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Abstract

Staphylococcus aureus (S. aureus) is a human pathogen associated with skin and soft tissue infections (SSTI) and life
threatening sepsis and pneumonia. Efforts to develop effective vaccines against S. aureus have been largely unsuccessful, in
part due to the variety of virulence factors produced by this organism. S. aureus alpha-hemolysin (Hla) is a pore-forming
toxin expressed by most S. aureus strains and reported to play a key role in the pathogenesis of SSTI and pneumonia. Here
we report a novel recombinant subunit vaccine candidate for Hla, rationally designed based on the heptameric crystal
structure. This vaccine candidate, denoted AT-62aa, was tested in pneumonia and bacteremia infection models using S.
aureus strain Newman and the pandemic strain USA300 (LAC). Significant protection from lethal bacteremia/sepsis and
pneumonia was observed upon vaccination with AT-62aa along with a Glucopyranosyl Lipid Adjuvant-Stable Emulsion
(GLA-SE) that is currently in clinical trials. Passive transfer of rabbit immunoglobulin against AT-62aa (AT62-IgG) protected
mice against intraperitoneal and intranasal challenge with USA300 and produced significant reduction in bacterial burden in
blood, spleen, kidney, and lungs. Our Hla-based vaccine is the first to be reported to reduce bacterial dissemination and to
provide protection in a sepsis model of S. aureus infection. AT62-IgG and sera from vaccinated mice effectively neutralized
the toxin in vitro and AT62-IgG inhibited the formation of Hla heptamers, suggesting antibody-mediated neutralization as
the primary mechanism of action. This remarkable efficacy makes this Hla-based vaccine a prime candidate for inclusion in
future multivalent S. aureus vaccine. Furthermore, identification of protective epitopes within AT-62aa could lead to novel
immunotherapy for S. aureus infection.
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Introduction

Staphylococcus aureus (S. aureus) is a ubiquitous, formidable Gram-

positive pathogen associated with skin and soft tissue infections

(SSTI), as well as life threatening sepsis and pneumonia [1]. Since

its first emergence in the 1960s methicillin-resistant S. aureus

(MRSA) has become endemic in hospitals and healthcare settings

worldwide [2]. Since the 1990s, several community associated

MRSA strains (CA-MRSA) have emerged and are spreading

worldwide, posing a major global challenge [3,4,5]. There are

currently no vaccines available for the prevention of S. aureus

infections. The pathogenicity of S. aureus is dependent on

numerous virulence factors, including cell surface proteins,

polysaccharides, and secreted toxins. The latter cause tissue

damage, promote bacterial dissemination and metastatic growth in

distant organs, and allow the pathogen to evade the host innate

immune response [6,7]. The pore-forming a-hemolysin (Hla), also

known as a-toxin (AT), is produced by nearly all virulent strains

and is implicated in several S. aureus diseases including SSTI [8]

and pneumonia [9].

Several lines of evidence validate Hla as an important vaccine

target for prevention of S. aureus infection or complications of

disease: i) hla is encoded by a chromosomal determinant [10], and

its production has been detected in most S. aureus isolates

[11,12,13,14]; ii) a partially attenuated Hla mutant (H35L) or

a truncated Hla protect mice against S. aureus pneumonia and skin

infections [8,9,15]; and iii) passive immunization with antibodies

raised against H35L protect mice from lethal toxin challenge and

partially protect against bacterial challenge in pneumonia and skin

infection models [16]. While the H35 mutation largely abrogates

the lytic activity of Hla, a single point mutation is not considered

sufficiently safe to be developed as vaccine for human use.

Importantly, Panchal et al reported that several reverting point
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mutations can be identified that restore the lytic activity of Hla-

H35 mutants [17]. Furthermore, removal of 30 or 99 amino acids

at the C terminus of the H35A mutant of Hla reactivated its

hemolytic activity [18]. Therefore, there is a need to identify

subdomain mutants of Hla with an increased safety profile capable

of inducing protective immune responses.

In this study, using a rational, structure-based approach, we

designed several truncation mutants of Hla as vaccine candidates

and examined their efficacy in two models of S. aureus infection.

Importantly, this study demonstrates, for the first time, efficacy of

a Hla based vaccine candidate against S. aureus bacteremia and

distant organ bacterial seeding.

