward the microtubule plus end) and two adjacent b-tubulin

contacts (toward the minus end). This configuration is not

present at the seam where lateral a-b contacts exist (Figure 2C).

In binding between protofilaments, the EB footprint is distinct

from that of microtubule-based motors kinesin and dynein,

which step along the protofilament ridge (Mizuno et al., 2004).



Figure 1. Mal3 Binds between Microtubule Protofilaments except at the Seam

(A) 15 Å cryo-EM reconstruction of 13-protofilament Mal3143-GTPgS microtubules, displayed with the microtubule plus end oriented up. Mal3143 (green) binds

the cleft between protofilaments (gray) making B lattice contacts.

(B) Same reconstruction as in (A) but rotated 180� around the microtubule axis. The A lattice seam is only marginally occupied.

See also Figure S1.
Mal3143 contact sites identified in our pseudoatomic model

are conserved within a- and within b-tubulins from different

species but not between a- and b-tubulins, explaining why

the CH domain can distinguish between the two subunits of

the tubulin heterodimer (Figure 3A). In addition, Mal3143 resi-

dues close to the microtubule surface (Figure 4A, blue mesh)

match closely to conserved residues on the surface of its CH

domain (Figure 4A, blue and yellow spacefill residues). These

data strongly suggest that the structural basis of the recogni-

tion of growing microtubule ends by EBs is conserved. Our

structure also shows that the microtubule-binding interface of

the CH domain is much more extensive than suggested by

a previous in vivo mutagenesis study (Slep and Vale, 2007),

where deleterious mutations lie at two of the identified Mal3-

tubulin interfaces (on b3- and b4-tubulin) (Figure 4B, red

spacefill; Figure S3, red asterisks below alignment), whereas

silent mutations lie away from these regions (Figure 4B, green

spacefill; Figure S3, green asterisks below alignment). In

particular, our model reveals that as well as additional contacts

with two a-tubulins (a1 and a2), Mal3143 also contacts b3-

tubulin at lower radius on the H3 helix, which, strikingly, is

directly connected to the exchangeable nucleotide site

(E site, Figure 3B).

In order to test whether our model derived from monomeric

Mal3 on GTPgS microtubules reflects the behavior of full-

length EB end tracking on dynamic microtubules, we selected

conserved Mal3 residues from the tubulin contact sites

(Figures 5A and 5B), produced the corresponding single-point

mutants in full-length dimeric Mal3-GFP (Figure S4), and tested

their ability to track the ends of microtubules grown with GTP

in vitro. Using total internal reflection fluorescence (TIRF)

microscopy, we found that most selected Mal3 mutants either

abolished or severely weakened end tracking (Figure 5; Movie

S2), validating our model. Inverting charges at either of the

contacts with a-tubulin (Mal3K63D-GFP and Mal3K76D-GFP)

resulted in weaker binding of Mal3 (Figures 5D–5F), whereas
the Mal3Y56A-GFP mutant (b4-tubulin contact) also strongly

reduced Mal3 binding (Figures 5D–5F), indicating that the

exact charge and geometry of these interfaces are important

for interaction of Mal3 with the microtubule. However, when

we investigated the importance of the b3-tubulin H3 contact,

we found that the Mal3Q89E-GFP mutant had strongly

impaired microtubule-end tracking, whereas Mal3Q89A-GFP

bound with higher affinity to the entire microtubule than the

wild-type (WT) (Figures 5C–5F; Movie S2). A recent in vivo

study reported a similar enhancement of lattice binding and

loss of end tracking for a Mal3 mutation at the same position

(Mal3Q89R; Iimori et al., 2012). This finding together with our

in vitro mutational analysis of the EB-H3 helix interface under-

lines the importance of this contact for EB microtubule-end

tracking.

The only other protein known to bind to the corner of four

tubulin heterodimers is doublecortin, a microtubule-stabilizing

protein that is unrelated to EBs (Fourniol et al., 2010). Together,

these two proteins define a polymer-specific bindingmode char-

acterized by bridging of microtubule protofilaments. Compar-

ison of the subnanometer models of doublecortin bound to

GDP microtubules and Mal3143 bound to GTPgS microtubules

reveals, however, that the contacts between the corners of the

four tubulin monomers and each of these proteins are not

identical and, in particular, the contact with the b-tubulin H3 helix

appears to be unique to EBs (Figure 6A).

