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Abstract

Background: This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal
subjects and brain cancer patients with glioblastoma.

Methods: Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control
subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity
measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum
was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions.
We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of
the proposed segmentation method in such cases.

Results: Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson
subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating
closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different
Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew,
rotations caused by brain tumors do not have major effects on the segmentation results.

Conclusions: The proposed method and similarity measure segment corpus callosum by propagating a hyper-
surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles
(resulting in high specificity).
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Background
Corpus callosum is the largest inter-hemispheric fiber
bundle in the human brain [1,2]. Most of the fibers inter-
connect homologue cortical areas in roughly mirror image
sites but a large number of the fibers have heterotypic
connections ending in asymmetrical areas [3]. Previous
studies have mainly investigated effects of various patholo-
gies on the corpus callosum [4-7]. However, a fully auto-
mated, fast, and accurate method for segmenting corpus
callosum without penetrating into irrelevant neighboring

structures, using data acquired in routine clinical proto-
cols, is still lacking.
Previously, image processing methods have been pro-

posed for segmenting corpus callosum in anatomical
magnetic resonance images (MRI) [8-10]. These methods
rely on intensity information of two-dimensional images
and their results may need pruning. Recently, attention
has been oriented towards diffusion tensor imaging
(DTI) to segment white matter tracts of the brain [11,12].
Although the tensor model fails to describe higher order
anisotropies in heterogeneous areas where more than
one fiber population exists, it is practically useful for
extracting major white matter tracts, particularly the
ones with predominant diffusivity pattern such as corpus
callosum. When using DTI data, the fiber bundles can be
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extracted by: a) clustering of fibers resulting from tracto-
graphy into fiber bundles [13-19]; or b) segmenting fiber
bundles via hyper-surface propagation based on local
properties of diffusion tensor, diffusion signal, or orienta-
tion distribution function (ODF) [20-27]. Since clustering
methods rely on the tractography results, they do not
work properly if the tractography results are inaccurate.
On the other hand, segmentation methods based on
hyper-surface propagation do not use the tractography
results and are thus more robust to noise.
In a region-based segmentation framework, a similarity

measure between successive tensors is typically used.
Some of the hyper-surface propagating methods in the
literature concentrated on scalar quantities derived from
the tensor data which do not reflect complete tensor infor-
mation [20]. Other methods benefit from the entire infor-
mation contained in the DTI data [21-30]. Wang and
Vemuri [22] proposed a statistical level-set segmentation
method. However, the tensors derived in this framework
are not necessarily positive semi-definite, leading to inap-
propriate results especially when consecutive tensors are
much different. Metrics like Kullback-Leibler divergence
and J-divergence [23,24] have also been proposed. One of
the most promising methods is introduced by Jonasson et
al. [25]. They defined a new similarity measure called nor-
malized tensor scalar product (NTSP). Comparing NTSP
with other similarity measures, they demonstrated super-
iority of their proposed measure. To segment brain struc-
tures like thalamic nuclei, they modified their framework
to favor the propagation of multiple hyper surfaces with-
out overlapping [26]. Lenglet et al. [27] defined a dissimi-
larity measure and statistics between tensors based on the
Riemannian distances. Although improving the segmenta-
tion results, this approach is computationally expensive.
Defining a Log-Euclidean distance, another metric was
defined by Arsigny et al. [28] which has lower computa-
tional burden. Weldeselassie and Hamarneh [29] used
their proposed similarity measure in an energy minimiza-
tion framework. Awate et al. [30] used the similarity mea-
sure in a Markov random field framework.
In terms of quantitative evaluation of diffusion para-

meters, previous studies have compared DTI-based indices
in normal appearing white matter and corpus callosum in
multiple sclerosis [4], stroke [5], schizophrenia [6], and
Huntington’s [7] and also studied the DTI methods to
assess corpus callosum regions across the human lifespan
[31]. For segmenting corpus callosum and its subdivisions
in these studies, however, two-dimensional (2D) methods
were applied and DTI-based indices compared in the mid-
sagittal plane. However, without recruiting a three dimen-
sional (3D) method to segment the whole corpus callosum
and its subdivisions, the extracted quantities may be
inaccurate.