Materials and Methods

Bacteria
S. aureus strain USA300 (Los Angeles County clone, LAC) was

obtained from the NARSA repository and S. aureus strain Newman

was kindly provided by Dr. Tim Foster (Trinity College Dublin,

Ireland).

Preparation of inoculation seeds for pneumonia model
Newman or USA300 strains were grown overnight (ON) in

a volume of 20 ml in brain heart infusion (BHI) medium at 37uC,

shaking at 230 rpm using a 50 ml culture tube. Multiples of 20 ml

cultures were prepared. ON cultures were centrifuged at

3000 rpm and washed twice in PBS using the original volume

(20 ml) before pellet was re-suspended in 1 ml phosphate buffered

saline (PBS). Multiples of re-suspended pellets were combined and

mixed thoroughly on a vortex and further re-suspended with a 28

Gauge needle to keep chain formation of bacterial cells to

a minimum. Subsequently 1ml aliquots of seed culture were

prepared and stored at 280uC. Three aliquots were streaked out

at different dilutions and different time points (to test stability of

the seed) to enumerate CFU.

Preparation of inoculation culture for bacteremia model
For bacterial challenges, CA-MRSA USA300 and USA400

were grown for 18 to 24 hours in Tryptic soy broth (TSB, Difco

Laboratories, Detroit, Mich.). 10 ml of TSB in 25 ml flask was

inoculated with a single bead of S. aureus from 280uC stored bead

stock and culture grown ON at 37uC, with shaking at 230 rpm.

The culture was centrifuged at 3000 rpm at RT, washed once with

PBS and the bacterial pellet re-suspended in 1ml sterile PBS and

used for challenges as described below.

Animals
Female BALB/c mice- 6–8 weeks of age for active immunoge-

nicity studies and 10–12 weeks for passive vaccination studies-

were purchased from Charles River laboratories.

Mice were maintained under pathogen-free conditions and fed

laboratory chow and water ad libitum. All mouse work was

conducted in accordance with protocols approved by institutional

animal care and use committees (IACUC) of Nobel Life Sciences

(Gaithersburg, MD), where animal studies were conducted.

Vaccinations
For active immunogenicity studies, mice were immunized

intramuscularly (IM) three times at two weeks interval with the

antigens formulated in adjuvant. The doses of vaccine and

adjuvant are specified for each experiment in the results section.

For immunization with Al(OH)3 or AlPO4 the antigen was pre-

absorbed to adjuvant for 1 hour at a ratio of 1:7 (antigen/

adjuvant) in 50 mM Tris, pH 7.5. GLA-SE was mixed with the

antigen in PBS before injection. For passive vaccination studies,

mice were treated with 4 mg of AT62-IgG in 500 ml volume of

PBS via intraperitoneal (IP) administration 24 hours prior to

bacterial challenge.

Mouse pneumonia model
Mice were anesthetized with isoflurane and inoculated in-

tranasally (IN) with a lethal dose of S. aureus Newman or USA300

in 50 ml DPBS and were placed into the cages in a prone position

until recovery. Animals were monitored for morbidity (weight,

hunched posture, labored breathing, ruffled fur, impaired mobil-

ity) and mortality 4 times a day within the first 48 hours and then

once a day until termination of study.

Mouse bacteremia model
Female BALB/c mice were challenged via intra-peritoneal (IP)

injection with CA-MRSA USA300 in 3% mucin-PBS solution as

previously described [19]. Briefly, lypholized hog mucin type III

(Sigma Aldrich, St. Louis, Mo) was solublized to 6% (w/v) in PBS,

sterilized by autoclaving for 10 minutes and rapidly cooled on ice

for 10 – 15 minutes. For bacterial challenges, PBS washed

overnight grown USA300 bacterial cells were suspended in PBS

to an optical density of 0.15 at 600 nm, corresponding to 76107

CFU/ml, and then adjusted to 26105 CFU/ml with PBS. At the

time of challenge, bacteria and mucin solution were mixed at

equal volumes and mice injected IP with 0.5 ml corresponding to

56104 CFU in 3% mucin-PBS. Mice were monitored for

morbidity and mortality twice a day up for 7 days post challenge.