Enhanced Lateral Interprotofilament Contacts
Characterize the Microtubule Structure Recognized
by the EB CH Domain
In Mal3143-decorated GTPgS microtubules, as in all subnanom-

eter microtubule reconstructions reported to date (Fourniol

et al., 2010; Li et al., 2002; Sui and Downing, 2010), interproto-

filament lateral contacts that involve secondary structure

elements facing the microtubule lumen are observed: the M

loop (S7-H9) of one subunit contacts the N loop (H1-S2) and
Cell 149, 371–382, April 13, 2012 ª2012 Elsevier Inc. 373



Figure 2. A Pseudoatomic Model of the EB Microtubule-Binding Site

(A) 8.6 Å reconstruction of the Mal3143-microtubule interface docked with atomic structures of tubulin (Fourniol et al., 2010) (cryo-EM map, gray surface;

2XRP.pdb; a in blue, b in cyan ribbons) and with a homology model of the Mal3 CH domain (see Experimental Procedures; Slep and Vale, 2007) (map, green

surface; Mal3 CH atomic model, green ribbons).

(B) Lumenal surface of the reconstruction shown in (A). Dotted circles highlight a region where tubulin monomers clearly differ in the EMmap, delineated by the M

loop, H6-H7 loop, and helix H7: the EMmaps show an empty taxol-binding pocket in b-tubulin (Nogales et al., 1999), whereas an extra density is seen in a-tubulin,

which corresponds to an insertion in loop S8-S9 specific to a-tubulin. This enables unambiguous assignment of the a- and b- tubulin densities. A schematic of this

lumenal view shows the localization of Mal3 CH domain at the corner of four tubulin heterodimers.

(C) Schematic view of the outer microtubule surface illustrating that the Mal3-binding interface does not exist at the seam (red arrow).

(D) Close-up of the interface (map rendered at a higher threshold compared with B, gray surface; Mal3 CHmodel, rainbow-colored ribbons). The residue number

of the boundaries of the Mal3 CH domain and the C termini of a- and b-tubulin are labeled, as are tubulin helices a2-H4, b3-H3, b3-H12, and b4-H11.

See also Figure S2 and Movie S1.
H2-S3 loop of the neighboring tubulin subunit (Figure S5).

However, strikingly, we also observed an enhanced layer of

lateral contacts at higher radius in GTPgS microtubules (Figures

6B and S5). These enhanced lateral contacts involve tubulin

helices H3 that adjoin H9 of neighboring tubulins, presumably

because of a structural change—possibly a positional shift—

in the H3 helix of b-tubulin in the GTPgS microtubule. This

might be part of the structural alteration that is sensed by

EBs. A similar but smaller lateral contact between a-tubulins

(Figure S5) is likely to result from cooperative conformational re-

arrangements within the lattice. The importance of the H3

contacts in our structure is consistent with alanine scanning

mutagenesis in yeast, showing that mutations in a- and

b-tubulin H3 cause temperature sensitivity (Reijo et al., 1994;

Richards et al., 2000). The structural change in the b-tubulin

H3 helix could be triggered by nucleotide hydrolysis, sensed

by H3 via loop T3, which might be mimicked by the presence

of a bulky group such as the g-S-phosphate (or BeF3�; Maurer

et al., 2011) occupying the g-phosphate-binding pocket. EBs

appear therefore to be optimally positioned to sense nucleotide

hydrolysis-dependent structural changes in the microtubule

lattice.
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The EB Binding Region Is a Stabilizing Structural Cap
Protecting the Microtubule from Depolymerization
The enhanced interprotofilament contacts recognized by EBs

could have a potentially crucial role in stabilizing the lattice of

dynamic microtubules. If so, we would predict that such

contacts are lost before microtubule depolymerization, thereby

reducing EB affinity at microtubule ends prior to catastrophe.