Since the tensor model is not capable of describing het-
erogeneous diffusion behavior in the crossing fiber bun-
dles, some studies used High Angular Resolution
Diffusion Imaging (HARDI) data to segment specific bun-
dles [32-38]. However, the HARDI data is not widely
acquired in clinical centers and hence, the tensor-based
methods are still of more practical use in clinical research.
In this manuscript, we present a 3D method to seg-

ment corpus callosum. Based on tensor and anisotropy
values of neighboring voxels, a similarity measure is pro-
posed and used as a speed function in the proposed
level-set method. In this method, the principal diffusion
direction (PDD) and prior information about the diffu-
sivity pattern in corpus callosum are used to avoid
inclusion of neighboring fiber bundles. Then, the Witel-
son subdivisions of corpus callosum are automatically
identified [39]. The idea of using diffusivity pattern in
corpus callosum has been used by Lee et al. [40]. How-
ever, they performed a 2D segmentation on the mid-
sagittal plane. Moreover, since their method uses the
left-right component of PDD to delineate corpus callo-
sum boundaries, it is not applicable in more lateral
sagittal planes, where corpus callosum connects to
minor and major forceps and considerable anterior-
posterior component of PDD exists.
The proposed segmentation method can be identically

used for segmenting corpus callosum of control subjects
as well as patients with glioblastoma. However, since we
use the geometric information of the diffusivity pattern in
corpus callosum and the glioblastoma tumor may change
the original shape and diffusivity pattern of corpus callo-
sum, we validate the reproducibility of the proposed
method through realistic simulations of corpus callosum
rotations under glioblastoma tumor pressure. We study
the effects of rotation by different Euler angles (azimuth,
elevation and skew) quantitatively and demonstrate that
even in extreme cases with large rotations, brain tumors
do not have major effects on the segmentation results gen-
erated by our proposed method. We apply the method to
the DTI data of normal subjects and brain cancer patients
with glioblastoma and show its superiority to some of the
previously published methods in the literature.

Methods
Patient population
This study is approved by the institutional review board
and is compliant with the Health Insurance Portability
and Accountability Act (HIPAA). Between February
2006 and December 2008, 19 patients (8 males, 11
females; mean age 60.7 years) with treatment naïve glio-
blastoma underwent MRI with DTI using a 3 T scanner
at our institution. Based on anatomical MRI findings,
the patients were divided into two groups: Group 1
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including patients with tumors not infiltrating corpus
callosum (n = 12); and Group 2 including patients with
tumors infiltrating corpus callosum (n = 7). For the con-
trol group, 11 patients (5 males, 6 females; mean age 48
years) who underwent brain MRI for nonspecific head-
ache or single idiopathic seizure with normal MRI were
included.

Magnetic resonance imaging protocol
All the patients underwent both conventional MRI and
DTI on a 3 T scanner (Excite HD, GE Medical Systems,
Milwaukee, WI) using an 8-channel head coil. Diffusion
weighted images (DWIs) were acquired in 25 diffusion
gradient directions. The reconstructed DWIs have intra-
slice resolution of 256 × 256 with voxel size of 0.98 ×
0.98 × 2.5 mm. To have the same step size in each direc-
tion for the front propagation in the level-set method and
to avoid extensive computation, we interpolated the data
into 128 × 128 grid with cubical, 1.9 × 1.9 × 1.9 mm
voxels.

Level-set approach
We use a level-set method that takes into account sev-
eral properties when formulating the segmentation pro-
blem [41,42]. The method smoothes the propagating
hyper-surface automatically and leads to a regularized
segmentation. Among the advantages of the method, its
property of generalizing from 2D to 3D and higher
dimensions and automatic splitting and merging of the
surfaces are notable. In addition, it simplifies calculation
of geometric quantities needed in the proposed method
such as normal to surface and curvature.
For bundle segmentation in areas with high level of

similarity in diffusion, the hyper-surface needs to grow
in the direction normal to the surface. Moreover, the
resulting fiber bundles must be smooth. Consequently,
we use a level-set whose growing hyper-surface is the
zero level-set of the following function which is a
reduced form of the Hamilton-Jacobi partial differential
equation:

Dtϕ(r, t) + F(r, t)||∇ϕ(r, t)|| − κ(r, t)||∇ϕ(r, t)|| = 0 (1)

where r Î ℜn is the state space, �: ℜn × ℜ ® ℜ is the
level-set function, Dt � is the partial derivative of � with
respect to the time variable t, ∇� = Dr � is the gradient
of � with respect to the state space variables, and F(r, t)
is the speed in the direction normal to the surface,
extracted from the spherical harmonic coefficients of
the neighboring voxels. The sign ∥·∥ stands for the mag-
nitude operator. The curvature �(r, t) is used to fulfill
the smoothness constraint. To calculate the first order
spatial partial derivative ∇�(r, t), we use the 5th order of
the upwind method [41].