Determination of bacterial load during infection
In some experiments, groups of mice were euthanized at 12 h

after challenge and blood and organs (liver, combined kidneys,

lungs and spleen) were aseptically removed to determine bacterial

load. Organs were homogenized with 3.2 mm stainless steel beads

using a Bullet Blender from Next Advance Inc. (Averill Park, NY)

and were taken up in a total volume of 500 ml PBS. Blood samples

and organ homogenates were streaked out in different dilutions on

BHI agar plates and CFU were enumerated after ON incubation

at 37uC.

Plasmids, protein expression and purification
Plasmids pET24a (+):35929 (AT79aa-His), pET24a (+):64356

(AT79aa-5G-His), pET24a (+):35930 (AT-62aa-His) and pET24a

were synthesized by DNA2.0 (Menlo Park, CA). AT-50aa-His was

constructed by cloning the PCR product with NdeI and XhoI

restriction sites into pET24a(+). Forward primer: ttCATATGaaaa-

cacgtatagtcagc and reverse primer: ttCTCGAGatcacctgtttttactg-

tag were used to amplify nucleotide sequences corresponding to

the first 50aa of mature alpha toxin protein by using S. aureus

USA300 DNA template (NARSA, Chantilly, VA). These plasmids

were designed to encode the fusion proteins AT79aa with three

glycine linker, AT79aa with 5 glycine linker, AT62aa and

AT50aa, all possessing a C-terminal 6X Histidine tag. All the

alpha toxin constructs were expressed in Escherichia coli strain BL21

DE3. For the expression of the protein, bacteria were grown at

37uC and induced with 0.3 mM isopropyl-b-D thiogalactopyrano-

side (IPTG) when OD600 absorption reached 0.5. The tempera-

ture was then reduced to 25uC and the induction was continued

for another 16 hours. Cells were harvested by centrifugation at

5000 rpm for 20 minutes. The pellet was resuspended in low salt

buffer (10 mM Tris-HCl and 20 mM NaCl, pH 7.4) and treated

with 0.2 mg/mL Lysozyme. After incubation on ice for 30 min-

utes, the cells were sonicated in the presence of EDTA free
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protease inhibitor cocktail (Roche) tablet. After centrifugation at

9000 rpm for 30 minutes, the clarified cell lysate was further

treated with 1M NaCl, 2 mM Imidazole and 0.25 % CHAPS and

used for protein purification.

The proteins were bound to 5 ml Ni-NTA column (GE

Healthcare) on an AKTApurifierH (GE Healthcare) in PBS and

washed extensively in the same buffer supplemented with 1 M

NaCl and 5 mM imidazole. Elution was performed in 20 column

volumes of 0–70% of 1 M imidazole. For AT-79aa, eluted

fractions were dialyzed out of imidazole and re-purified one more

time on Ni-NTA. AT-50aa and AT-62aa eluted fractions were

concentrated with Amicon Ultra 3K filters (Millipore) and purified

further by Size Exclusion Chromatography using Superdex 75 10/

300 GL (GE Healthcare) column equilibrated in PBS with 0.5 M

NaCl and 0.25% CHAPS. The purity and identity of all the eluted

alpha toxin variants were confirmed by SDS-PAGE and Western

blot using anti-alpha toxin mAb (6C12) generated against AT-

79aa construct as the primary antibody and goat anti-mouse as the

secondary antibody. The pure proteins were dialyzed in PBS with

10% Glycerol as the storage buffer. The concentrations were

determined by bicinchoninic acid (BCA) assay and the endotoxin

levels were determined by Limulus Amoebocyte Lysate (LAL)

chromogenic endotoxin assay. The proteins were stored at 280uC
until further use.

Molecular modeling
Model building and computer calculations were performed

using the Accelrys, Inc software Discovery Studio 2.5 running on

a Dell Precision 690 running Red Hat Enterprise Linux 4.