We tested this hypothesis by recording dynamic microtubules

in vitro in the presence of full-length dimeric Mal3-GFP by TIRF

microscopy. We measured the Mal3-GFP comet intensity as

a read-out for the presence of the enhanced interprotofilament

contacts and asked whether the Mal3-GFP comets disappear

before catastrophe. This was indeed the case (Figures 7A and

7B). The average comet intensity began to decay several

seconds before catastrophe and was strongly reduced at the

moment of catastrophe (Figure 7C). This observation suggests

two possible interpretations: either the loss of Mal3 or a confor-

mational transformation within the microtubule lattice leading to

the loss of most of the EB binding region causes a catastrophe. It

is unlikely that the loss of Mal3 from the microtubule end triggers

catastrophe because in vitro the addition of EBs is known to

increase the catastrophe frequency under the conditions used



Figure 3. Structural Features of the GTPgS Microtubule Recognized by the CH Domain

(A) Front view of the four tubulin monomers (a in blue, b in cyan) contacted by the Mal3 CH domain, with tubulin residues within 5 Å of Mal3 displayed as

a molecular surface with colored heteroatoms. Sections of sequence alignments of tubulins from five different species (a in blue, b in cyan) covering the Mal3

contact regions (green boxes). Residues conserved between a- and b-tubulin are shown white on black. Secondary structures of a- and b-tubulin (1JFF-A) are

depicted below.

(B) Cross-section of the Mal3-GTPgS microtubule map at the interdimer interface, seen from the plus end. GTPgS (spacefill) was docked in the b-tubulin

nucleotide pocket. The g-S-phosphate group is coordinated by the T3 loop (magenta) at the N-terminal extremity of the b-tubulin H3 helix (magenta) contacted by

the EB CH domain (green).

See also Figure S6 and Movie S1.
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Figure 4. EB Residues Important for Growing Microtubule-End Recognition

(A) Two views of conserved EB surface residues at the microtubule interface. The blue mesh depicts the surface of Mal3 CH domain residues found to be <5 Å

away from tubulin residues in the pseudoatomicmodel. Almost all of the conservedCHdomain surface residues found in the five EBs (spacefill atoms) form part of

the contact surface. An especially large fraction of conserved residues (yellow spacefill) contact the b-tubulin H3 helix, whereas other conserved residues (blue

spacefill) are part of the other tubulin contacts.

(B) The identified Mal3-GTPgS microtubule interface provides a structural explanation for previous mutagenesis results obtained with EB1 (Slep and Vale, 2007)

(left, front view; right, end-on view from the minus end). Previous mutations shown to disrupt plus-end tracking of EB1 in cells correspond to amino acids

contacting the microtubule surface (red spacefill). Our structure shows that these patches are part of contact sites between the CH domain and b3- or b4-tubulin.

In contrast, mutations without a noticeable effect are distant from the microtubule surface (green spacefill).

See also Figure S3.
here (Bieling et al., 2007; Komarova et al., 2009). Thus, we can

define the extended high-affinity EB binding region as a stabi-

lizing zone at growing microtubule ends. The loss of this zone

appears to trigger depolymerization. Surprisingly, EBs were

found to decrease the lifetime of their own high-affinity binding

sites and hence the size of the protective zone at microtubule

ends (Maurer et al., 2011). Within the framework of the model

of the extended protective structural cap, this provides a direct

explanation for the catastrophe-promoting effect of EBs in vitro.

DISCUSSION

Our data provide an explanation for the structural basis of micro-

tubule-end tracking by EBs, a conserved class of proteins

forming the core of a dynamic interaction network at growing

microtubule ends. EBs recognize a structural feature on the

microtubule surface that is intimately linked to dynamic insta-

bility. They distinguish between the growing microtubule-end

region and the older part of the microtubule by sensing a tubulin

conformation that stabilizes the microtubule end and that trans-

forms with time into the metastable GDP lattice.
376 Cell 149, 371–382, April 13, 2012 ª2012 Elsevier Inc.
Our subnanometer reconstruction shows that the EB CH

domain bridges neighboring protofilaments by precisely con-

tacting four tubulin dimers arranged in the B lattice configuration,

characteristic for almost all interprotofilament contacts in the

microtubule. This binding mode explains the large number of

EB binding sites at growing microtubule ends (Maurer et al.,

2011) and emphasizes that the microtubule-end region can

serve as a binding platform for many hundreds of +TIP mole-

cules. The contacts between the EB CH domain and the micro-

tubule are evolutionarily conserved, reflecting the conservation

of the phenomenon of microtubule-end tracking and also ex-

plaining why proteins from different species can be used inter-

changeably in reconstituted in vitro assays (Bieling et al., 2007;

Zimniak et al., 2009) and in in vivo rescue experiments (Browning

et al., 2003). It seems likely that EBs would not bind at the very

ends of growing microtubules due to incomplete formation of

their binding sites. In contrast, major effectors of dynamic insta-

bility such as destabilizing kinesins (Helenius et al., 2006) and

other motors are expected to be able to localize to the very

ends of microtubules because they bind on the ridge of single

protofilaments (Mizuno et al., 2004).
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Figure 5. Validation of EB-Tubulin Contact Sites using

Reconstituted Dynamic Microtubule-End Tracking

(A) Localization of single mutated residues on the Mal3

microtubule-binding surface: residues chosen for mutations

(red) in the context of all Mal3 residues within 5 Å of tubulin

(rendered as a blue mesh).