Corpus callosum segmentation
Corpus callosum is a commissural fiber bundle with a
specific diffusion pattern which can be coded as prior
knowledge in the segmentation framework. Using this
information, we prevent the hyper-surface from propa-
gating into adjacent white matter structures such as cin-
gulum, tapetum, minor and major forceps, and tracts of
the corona radiata. Although dissimilarity among tensors
helps in this case, smooth and gradual transition in
shape and direction of the DTI tensors from corpus cal-
losum to minor and major forceps makes the segmenta-
tion difficult.
We define a similarity measure between every voxel

on the propagating hyper-surface and its neighbors in
the propagation direction, based on tensor and aniso-
tropy values. This similarity measure is used as the
speed term F(r, t) in Equation (1). The hyper-surface
propagation in each step depends only on the speed
function of the boundary voxels. This speed function
term moves the hyper-surface to fill the whole fiber
bundle, while the regularizing curvature term in Equa-
tion (1) is in charge of smoothing corpus callosum with-
out changing its real structure.
Using the fact that the diffusivity in corpus callosum is

perpendicular to the mid-sagittal plane of the brain, we
consider a threshold (PDDx Threshold) for the x-compo-
nent (left-right component) of the PDD (PDDx(r)) for
propagating the front only inside the corpus callosum.
The x-component of the PDD is large throughout the
structure body. However, corpus callosum fibers project
to the cortical area at its genu and splenium, where the
x-component of PDD is not large anymore. Fortunately,
these fibers are considered as different fiber tracts of
minor and major forceps, and most of studies investigat-
ing the different diffusion indices within the corpus cal-
losum, exclude the minor and major forceps from that.
In the proposed algorithm, we consider two more

thresholds on collinearity of the PDD vectors (Collinear-
ity_Threshold) and similarity of fractional anisotropy
(FA) values (FA_Threshold) in the neighboring voxels.
The proposed segmentation steps are as follows:

1. Select the initial seeds in corpus callosum in mid-
sagittal plane manually.
2. Initiate the hyper-surface as the congregation of
small spheres around the seed points.
3. Do until convergence

• For each point r on the hyper-surface at step t:
a) Calculate the normal direction to the
surface.
b) Calculate the 26-neighborhood and keep
the neighbors nr for r, which are collinear
with the normal, with respect to the r.
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c) If PDD(r). PDD(nr) >Collinearity_Thres-
hold & FA (nr) >FA_Threshold & PDDx (r)
>PDDx_Threshold

Then F(r, t) =
∑

nr

FA(r).FA(nr).
tr

[
D(r)∗D(nr)

]

tr
[
D(r)

]∗
tr

[
D(nr)

] (2)

• Threshold F(r, t) with F _ Threshold to dimin-
ish the effect of negligible speeds.
• Use the resultant speed in the level-set
framework.

4. Extract the zero level-set as the segmented corpus
callosum.

In Equation (2), tr(.) is the matrix trace and D(r) is the
tensor at point r.
After segmenting corpus callosum, Witelson subdivi-

sions of corpus callosum are automatically extracted [39].
First, the critical point between genu and rostrum of cor-
pus callosum is calculated, where the curvature of the
structure boundary in mid-sagittal plane changes. Then,
the segmented corpus callosum is automatically subdi-
vided into Witelson subdivisions in the mid-sagittal plane:
rostrum, genu, rostral body, anterior mid-body, posterior
mid-body, isthmus and splenium [39]. Moreover, the user
can visualize and confirm the calculated mid-sagittal plane
and the critical joining point between genu and rostrum.
The critical point can be selected manually if close super-
vision is preferred or needed.

Results
Segmentation using proposed method
We implemented the proposed algorithm in MATLB
R2008a using a PC with Intel® Core™ 2Duo CPU
(E8400@ 3.00 GHz, 3.00 GHz) and 4 GByte RAM and
64 bit VISTA operating system.
To evaluate quality of the segmentation results, the dice

correctness measure [43] is calculated using the following
relation:

Correctness =
N(Sa ∩ Sy)

[N(Sa) + N(Sy)]/2
(3)

where Sa and Sr are the automatic and manual (refer-
ence) segmentation results, respectively, and N is the num-
ber of voxels in each bundle. Here, N(Sa ∩ Sy)is the
number of the True-Positives. The Dice correctness mea-
sure is appropriately bounded, normalized, well-under-
stood, and applied widely in evaluating segmentation
methods. Two of the co-authors (a clinical expert and a
technical expert) sat down together and carried out the
manual segmentation which is considered as the reference
segmentation results.

We tested sensitivity of corpus callosum Witelson seg-
ments to PDDx_Threshold for a normal subject. Figures 1
and 2 show the number of True-Positives, the number of
False-Positives, and the Dice correctness measure over a
range of PDDx_Threshold for the Witelson segments of
the Corpus Callosum of a normal subject and a tumor
patient, respectively. As shown in these figures, for
PDDx_Threshold values within a specific range (here 0.5
to 0.6), the Dice correctness measure is maximized. For a
higher PDDx_Threshold, both the number of True-Posi-
tives and False-Positives start to decrease, however, the
number of False-Positives tend to saturate by increasing
the PDDx_Threshold. This occurs conversely for
PDDx_Threshold values lower than a specific range, i.e.,
both the number of True-Positives and False-Positives
start to increase, however, the number of True-Positives
tends to saturate by decreasing PDDx_Threshold. As
seen, there is a small difference between the optimal
selection of PDDx_Threshold for the normal subject and
the tumor case, suggesting that we can apply the same
PDDx_Threshold for all datasets.
Figure 3 shows the number of True-Positives, the