Simulations were in vacuo and employed a CHARMM force field

with a CFF partial charge, a distance-dependent electric constant

of 1, and a temperature of 300K. Energy minimization involved

1000 steps of conjugate gradient. The crystal structure of

heptameric AT (PDB code 7AHL) [20] was selected for this

study. Peptide segments consisting of residues 1–62 and 223–236

were extracted from subunit A of the crystal structure and used as

the template for modeling candidate constructs. The peptide

segment 1–62 was energy minimized and its molecular energy was

calculated as described in Discovery Studio 2.5. Furthermore, the

1–62 peptide segment was used to generate shorter peptide

segment, such as 1–50, which were also minimized and used in

comparative analysis with one another as candidate constructs

based on calculated molecular energies. To generate the 4-strand

protein model, the 1–62 and 223–236 segments were bridged with

varying number of glycine amino acids between residues 62 and

223, and the resulting structures were subjected to energy

minimization and energy calculations. The optimal bridging

segment consisting of three glycine amino acids were found to

be minimal for forming a stable fold.

Alpha hemolysin ELISA
Blood samples were centrifuged in serum separator tubes and

serum samples were stored at 280uC until further use in ELISA.

Briefly, 96-well plates were coated with 100 ng/well of full length

alpha toxin (List Biological Laboratories, Campbell, CA) overnight

at 4uC. Plates were blocked with Starting Block buffer (Thermo

Scientific) for one hour at room temperature (RT). Serum samples

were prepared in semi-log dilutions starting from 1:100 to

1:10,000.000 in a 96-well plate using starting block buffer as

diluent. Plates were washed three times and sample dilutions were

applied in 100 ml volume/well. Plates were incubated for one hour

at RT and washed three times before applying the conjugate, goat

anti-mouse IgG (H&L)-HRP (Horse Radish Peroxidase) in starting

block buffer. Plates were incubated for one hour at RT, washed as

described above and incubated with TMB (3,39,5,59-tetramethyl-

benzidine) to detect HRP for 30 min. Optical density at 650 nm

was measured using a VersamaxTM plate reader (Molecular

Devices CA). Data analysis for full dilution curves was performed

using Softmax program.

Alpha hemolysin oligomerization inhibition assay
500 ml of 10% rabbit red blood cells (RBC) (Colorado Serum

Company, CO) with 15 mg of purified alpha toxin was incubated

on ice for 15 min. Following incubation, samples were centrifuged

at 14,000 rpm for 5 min in pre-chilled centrifuge. Supernatants

were discarded and pellet was washed with cold PBS and then re-

suspended in 100 ml of tris-buffered saline (TBS). The samples

were incubated at 37uC for 45 min for complete lysis of

erythrocytes. Negative (without toxin) and positive (with 1%

Triton X-100) controls for hemolysis were run in parallel. The

samples were then centrifuged for 10 min at 14,000 rpm and re-

suspended in 120 ml of 16 Laemmli buffer, divided into two

separate aliquots, one aliquot incubated at 100uC for 10 minutes

(negative oligomerization control) and others were kept on ice.

15 ml of each sample was loaded on 7–20% sodium dodecyl sulfate

(SDS)-polyacrylamide gels for electrophoresis. For Western blot,

rabbit anti-AT-62aa polyclonal antibody (IBT Bioservices

Cat#04-0010) was used in a 1:1000 dilution to detect the

monomeric and heptameric bands. For oligomerization inhibition

assay, decreasing concentrations of antibody (400–6.25 mg/ml in

two-fold dilutions) were incubated with RBC and alpha toxin at

RT prior to incubation on ice for 15 min.

Alpha hemolysin neutralization assay
Alpha hemolysin neutralization titers of mouse sera and rabbit

AT-62aa polyclonal antibodies were determined based on

neutralization of hemolysis of 2% RBC when pre-incubated with

alpha toxin (100 ng) at RT for 10 minutes before adding RBC

followed by 30 min incubation at 37uC. After incubation, cells

were centrifuged and the absorbance in the supernatant was

determined in VersamaxTM plate reader (Molecular Devices CA)

at 416 nm. Neutralization titer 50 (NT50, defined as the dilution of

the serum which neutralizes the toxicity of alpha toxin by 50%)

was determined by plotting the OD416nm in diluted serum samples

using a four parameter logistic (4-PL) curve fit. Standard serum

samples with high, medium and low NT50 were run to the assay

during each assay run.

Results

Design of recombinant a-hemolysin vaccine candidates
The functional, and cytolytic form of Hla is a pore-forming

heptamer that binds to cell surface receptor ADAM10 [21].