(B) Extract of a sequence alignment of different EBs: Mal3

residues contacting the microtubule (blue boxes) and residues

that were mutated in this study (red asterisks).

(C) TIRF microscopy images of Alexa 568-labeled microtu-

bules (red) grown in the presence of GTP and wild-type (WT) or

mutant Mal3-GFP (green) as indicated.

(D) TIRF microscopy images illustrating the differences

between the Mal3-GFP fluorescence signal (green) for WT and

the different mutants on single microtubules. Imaging condi-

tions and display settings are identical for all six experi-

ments. The regions used to measure Mal3-GFP intensity at the

microtubule end and on the lattice are indicated by red lines.

(E and F) Quantification of Mal3-GFP intensities at the micro-

tubule ends and on the lattice. Error bars represent standard

error of the mean (SEM). (E) Mean intensities relative to the

mean WT intensity at growing microtubule ends are shown.

Concentrations were 30 nM Mal3-GFP, 22 mM tubulin, and

1 mM GTP. (F) Same as (E) with 300 nM Mal3-GFP.

See also Figure S4 and Movie S2.
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Figure 6. Additional Lateral Contacts Are Observed in the GTPgS

Lattice

(A) Comparison of the cryo-EM structures of a Mal3-GTPgSmicrotubule (8.6 Å

resolution) and a GDP microtubule stabilized by doublecortin (Fourniol et al.,

2010) (DCX; EMDB ID 1788; 8.2 Å resolution) viewed from the microtubule

minus end. An extra interprotofilament contact involving b-tubulin helix H3

(dashed circle) is present in the GTPgS microtubule structure but not in the

GDP microtubule structure.

(B) Close-up views of the GTPgS and GDP microtubule cryo-EM structures

described in (A), focused on the area involved in the additional b-tubulin lateral

contact. The two cryo-EM maps are displayed with an equivalent threshold,

representative of the whole protein complex volume.

See also Figure S5 and Movie S1.
Our data also explain why EBs do not bind to the microtubule

seam, where lateral a-tubulin/b-tubulin contacts form a disconti-

nuity in the tubulin lattice. Previous, contradictory suggestions

that Mal3 selectively binds to the seam were based on lower-

resolution data from considerably smaller datasets and from

more heterogeneous GDP microtubule samples (des Georges

et al., 2008; Sandblad et al., 2006). We observed that, in

comparison to GTPgS microtubules, GDP microtubules in the

presence of saturating concentrations of Mal3143 produced

a less homogenous dataset, presumably due to low-affinity

binding (Maurer et al., 2011). Although this prevented us from

obtaining a reliable subnanometer reconstruction for decorated

GDP microtubules, our low-resolution reconstruction neverthe-

less clearly shows that, independent of the tubulin-bound nucle-

otide, EBs do not bind to the microtubule seam. Furthermore,

seam binding would only be consistent with measured binding
378 Cell 149, 371–382, April 13, 2012 ª2012 Elsevier Inc.
stoichiometries of EBs (des Georges et al., 2008; Maurer

et al., 2011) if it is assumed that the entire growing microtubule

end is formed from A lattice (seam) contacts. This is, however,

unlikely because the GDP microtubule lattice is known to

consist of mostly B lattice contacts both in vitro and in vivo

(McIntosh et al., 2009). Therefore, large-scale rearrangements

of interprotofilament contacts would be required as the microtu-

bule matures if the end region consisted mostly of A lattice

contacts. In contrast, our model links the higher affinity of EBs

for the growing microtubule-end region to a structural change

within B lattice-incorporated tubulin that is linked to its GTPase

cycle.