number of False-Positives, and the Dice correctness
measure over a range of Collinearity _Threshold for the
Witelson segments of the Corpus Callosum of a normal
subject. It is shown that when Collinearity _Threshold
values are in a specific range (here 0.65 to 0.75), the
Dice correctness measure is maximized. However, the
sensitivity of the segmentation method to Collinearity
_Threshold is less than its sensitivity to PDDx_Thres-
hold. We found the following set of parameters optimal
for segmenting corpus callosum: PDDx_Threshold =
0.55, Collinearity _Threshold = 0.7, FA_Threshold = 0.1,
and F_Threshold = 0.05.
The tensor-based method proposed by Jonasson et al.

[32] with NTPP similarity measure is quite sensitive to
the speed threshold. If the speed threshold is selected
high enough to prevent the front from propagating into
the neighboring structures, corpus callosum is not seg-
mented entirely (low sensitivity). However, if the speed
threshold is chosen low enough to segment the entire
corpus callosum, the front propagates into irrelevant
fiber structures such as superior longitudinal fasciculus,
cingulum, minor forceps, and tracts of corona-radiata
(low specificity). Figure 4a shows the results of our
implementation of their method. In this figure, we
tuned the speed threshold so that the whole structure is
segmented. Figure 4b demonstrates high sensitivity (seg-
menting almost the whole structure) and high specificity
(without major penetration into the neighbouring struc-
tures) of our proposed method compared to the Jonas-
son’s method.
We have also compared the results of the proposed

method with those of the Jonasson’s method
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quantitatively. Table 1 shows the average Dice measures
for different Witelson subdivisions of corpus callosum
for the control subjects. Note that the best performance
is obtained in the genu area with least penetration inside
adjacent fiber bundles and the worst performance is
obtained in the posterior mid-body subdivision with
penetration mainly inside cingulum and tracts of cor-
ona-radiata. For the tumor patients, the performance of
the Jonasson’s method was poor and thus we do not
present them.
Table 2 shows the average Dice measure for different

Witelson subdivisions of corpus callosum in the control
subjects, Group 1 patients (tumor not infiltrating corpus
callosum), and Group 2 patients (tumor infiltrating cor-
pus callosum). Dice measures ranging from 90% to 98%
indicate that the automatic segmentation results gener-
ated for the control subjects and the Group 1 patients are
in excellent agreement with the manual segmentation

results. For Group 2 patients where the tumors infiltrated
corpus callosum, the Dice measures ranging from 81% to
92% indicate good agreements of the automatic and man-
ual segmentation results.
Performance of the proposed method can be ascer-

tained by visualizing the segmentation results (Figures 5,
6, 7). Figure 5 shows the segmentation results of the
proposed method for 11 control subjects. Figure 6
shows the results for 12 Group 1 patients where the
glioblastoma tumor does not infiltrate corpus callosum.
These 12 patients were selected based on the severity of
the effect of tumor on the rotation of corpus callosum.
Note that although these cases include major geometric
deviations from the normal state, the proposed method
has successfully segmented corpus callosum and its sub-
divisions. Figure 7 shows the segmentation results for 7
Group 2 patients where the glioblastoma tumor has
infiltrated corpus callosum. This figure illustrates that

Figure 1 Sensitivity of corpus callosum Witelson segments to PDDxThreshold for a normal subject. The graphs show number of True-
Positives, number of False-Positives, and Dice correctness measure over a range of PDDxThreshold for Witelson segments of the Corpus
Callosum.
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the proposed method has successfully segmented corpus
callosum and its subdivisions in these extreme cases.
Note that in all cases, the segmented corpus callosum
does not penetrate into the adjacent fiber bundles such
as cingulum, tapetum, minor and major forceps, super-
ior longitudinal fasciculus, or tracts of corona radiata.

Rotational effect of tumor on proposed method
We have used the geometric information of the diffusiv-
ity pattern in corpus callosum to prevent the front from
penetrating into the neighboring structures. However, a
tumor may change the shape and diffusivity pattern of
corpus callosum from its original shape and diffusivity
pattern.
To study the rotational effect of a tumor on the seg-

mentation process, we rotate the segmented corpus cal-
losum and its neighbors up to 5 voxels in different
Euler angles (azimuth-elevation-skew), the tensor (T),

and the principal diffusion direction (PDD) of each
voxel for all control subjects.