Crystallographic studies show that each N-terminus of Hla is

located on the top surface of the heptameric pore where it both

latches onto a neighboring subunit in an arm-in-arm manner and

lines the cis (extracellular) entrance to the channel [20]. The N-

terminal domain of Hla consists of four anti-parallel b-strands with

three of the strands within the linear sequence of 1–62 (residues

K21-D29, M34-I43, and K50-A62) and the fourth strand being

contributed by the distal amino acids F228-M234 (Figure 1A&B).

Given the positioning of the N-terminal domain and previous

reports indicating vaccine potential of a truncated N-terminal

domain (residues 1–50) [15], we hypothesized that proteins based

on stable N-terminal domain structures would produce superior

vaccine candidates. Molecular modeling was used to identify

optimal fusion proteins based on this four-strand sheet structure.

Novel Vaccine for S. aureus Alpha Toxin
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Hypothetical proteins consisting of residues 1–50, 1–62 or a fusion

of residues 1–62 to 228–236 (Figure 1B) were examined.

The 1–50, 1–62, and 223–236 segments were extracted from

a subunit of the AT crystal structure. The relative stabilities of the

1–50 and 1–62 segments were calculated (Table 1), suggesting that

the novel 1–62 construct may be more stable than the reported 1–

50 construct [15]. To investigate the potential of the full four-

strand sheet structure, molecular modeling was used to evaluate

different linker units that could be used to bridge Ala62 in the

third strand with Phe228 in the fourth strand, in combination with

the loop segment Gly223-Asp227. Because of their small side

chain and conformational flexibility, glycine residues were used as

the building blocks for the linkers that join Ala62 with Gly223

(Figure 1B). Six different protein models of the 4-stranded sheet

structure with varying glycine counts in their linker units were

generated and evaluated in silico. A three-glycine linker unit had

a lower calculated molecular energy than both the 1–50 and 1–62

segments (Table 1). Linkers composed of more than three glycine

amino acids are calculated to be less stable than the three-glycine

linker construct, but their folding into stable tertiary structure may

remain feasible due to the greater conformational flexibility of the

larger linkers. The results of this modeling study suggested that

a construct consisting of residues 1–62 (denoted hereafter AT-

62aa), a construct of residues 1-62-(GGG)-223-236 (denoted

hereafter AT-79aa) and constructs containing three or more

glycine amino acids would fold into functional domains.

Based on these predictions, we generated constructs for AT-

50aa, AT-62aa, and AT-79aa with a C-terminal 6xHistidine tag.

Proteins were expressed in E. coli and purified over a Ni column.

Based on the molecular modeling study, we prepared constructs

consisting of variable number of glycine amino acids, and

determined that extension of the linker to five glycines resulted

in the best protein expression, yield and purity for in vivo studies.

Therefore, a five-glycine linker AT-79aa was used in the studies

described here. Proteins were analyzed by SDS-PAGE and

Western Blot (Figure 2) and tested for endotoxin content as

described in the Materials and Methods section.

Immunogenicity of a-hemolysin vaccine candidates
The immunogenicity of the three purified proteins was

examined in BALB/c mice in combination with Alhydrogel

(Al(OH)3), aluminum phosphate (AlPO4), or Glucopyranosyl Lipid

Adjuvant-Stable Emulsion (GLA-SE) (ImmuneDesign Corp.,

Seattle, WA). Groups of five mice were immunized three times

at 2 weeks interval with 5 mg of the antigen along with different

doses of each adjuvant (Table 2). Mouse sera were tested for total

and neutralizing antibodies to wild type Hla on day 35. To

evaluate the relationship between immunogenicity and protection

from lethal challenge, mice were challenged IP on day 52 with

56104 CFU of S. aureus strain USA300 along with 3% Hog Mucin

and monitored for morbidity and mortality over 7 days. Total

Figure 1. Structural analysis of Hla. (A) The relative topology of 1–
62 and 1–62(GGG)–(223–236) AT constructs on the protein surface of
a subunit from the 7AHL heptameric hemolysin crystal structure. The
protein surface for the 1–62 segment is colored green, the 223–236
sequence colored dark green, and the remaining structure colored
purple. (B) Topology of the secondary structural elements in a-
hemolysin for peptide segments examined in this study.
doi:10.1371/journal.pone.0038567.g001

Table 1. Calculated Molecular energies for Hla N-terminal
constructs.