Our reconstruction of the GTPgS microtubule offers a sub-

nanometer view of the structure of a microtubule lattice with

a nucleotide in the exchangeable site that occupies the g-phos-

phate-binding site. Early pseudoatomic models built from low-

resolution (14–20 Å) cryo-EM reconstructions of taxol-stabilized

GDP microtubules (Nogales et al., 1999) and GMPCPP microtu-

bules (Meurer-Grob et al., 2001) suggested tubulin regions

potentially involved in the formation of extra lateral contacts at

the GTP cap. But the involvement of these regions was subse-

quently questioned when a subnanometer resolution structure

of GDP+taxol microtubules became available (Li et al., 2002).

Reconstructions with resolutions of �9 Å or better are essential

to reveal the subtle, monomer-specific conformational changes

caused by tubulin-bound nucleotides (Figures 6 and S5). In the

future, it will be interesting to compare other subnanometer

microtubule structures bound with various nucleotides. Impor-

tantly, in our 8.6 Å resolution reconstruction of GTPgS microtu-

bules, the conformation of the b-tubulin H3 helix—the N-terminal

extremity of which forms the boundary of the exchangeable

GTP-binding site of the heterodimer (Figure 3B)—enables the

formation of enhanced lateral contacts between the protofila-

ments. Because lateral contacts have to break when protofila-

ments peel off from a depolymerizing microtubule, such

strengthened lateral contacts could provide an explanation for

the apparent protection of the growing microtubule end from

catastrophe by the EB binding region both in vitro (Figure 7)

and in vivo (Busch and Brunner, 2004). Thus, our finding that

the EB binding region is a stabilizing structural cap suggests

that the phenomena of microtubule dynamic instability

and +TIP activity are intimately linked.

Structural protection of dynamic microtubule ends has tradi-

tionally been assigned to the short GTP cap. Mechanistically,

this has been attributed to a straighter conformation of tubulin

in this nucleotide state, which ismore compatible with the forma-

tion of lateral contacts in the microtubule lattice (Desai and

Mitchison, 1997). However, the extent to which GTP-stimulated

tubulin straightening contributes to microtubule stabilization

during growth is still under debate (Nawrotek et al., 2011; Ravelli

et al., 2004; Rice et al., 2008; Wang and Nogales, 2005). Our

results suggest instead that enhanced lateral contacts within

an extended region of the lattice might play a major role in stabi-

lization at the growing microtubule end. As the rate of tubulin

incorporation at the growing end is subject to stochastic fluctu-

ations (Gardner et al., 2011; Schek et al., 2007), a long stabilizing

cap would provide a ‘‘buffer‘‘ zone to help maintain growth over

long distances.
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Figure 7. The EB Binding Region Disappears before Catastrophe Occurs

(A) Time series of Mal3-GFP on a microtubule grown in GTP, imaged by TIRF microscopy. The image sequence depicts a typical fluorescence time course of

Mal3-GFP at a microtubule end at the transition from growth to shrinkage. Mal3-GFP is shown in green, Cy5-labeled microtubules in red.

(B) Kymograph of one microtubule showing two consecutive growth and catastrophe episodes. Color code is as in (A). The periods directly before and after

a catastrophe are magnified in the insets.

(C) Plot of the averaged normalized Mal3-GFP comet intensity (green) and the averaged relative microtubule-end position (red) as a function of time prior to

catastrophe (average of 62 catastrophe events). The error bars are SEM; Mal3-GFP concentration was 60 nM. For details, see the Experimental Procedures.
Our subnanometer structure shows that EBs are well placed

to detect GTP hydrolysis-induced conformational changes in

the growing microtubule-end region. The finding that EBs bind

considerably more strongly to GTPgS and [GDP + BeF3�]
microtubules (Maurer et al., 2011) than to GMPCPP microtu-

bules (which is considered the bona fide GTP analog for micro-

tubules; Hyman et al., 1992) indicates that the GTP cap and the

EB binding region at growing microtubule ends are, in fact,

different and that EBs might rather bind with high affinity to

a conformation induced by GTP hydrolysis. In this model, the

high-affinity EB binding state of tubulin has a lifetime of several

seconds (Bieling et al., 2007) before it slowly transforms to the

conformational GDP state, perhaps reflecting the structural

plasticity of the microtubule lattice (Kueh and Mitchison,

2009). Because the conformational transition is slow, the binding

region of EBs is rather extended, consisting of several hundreds

of tubulins and giving rise to the comet-shaped appearance in

fluorescence microscopy images. The EBs themselves bind

very dynamically to this region with dwell times considerably

shorter than a second (Bieling et al., 2007, 2008; Dixit et al.,

2009; Montenegro Gouveia et al., 2010) so that they can

respond to the underlying distribution of the high-affinity binding

sites.