R(ϕ, θ , ψ) = Rx(ϕ)Ry(θ)Rz(ψ) (4)

where R(�,θ,ψ) is the rotation matrix with respect to
the spherical Euler angles of �,θ and ψ respectively. R x

(�), Ry (θ), and Rz (ψ) are rotational matrices for rota-
tions around x, y, and z axes, respectively. Then,

(x′, y′, z′) = R(ϕ, θ , ψ)∗(x, y, z) (5)

where (x, y, z) is the coordinates for a voxel within a
5-voxel neighborhood of corpus callosum, while (x’, y’z’)
is the rotated voxel coordinates.
For each of the rotated coordinates, we calculate the

tensor (T) and the principal diffusion direction (PDD) by:

T(x′, y′, z′) = Rt(φ,θ ,ψ)*T(x,y,z)*R(φ,θ ,ψ) (6)

Figure 2 Sensitivity of corpus callosum Witelson segments to PDDxThreshold for a tumor patient. The graphs show number of True-
Positives, number of False-Positives, and Dice correctness measure over a range of PDDxThreshold for Witelson segments of the Corpus
Callosum.
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PDD(x′, y′, z′) = R(φ,θ ,ψ)*PDD(x,y,z) (7)

The means and standard deviations of the Dice mea-
sures for the subdivisions of the corpus callosum rotated
in different Euler angles (5, 10, 15, 20, 25, and 30
degrees) in 11 control subjects are shown in Table 3.
The top, middle, and bottom rows represent the seg-
mentation results of the rotated corpus callosum and its
neighbors under different azimuth angles (around x
axis), elevation angles (around y axis), and skew angles
(around z axis), respectively. As can be seen from the
Tables 2 and 3, the rotation of corpus callosum does
not have a major effect on the segmentation results. It
means that although the segmentation algorithm relies
on the geometric information of corpus callosum and its
diffusion pattern, it segments a corpus callosum
deformed under the potential tumor pressure.

We used the Wilcoxon two sample tests to compare
sensitivity of the outer subdivisions (rostrum, genu, and
splenium) and the inner subdivisions (rostral body, ante-
rior and posterior mid-body, and isthmus) of corpus cal-
losum with respect to the rotation. For two arrays A and
B, the Wilcoxon test performs a paired two-sided signed
rank test of the null hypothesis that data in the vector A-
B come from a symmetric distribution with zero median.
P-values less than 0.01 are considered statistically signifi-
cant. From the p-values in Table 4, it can be inferred that
the outer subdivisions have significantly lower average
Dice measures than the inner subdivision for all azimuth
and elevation rotation angles (p-values less than 0.0004).
For skew angles, however, the outer subdivisions do not
show significantly lower average Dice measures than the
inner subdivision (5 out of 6 p-values are more than
0.01). Considering the overall diffusivity inside corpus

Figure 3 Sensitivity of corpus callosum Witelson segments to Collinearity _Threshold for a normal subject. The graphs show number of
True-Positives, number of False-Positives, and Dice correctness measure over a range of Collinearity _Threshold for the Witelson segments of the
Corpus Callosum of a normal subject.
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Figure 4 Comparing of corpus callosum segmentations by the proposed method and the Jonasson’s method [25]. In (a) for the
Jonasson’s method, the speed threshold was chosen low enough to capture the corpus callosum structure. However, the segmentation front
propagates inside irrelevant fiber structures such as superior longitudinal fasciculus (cyan rounded rectangles), cingulum (green rounded
rectangles), minor forceps (red rounded rectangles), and tracts of corona-radiata (yellow rounded rectangles). In (b), our method segments the
corpus callosum structure with high sensitivity (segmenting the whole structure) and high specificity (without major leakage into the
neighboring structures).
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callosum perpendicular to its main axis, the overall diffu-
sivity pattern changes more dramatically around the x
and y axes (azimuth and elevation) than around the z
axis (skew). Therefore, the segmentation results are more
sensitive to rotations in the azimuth and elevation direc-
tions. Figures 8, 9 and 10 show the segmentation results
of the proposed method for the corpus callosum and its
neighbors rotated 30° in the azimuth, elevation, and skew
directions, respectively.

Discussion
Novel aspects of proposed method
1. New similarity measure based on local diffusion
characteristics
The proposed method is more accurate than the tensor-
based method that uses the NTSP similarity measure
[25]. Comparing with the manual segmentation by
experts, we demonstrated accuracy of our proposed
method even when the tumor infiltrates corpus
callosum.