Construct (residues) Energy (kcal/mol)

1–50 22989

1–62 23660

1–62-(GGG)-223–236 23953

doi:10.1371/journal.pone.0038567.t001

Figure 2. SDS-PAGE and Western blot analysis of purified Hla
constructs. (A) SDS-PAGE. Lane 1: Biorad pre-stained protein standard;
Lane 2: AT-50aa; Lane 3: AT-62aa; Lane 4: AT-79aa. All proteins were
loaded at 1 mg/ lane and stained with Coomassie blue. (B) Western Blot.
Lane 1: Biorad pre-stained protein standard; Lane 2: AT-50aa; Lane 3:
AT-62aa; Lane 4: AT-79aa; Lane 5: Full length alpha toxin. All proteins
were detected by anti-alpha toxin mAb (6C12) generated against AT-
79aa construct.
doi:10.1371/journal.pone.0038567.g002
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antibody titers were determined by ELISA using full length

purified Hla as coating antigen and seven semi-log dilutions of

sera. The ELISA titer (EC50) was defined as the dilution of the

serum resulting in 50% maximum OD (inflection point of the 4-PL

curve). Similarly, the neutralizing titer (NT50) was defined as the

dilution of the antibody resulting in 50% inhibition of the lysis of

rabbit RBCs induced by 100 ng of purified Hla.

As shown in Table 2, all mice in the no-adjuvant and control

groups consistently succumbed within 20 h of USA300 challenge,

providing a reliable measure of lethality. Very low ELISA and

undetectable NT50 titers were observed in mice vaccinated with

AT-62aa without adjuvant. Mice vaccinated with a control

vaccine (recombinant Staphylococcal enterotoxin B vaccine; STEB-

Vax) [22] along with Al(OH)3 showed no titer to Hla. In contrast,

mice survival was improved by absorption of AT-62aa to Al(OH)3.

As quantified, Al(OH)3 induced low ELISA titers with a geometric

mean of 189 and neutralizing titers below the limit of detection.

Consistent with the low antibody titers, 3 out of 5 mice in this

group succumbed within 20 h of challenge; however, two mice

survived and remained active.

Mice survival was markedly improved by using AlPO4 or GLA-

SE as adjuvants. Mice receiving the vaccine with AlPO4 showed

slightly higher antibody titers with a geometric mean of 300 and 3

out of 5 mice showed detectable neutralizing titers. All mice in this

group survived the challenge and were comparatively less morbid,

remaining active with ruffled coat in the first two days post

challenge. All mice immunized with AT-62aa along with 20 mg of

GLA-SE showed much higher ELISA and NT50 titers with

geometric means of 2476 and 309 respectively. Consistent with the

high titers all mice survived the challenge and remained active.

Based on these promising results, we selected GLA-SE as the

adjuvant for further comparative efficacy studies.

Comparative immunogenicity and efficacy of the vaccine
candidates

Previous reports using AT-50aa protein indicated the efficacy of

this vaccine candidate against pneumonia by the S. aureus Newman

strain [15], when used with Freund’s adjuvant. Since Freund’s

adjuvant cannot be used in humans, we sought to perform

a comparative efficacy study with the three vaccine candidates

using GLA-SE, an adjuvant currently in clinical development

[23,24]. Groups of 20 mice were vaccinated intramuscularly three

times at 2 week intervals with 5 mg of AT-50aa, AT-62aa or AT-

79aa, formulated with 5 mg of GLA-SE in PBS (in an interim study

we showed that similar titers can be achieved with 5 or 20 mg of

GLA-SE; data not shown). On day 35, mice were bled for

determination of antibody titers. As shown in Figure 3A, mice

vaccinated with AT-62aa showed robust ELISA titers against wild

type Hla with median EC50 of 2022 (range: 510–14,900). Mice

vaccinated with AT-79aa showed much lower ELISA titer with

median of 49 (range: 0–6,050) followed by mice vaccinated with

AT-50aa with a median EC50 of 11 (range: 0–1,150). Similarly,

when neutralization titers were determined in pools of serum

samples mice vaccinated with AT-62aa showed highest NT50 of

1277 followed by AT-79aa with NT50 of 213 (̀ure 3B). Neutral-

ization was below the limit of detection of this assay in the pool of

sera from AT-50aa vaccinated mice (NT50,40). For the challenge

studies, each group was broken into two subgroups of ten mice

each and challenged as described below to determine vaccine

efficacy against S. aureus pneumonia and sepsis.