At high concentrations, Mal3 has been observed to reduce the

lifetime of its own binding site—i.e., the extended stabilizing

region at growing microtubule ends—by up to a factor of two

(Maurer et al., 2011). In this context it is interesting to note that
the interaction between EBs and GTPgS microtubules is struc-

turally reminiscent of the GTPase-activating proteins (GAPs) of

G proteins, which are molecular switches in cell-signaling

circuits (Figure S6) (Vetter and Wittinghofer, 2001). In particular,

the GAPs of heterotrimeric G proteins stimulate the basal

GTPase activity of their cognate Ga protein. Thus, b-tubulin helix

H3 might be functionally equivalent to the switch II helix in other

GTPases, as previously suggested (Nogales et al., 1999). This

structural analogy supports the possibility that EBs might recog-

nize a conformational state of the microtubule lattice induced by

or during GTP hydrolysis. Future studies will be aimed at testing

this intriguing hypothesis.

At physiological concentrations, which have been estimated

to be in the range of several 10s of nM (Katsuki et al., 2009;

Tirnauer et al., 2002), EBs have a catastrophe-stimulating effect

in vitro (Bieling et al., 2007; Komarova et al., 2009). More

complex effects arise from perturbation of EB function in vivo,

including, surprisingly, the destabilization of microtubules upon

loss of EB function (Busch and Brunner, 2004; Komarova et al.,

2009; Tirnauer et al., 2002). This cannot be explained by the

direct effect EBs have on microtubules as revealed by in vitro

experiments. Targeting of other +TIPs to the microtubule-end

region by EBs can also not fully explain the microtubule-stabi-

lizing effects that EBs have in vivo, suggesting that presently

unknown additional activities contribute (Komarova et al.,

2009). Our current findings provide the mechanistic framework

to investigate these effects further.
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Conclusion
Our subnanometer structural data define the binding mode of

EBs at growing microtubule ends. EBs bridge protofilaments at

the corners of four tubulin subunits, except at the seam. EBs

are ideally positioned to sense conformational changes induced

by GTP hydrolysis. We propose that a structural rearrangement

of the b-tubulin H3 helix results in two topological changes within

the microtubule: first, more pronounced lateral contacts

between neighboring tubulins, and second, a concomitant

establishment of a high-affinity binding site for the CH domain

of EBs. EBs recognize an extended structural cap that stabilizes

the growing microtubule end, linking the phenomenon of micro-

tubule plus-end tracking to the requirement of a structure

protecting the growing microtubule from depolymerization. By

linking the recognition of the end region with combinatorial

recruitment of other proteins, EBs turn the microtubule end

into a mobile port and provide anchoring sites for a variety of

plus-end tracking proteins, thereby adding further layers of

cellular functionality to microtubule ends.

EXPERIMENTAL PROCEDURES

Protein Biochemistry

Proteins were purified, and single-point mutants of full-length Mal3-GFP for

fluorescence imaging were produced using standard methods and as

described (Maurer et al., 2011).

Cryo-EM Sample Preparation

GTPgS microtubules were decorated with monomeric Mal3143 for EM as

described (Maurer et al., 2011). Briefly, GTPgS microtubules were grown

from quantum dot-labeled GMPCPP seeds in the presence of 2 mM GTPgS,

12 mM tubulin, and 45 mM Mal3143 at 37�C for 5 min before plunge freezing

(see Figure S1A). For Mal3143-GDP microtubule complexes, microtubules

were grown from quantum dot-labeled GMPCPP seeds in the presence of

2 mM GTP, 10 mM tubulin, and 55 mMMal3143 at 37
�C for 1 min before plunge

freezing.

Cryo-EM Data Collection and Image Processing

Low-dose images of Mal3143-GTPgS-microtubule complexes were collected

on an electron microscope (Tecnai F20 FEG; FEI Company) operating at

200 kV, 68,0003 magnification, and 0.7–3.6 mm defocus. Micrographs were

recorded on a 4k 3 4k CCD camera (Gatan) with a sampling of 2.2 Å/pixel.