2. 3D segmentation of the entire corpus callosum
The proposed method works in 3D. Extraction of diffu-
sion indices such as mean diffusivity and fractional ani-
sotropy over the entire corpus callosum generates a
reliable quantification of the structure that cannot be
achieved by an analysis of the mid-sagittal plane only
[4-7].
3. Preventing from penetrating inside neighboring fiber
bundles
An optimal set of parameters is chosen to segment the
entire corpus callosum (with high sensitivity) without
penetrating into adjacent fiber structures (with high spe-
cificity). We have used Collinearity_Threshold to prevent
the front from penetrating into cingulum. The threshold
for the x-component of the principal diffusion direction
(PDDx_Threshold) is used to prevent the front from pro-
pagating into major and minor forceps. FA_Threshold is
also important to prevent from penetrating inside tape-
tum (as in general, it has diffusivity patterns similar to
corpus callosum in crossing areas with lower FA values).
To segment the entire corpus callosum in patients with
low FA values, one should choose FA_Threshold and
F_Threshold quite small. However, one should be cau-
tious that in this case, the front may propagate outside of
white matter in some areas.
4. Automatically extracting Witelson subdivisions of corpus
callosum
The proposed method defines Witelson subdivisions of
corpus callosum automatically.
5. Applicability to glioblastoma tumor patients as well as
normal subjects using the same set of parameters
The proposed method has successfully segmented cor-
pus callosum and its subdivisions in diffusions MRI data
of normal subjects and brain tumor patients.
6. Evaluating potential effects of tumor on segmentation of
corpus callosum
Depending on size, shape, type and proximity to the
corpus callosum, the glioblastoma tumor may cause
rotation, shrinkage or more severe disruptions like tear-
ing of the corpus callosum fibers. Amongst the men-
tioned effects, we evaluated the linear rotational effect
of tumor on corpus callosum. With this simplification
and without loss of generality, we showed that the
change in diffusivity pattern due to a tumor does not
change the segmentation accuracy dramatically. How-
ever, if the effect of tumor infiltration inside the corpus
callosum is sever and changes the structure dramatically,
it may be impossible to segment the structure entirely
and accurately.

Selection of initial seeds
The proposed segmentation method is seed-based and
needs the initial seed points for hyper-surface to propa-
gate. This requires the operators to define the seeds

Table 1 Comparison of the proposed method with the
Jonasson’s method

Witelson Subdivisions Proposed Method Jonasson’s Method

Rostrum 94.41 75.15

Genu 98.25 91.24

Rostral Body 97.27 83.10

Anterior Mid-Body 95.44 79.33

Posterior Mid-Body 96.07 71.54

Isthmus 94.24 81.46

Splenium 97.29 80.25

The average Dice measures for different Witelson subdivisions of the corpus
callosum for the control subjects. Note that the best performance is obtained
in the genu area with least penetration inside adjacent fiber bundles, and the
worst performance is obtained in the posterior mid-body subdivision with
penetration mainly inside cingulum and tracts of corona-radiata.

Table 2 Average Dice measures for different Witelson
subdivisions of the corpus callosum

Witelson
Subdivisions

Control
Subjects

Group 1
Patients

Group 2
Patients

Rostrum 94.41 94.04 90.72

Genu 98.25 94.99 92.61

Rostral Body 97.27 94.05 84.73

Anterior Mid-Body 95.44 91.45 81.58

Posterior Mid-
Body

96.07 94.1 83.29

Isthmus 94.24 94.57 85.09

Splenium 97.29 90.16 89.56

The subjects are classified to control subjects, Group 1 patients with tumors
not infiltrating the corpus callosum, and Group 2 patients with tumors
infiltrating the corpus callosum. Note that the high quality of the results for
the control subjects as well as the tumor patients.
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manually using anatomical landmarks. To automate the
process, the initial seeds may be obtained from fiber
atlases of control subjects [34,44]. However, when seg-
menting fiber bundles of pathological cases, abnormal-
ities like tumors may change the fiber bundles and thus
conventional atlas registration methods may not be

applicable. To solve this problem, Zacharaki et al. [45]
proposed a method for transferring structural and func-
tional information from neuro-anatomical brain atlases
into individual patient’s data. Application of such meth-
ods in our case of segmenting corpus callosum in
patients with tumors would be still in question.

Figure 5 Segmented corpus callosum by the proposed method for 11 control subjects. The colors show the Witelson subdivisions results
for the corpus callosum. Rostrum: blue, Genu: green, Rostral Body: cyan, Anterior Mid-body: red, Posterior Mid-body: turquoise, Isthmus: yellow,
Splenium: gray.
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Segmentation of fiber structures in HARDI
Since the tensor model is not capable of describing het-
erogeneous diffusion behavior in crossing fiber bundles,
some studies segmented the desired fiber bundles using
HARDI data. Generalizing the level-set method

presented in [22] to the HARDI data, Descoteaux and
Deriche [35] applied a region-based statistical surface
evolution to the image of the ODFs to find coherent
white matter fiber bundles. This is equivalent to the
maximization of a posteriori probability which obtains

Figure 6 Segmented corpus callosum by the proposed method for 12 glioblastoma patients with non-infiltrating tumors. The colors
show the Witelson subdivisions results for the corpus callosum. Rostrum: blue, Genu: green, Rostral Body: cyan, Anterior Mid-body: red, Posterior
Mid-body: turquoise, Isthmus: yellow, Splenium: gray.
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the desired segmentation for the observed ODFs and
presumes Gaussian distributions in different partitions
of the Q-ball images. Although their method appropri-
ately propagates through the regions of fiber crossings,
it propagates the hyper-surface inside all of the crossing
fiber bundles and segments them as a whole, not indivi-
dually. They applied their method to extract corpus cal-
losum and tracts of corona-radiata. However, their

Figure 7 Segmented corpus callosum by the proposed method
for 7 glioblastoma patients with infiltrating tumors. The colors
show the Witelson subdivisions results for the corpus callosum.
Rostrum: blue, Genu: green, Rostral Body: cyan, Anterior Mid-body:
red, Posterior Mid-body: turquoise, Isthmus: yellow, Splenium: gray.