Efficacy of the vaccine candidates in S. aureus USA300

bacteremia model. Groups of ten vaccinated or five con-

trol mice were challenged on day 42 by IP administration of

56104 CFU of S. aureus strain USA300 along with 3% Hog Mucin.

Mice were observed for signs of mortality and morbidity for

7 days. While 100% of mice vaccinated with AT-62aa or AT-79aa

and 70% of mice vaccinated with AT-50aa survived the challenge,

only one out of five control mice survived (Figure 4A). Maximal

median weight loss of surviving mice in immunized groups was 6%

of body weight. All surviving mice re-gained weight and had

a healthy appearance (smooth fur, active) by day 7.

Efficacy of the vaccine candidates in S. aureus Newman

pneumonia. The remaining ten mice from vaccinated or

control groups were challenged on day 48 by intranasal admin-

istration of 66107 CFU of S. aureus strain Newman. As shown in

Figure 4B, mice vaccinated with adjuvant alone or AT-50aa died

within 24–48 h. Similarly, nine out of ten mice vaccinated with

AT-79aa succumbed to infection while one mouse survived the

challenge. In contrast, mice vaccinated with AT-62aa showed

50% protection from lethal challenge with death occurring

significantly later than in the other groups. No additional mortality

was observed in this group beyond 72 hours when the mice were

Table 2. Immunogenicity of AT-62aa tested in BALB/c mice
using different adjuvants and survival upon IP challenge with
USA300.

Adjuvant
Adjuvant
dose Mouse #

ELISA
EC50

Neut titer
NT50

Time of
death

M1 361 ,64 20h

M2 658 ,64 survived

Al(OH)3 35 mg M3 198 ,64 20h

M4 69 ,64 20h

M5 75 ,64 survived

Geo Mean 189 ,64

M1 1230 127 survived

M2 18 ,64 survived

AlPO4 35 mg M3 510 ,64 survived

M4 674 127 survived

M5 320 110 survived

Geo Mean 300

M1 1800 251 survived

M2 1630 194 survived

GLA-SE 20 mg M3 1530 159 survived

M4 2540 423 survived

M5 8170 859 survived

Geo Mean 2476.5 308.9

M1 198 ,64. 20h

M2 208 ,64. 20h

No adjuvant - M3 91.5 ,64. 20h

M4 76.7 ,64. 20h

M5 307 ,64. 20h

Geo Mean 155 ,64

M1 0 ,64. 20h

Control M2 0 120 20h

vaccine: 35 mg M3 0 ,64. 20h

(STEBVax) M4 0 ,64. 20h

+ Al(OH)3) M5 0 ,64. 20h

doi:10.1371/journal.pone.0038567.t002
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monitored for up to 8 days. Statistical analysis was performed by

Log-Rank (Mantel-Cox) test demonstrating high significance for

protection afforded by AT-62aa when compared to both AT-50aa

and control mice (P= 0.0002) and when compared to AT-79aa

(P= 0.0043) (Figure 4B).

Protection against USA 300 pneumonia. Since severe

respiratory infections have been reported to be caused by

USA300 [25], the efficacy of the vaccine candidate AT-62aa

was further explored against pneumonia induced by USA300.

Mice were vaccinated three times at two weeks interval with 10 mg

of AT-62aa along with 20 mg of GLA-SE (n = 5) or GLA-SE alone

(n = 10). Mice were bled on day 35 to determine serum antibody

response and challenged on day 41 with 1.56108 CFU of

USA300. On day 35, the vaccinated mice showed antibody titers

(EC50) with a geometric mean of 4125 with a range of 2400 to

8980. Control mice showed no detectable antibody titers. While all

control mice died within 20–48 h, four out of five vaccinated mice

survived the challenge, highlighting the efficacy of AT-62aa

against USA300 induced pneumonia (Figure 4C). Surviving mice

lost 10–25% of body weight within the first 3 days of infection but

recovered from weight loss, with 2 out of 4 mice even reaching

original weights. All surviving animals were active by day 5.