162 CCD frames containing 312 microtubules were selected for 3D recon-

struction, using a previously described custom single-particle procedure

(Fourniol et al., 2010; Sindelar and Downing, 2010). The procedure included

305 microtubules (98%) in the final B lattice 13 protofilament microtubule

reconstruction. To avoid model bias, the initial reference 3D model was

a low-resolution microtubule decorated with a kinesin-1 motor domain. After

pruning the data to achieve an isotropic angular distribution (Figure S1D),

244 microtubules (129,000 tubulin dimers) were used for the final reconstruc-

tion. Reconstructions from independent half-datasets confirmed the lateral

contacts described in Figures 6 and S5. Low-dose images of Mal3143-GDP-

microtubule complexes were collected on an electron microscope (Tecnai

F30 FEG; FEI Company) operating at 200 kV, using settings similar to those

above. The procedure included 344 microtubules (83%) in the B lattice 13 pro-

tofilament microtubule reconstruction. The lower percentage of inclusion

compared with the GTPgS dataset (83% versus 98%) probably derives from

noisier images due to the lower affinity of Mal3 for the GDP lattice.

Pseudoatomic Model Building

UCSF Chimera (Pettersen et al., 2004) was used for visualization of 3D models

and rigid-body fitting of atomic structures in the cryo-EM volume, using

1JFF.pdb (Löwe et al., 2001) for b-tubulin, a hybrid structure for a-tubulin as
380 Cell 149, 371–382, April 13, 2012 ª2012 Elsevier Inc.
described previously (2XRP.pdb; Fourniol et al., 2010), and a homology model

of the Mal3 CH domain generated using MODELER (Sali and Blundell, 1993)

based on the structure of its ortholog Bim1 (2QJX.pdb; Slep and Vale,

2007). The multisubunit fitting was refined with Flex-EM (Topf et al., 2008),

considering each subunit as a rigid body with a flexible a1 loop H10-S9. The

pseudoatomic model yielded a high cross-correlation score of 0.908, calcu-

lated between an 8 Å map simulated from coordinates and the cryo-EM

map. Coordinates of the pseudoatomic model were deposited in the Protein

Data Bank (PDB) (entry 4ABO).

Fluorescence Microscopy

TIRF microscopy of WT Mal3-GFP and single-point mutants on dynamically

growing Alexa 568-labeled microtubules in the presence of GTP was per-

formed essentially as described (Maurer et al., 2011). Final concentrations

were 22 mM tubulin containing 10% Alexa 568-labeled tubulin and 30 or

300 nMMal3-GFPWT or mutants. The temperature was 30�C. Simultaneously

acquired dual-color time-lapse movies were recorded at a frame rate of 0.5

frames per second (100 ms exposure time). The mean intensities measured

for mutants and WT at the comet maximum at growing microtubule ends

and on the microtubule lattice distant from the end were calculated as

described (Maurer et al., 2011). For the analysis of the Mal3-GFP intensity as

a function of time before catastrophe, final concentrations were 20 mM tubulin

containing 10%Cy5-labeled tubulin and 60 nMMal3-GFP, and the final MgCl2
concentration was raised to 10 mM. Data acquisition was started immediately

after flow-chamber assembly. Time-lapse movies at 1 frame per second

(150 ms exposure time) were recorded for a total length of 600 s. The microtu-

bule-end position was determined from the Cy5-tubulin channel using a modi-

fied version of the Matlab tracking software FIESTA (Ruhnow et al., 2011). The

Mal3-GFP comet intensities were obtained using a 2D fit to the Mal3-GFP

fluorescence signal in an area of 1 mm 3 0.4 mm around the comet signal.

The Mal3-GFP intensity of the lattice was extracted from an area of the

same size starting at a distance of 1.5 mm from themicrotubule end. The back-

grounds for both the Mal3-GFP and the Cy5-tubulin channel were determined

from parameters of the 2D fits used to detect the Mal3-GFP comet intensity

and the Cy5-tubulin end position. All intensity values were background cor-

rected before further calculations. Subsequently, the normalized, final comet

intensity was calculated by subtracting the Mal3-GFP lattice intensity value

from the comet intensity and then dividing by the microtubule-end intensity

from the Cy5-tubulin channel. Sixty-two catastrophe events from twelve indi-

vidual experiments were analyzed. The individual tracks of the microtubule-

end position and the corresponding comet intensities were aligned at the

catastrophe time point and averaged. To determine the catastrophe time

point, walking-average slopes over a time window of 5 s were calculated along

each individual microtubule-end position track. When the slope reached

a negative value of at least �250 nm/s, the central point of the window was

assumed to be the catastrophe time point.
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