Table 3 Means and standard deviations of the Dice measures in 11 normal subjects where corpus callosum
subdivisions are rotated under different Euler angles

Witelson Subdivisions of Corpus Callosum Rostrum Genu Rostral
Body

Anterior
Mid-Body

Posterior
Mid-Body

Isthmus Splenium

Azimuth Rotation Angle 5 94.51 ± 1.15 96.46 ± 1.43 99.07 ± 0.84 98.48 ± 0.77 99.28 ± 0.56 96.84 ± 0.91 96.23 ± 0.93

10 91.44 ± 0.99 95.48 ± 0.98 95.02 ± 1.13 95.45 ± 0.99 97.36 ± 1.03 96.27 ± 0.93 94.11 ± 1.01

15 91.00 ± 1.47 90.77 ± 1.15 94.17 ± 0.95 94.47 ± 0.96 94.97 ± 0.70 92.84 ± 1.01 90.55 ± 0.97

20 88.29 ± 1.24 89.33 ± 1.07 89.65 ± 0.75 90.61 ± 1.23 88.86 ± 0.86 89.18 ± 1.23 88.40 ± 1.06

25 84.24 ± 1.03 88.47 ± 1.12 89.16 ± 0.86 87.32 ± 1.03 88.83 ± 1.06 89.01 ± 1.49 84.69 ± 1.20

30 80.16 ± 1.70 82.96 ± 1.23 85.09 ± 1.21 85.45 ± 1.13 85.36 ± 0.98 83.07 ± 1.11 81.23 ± 0.97

Elevation Rotation Angle 5 93.64 ± 0.92 96.29 ± 1.28 97.75 ± 0.97 96.91 ± 1.02 98.65 ± 1.16 96.29 ± 0.72 95.83 ± 1.09

10 91.27 ± 0.88 96.24 ± 1.08 97.74 ± 1.00 95.46 ± 1.06 94.14 ± 1.09 91.56 ± 1.17 91.96 ± 1.41

15 87.75 ± 0.86 95.28 ± 1.15 93.86 ± 0.89 93.81 ± 0.97 94.95 ± 0.83 89.30 ± 0.91 91.08 ± 1.14

20 85.37 ± 1.01 92.58 ± 0.77 90.59 ± 0.89 89.98 ± 1.29 92.51 ± 1.05 87.36 ± 1.32 86.29 ± 0.88

25 83.47 ± 0.90 86.67 ± 0.77 86.25 ± 1.32 89.27 ± 1.17 87.66 ± 0.99 84.88 ± 1.27 84.48 ± 1.10

30 79.39 ± 1.29 81.60 ± 1.10 85.00 ± 1.10 84.35 ± 1.01 85.22 ± 1.03 83.41 ± 0.88 81.58 ± 0.89

Skew Rotation Angle 5 97.96 ± 1.09 98.75 ± 0.63 99.09 ± 0.68 98.00 ± 1.07 98.73 ± 1.00 96.62 ± 0.73 98.85 ± 0.59

10 95.29 ± 1.12 96.38 ± 0.80 94.72 ± 1.04 94.46 ± 1.45 94.80 ± 1.28 94.98 ± 1.00 94.21 ± 0.88

15 91.88 ± 1.04 95.00 ± 1.34 92.56 ± 1.16 94.22 ± 0.97 92.73 ± 1.31 94.72 ± 1.44 93.66 ± 1.01

20 89.79 ± 0.83 87.92 ± 1.18 85.83 ± 1.29 88.35 ± 1.16 86.99 ± 1.27 87.85 ± 0.98 89.28 ± 1.16

25 87.55 ± 1.22 86.11 ± 1.21 85.73 ± 1.08 86.34 ± 1.28 86.22 ± 1.08 85.55 ± 1.27 87.35 ± 0.87

30 84.61 ± 1.17 83.39 ± 0.89 84.58 ± 1.13 84.09 ± 1.03 85.26 ± 1.12 86.43 ± 1.16 85.00 ± 1.00

It can be inferred that the rotation of corpus callosum does not have a major effect on the segmentation results.

Table 4 The p-value of Wilcoxon two-sample tests
between outer (rostrum, genu, and splenium) and inner
(rostral body, anterior and posterior mid-body, and
isthmus) subdivisions of corpus callosum

Azimuth Rotation Angle

5 10 15 20 25 30

P-value 8.2E-05 8.1E-05 8.1E-05 7.1E-03 8.2E-05 8.2E-05

Elevation Rotation Angle

5 10 15 20 25 30

P-value 8.2E-05 3.9E-04 1.4E-04 8.2E-05 8.0E-05 8.2E-05

Skew Rotation Angle

5 10 15 20 25 30

P-value 7.6E-02 8.2E-02 9.2E-01 2.4E-04 5.8E-03 3.6E-02

The outer subdivisions have significantly lower average Dice measures than
the inner subdivision for all azimuth and elevation rotation angles (p-values
less than 0.0004). For skew angles, however, the outer subdivisions do not
show significantly lower average Dice measures than the inner subdivision (5
out of 6 p-values are more than 0.01). See Table 3 for the means and
standard deviations of the 11 subjects.
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method is sensitive to initial seeds and suffers from lim-
ited anatomical knowledge of the operator who defines
the seeds. In another study, a k-means algorithm has
been employed to find the clusters using Euclidean dis-
tance as dissimilarity measure [36].
In a different study, a Position-Orientation Space

(POS) is introduced by combining the geometric space
with the spherical ODF space from the HARDI data,
where two crossing fiber populations with different
orientations in the spatial domain are resolved by apply-
ing a front propagation method in the level-set frame-
work in a five-dimensional space [32]. Hagmann et al.
[36] performed fiber bundle segmentation in POS based
on the Markov Random Fields (MRF). In a similar
study, McGraw et al. [37] proposed a mixture of von
Mises-Fisher distributions to model the ODF again in
MRF. Assuming that the spatial relationships are mod-
eled by the MRF, this method estimates a hidden ran-
dom field of fiber bundles from the observed ODF
profiles using a Maximum a Posteriori (MAP) formula-
tion. However, dimensional reinforcement of the

problem causes disadvantages such as increasing the
computational cost.
Using Spherical Harmonic Coefficients (SHC) as fea-

tures of functions on the sphere [38], a method has
been proposed for fiber bundle segmentation [33]. How-
ever, without masking the speed term with a measure of
anisotropy (such as FA) that has low values in the cross-
ing areas, the growing hyper-surface may penetrate into
irrelevant fiber bundles that have common areas with
the bundle of interest. In another work [34], the authors
proposed an atlas-based method introducing a novel
similarity based on PDD’s and spherical harmonic coef-
ficients. Integrating PDD’s into the framework, along
with a proper PDD-selection algorithm, leads to the seg-
mentation of most of important fiber bundles in the
brain without penetration into irrelevant fiber bundles
that have common areas with the bundle of interest.
Using an atlas [44] to find the initial seeds for the fiber
bundles, the proposed method overcomes limitations of
the semi-automatic methods that suffer from limited
anatomical knowledge and subjectivity of the operator

Figure 8 Segmentation results by the proposed method for a normal corpus callosum and its neighbors rotated 30° under the
azimuth angle. (a), (b): Segmented corpus callosum in green overlaid on the T1 sagittal and axial images, respectively. (c), (d): Boundaries of
the corpus callosum delineated in white in the sagittal and axial slices, respectively, overlaid on the color coding of the principal diffusion
direction in each pixel.
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who defines the seed voxels. Note that since the number
of diffusion measurements in the tensor data is not ade-
quate for fitting SHC and estimating more than one
PDD, we used the same methods originally applied on
the HARDI data.
Although the success of recent studies in segmenting

fiber bundles in the HARDI data is promising, such pro-
tocol in not being widely used in clinical centers. On the
other hand, diffusion tensor imaging is clinically feasible
and thus the tensor-based methods are of more interest.

Conclusion
In this paper, we have proposed a 3D method based on
a new DTI similarity measure to segment corpus callo-
sum and determine its subdivisions. The method propa-
gates a hyper-surface within corpus callosum without

penetration into the neighboring fiber bundles. Segmen-
tation of corpus callosum, the largest commissural fiber
bundle in the brain, makes it possible to quantify var-
ious diffusion characteristics in its subdivisions, opening
new perspectives for monitoring disease evolution or
prognosis.

Ethics statement
MRI and other data of the tumor patients originally
acquired for patient care are retrospectively and anon-
ymously used in this research to train, test, and evaluate
the proposed methods. This usage was reviewed and
approved by the Institutional Review Board (IRB) com-
mittee of Henry Ford Hospital, Detroit, Michigan, USA.
Details of the data and results are described in the
manuscript.

Figure 9 Segmentation results by the proposed method for a normal corpus callosum and its neighbors rotated 30° under the
elevation angle. (a), (b): Segmented corpus callosum in green overlaid on the T1 sagittal and axial images, respectively. (c), (d): Boundaries of
the corpus callosum delineated in white in the sagittal and axial slices, respectively, overlaid on the color coding of the principal diffusion
direction in each pixel.
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