Figure 3. Comparative antibody response to vaccine candi-
dates. (A) Individual serum antibody titers towards wild-type Hla
determined after three immunizations (B) Neutralization titers of
pooled sera towards wild-type Hla after three immunizations.
doi:10.1371/journal.pone.0038567.g003

Figure 4. Comparative efficacy study of vaccine candidates in
S. aureus bacteremia and pneumonia infection models. Survival
of mice vaccinated with the three vaccine candidates and control mice
after IP challenge with 56104 CFU of USA300 along with Hog Mucin (A)
or IN challenge with 66107 CFU of S. aureus strain Newman (B). Survival
of mice vaccinated with AT-62aa and challenged IN with 1.56108 CFU
of S. aureus USA300 (C). Symbol key: AT-50aa (open circle), AT-62aa
(black square), AT-79aa (open triangles) and mock-immunized mice
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Antibodies to AT-62aa (AT62-IgG) protect against lethal
bacteremia

We hypothesized that the remarkable efficacy observed with

AT-62aa vaccine is mediated by a protective antibody response.

To examine this hypothesis, polyclonal antibodies were raised

against purified AT-62aa in rabbits (IBT Bioservices #04–0010)

and total IgG was purified by Protein A. Naı̈ve rabbit IgG

(Equitech-Bio, Inc., Kerryville, TX) was used as control. Groups of

10 mice were passively immunized with 4 mg of rabbit polyclonal

anti-AT62aa antibodies (AT62-IgG) or naı̈ve rabbit IgG by IP

injection at 24 hours before challenge with 56104 CFU of

USA300 or 16105 CFU of USA400 (MW2) in 3% Hog mucin.

As shown in Figure 5A, while nine out of ten mice immunized with

naı̈ve IgG succumbed within 48 hours, all mice immunized with

AT62-IgG showed slightly ruffled coat, remained active, and

survived the challenge. Similarly, while 80% of control mice

challenged with MW2 died within 48 h, all mice receiving AT62-

IgG survived the lethal challenge (Figure 5B).

Antibodies to AT-62aa protect against bacterial
dissemination and organ seeding

To explore the ability of antibodies induced by the vaccine

candidate AT-62aa to inhibit bacterial dissemination and/or

growth in vivo, two studies were performed using passive immuni-

zation with AT62-IgG in pneumonia and bacteremia models.

In the first experiment, two groups of 20 mice were passively

immunized, one group with 4 mg of naı̈ve IgG and the other

group with 4 mg of AT62-IgG. After 24 hours, mice were infected

IP with 56104 CFU of USA300 in 3% Hog mucin. Twelve hours

after infection mice were bled, euthanized, and various organs

were sampled and homogenized. In this experiment, two of the

control mice died before the 12 hour time point and, thus, data

could be collected only from 18 control mice. All 20 mice in the

AT62-IgG treated group were alive before euthanasia for organ

sampling. CFUs were determined in blood and organ homo-

genates. Treatment with AT62-Ig resulted in drastic reduction of

bacterial burden in blood, kidney, liver, spleen, and lung,

compared to control naı̈ve rabbit IgG-treated mice (Figure 6).

Blood CFU counts from three of 18 samples in the control group

had to be excluded from analysis since counts were above

detection limit (.300 CFU/plate) and insufficient samples were

available for further dilutions. Statistical analysis using Mann

Whitney test showed that the differences between control and

treated groups were highly significant with P value ,0.0001 in all

cases (Figure 6). These results strongly suggest that antibodies

induced by the AT-62aa antigen can be protective against

dissemination of bacteria in vivo.

In the second experiment, two groups of 10 mice were passively

immunized, one group with naı̈ve IgG and the other group with

AT62-IgG (both at 4 mg/mouse). After 24 hours, mice were

infected intranasally with 1.36108 CFU of USA300. Twelve hours

after infection, mice were euthanized and blood and various

organs were sampled and homogenized. CFUs were determined in

blood and organ homogenates. Similar to results observed in

bacteremia model, treatment with AT62-IgG resulted in reduction

of bacterial burden in blood, kidney, liver, spleen, and lung

(Figure 7). Statistical analysis using Mann Whitney test showed

that the differences were significant for kidneys, liver, and lung. A

trend was also observed in blood and spleen. While nine of ten

control mice had infected spleens, five out of 10 mice treated with

AT-62-IgG showed no bacterial seeding in spleen. In sum,

antibodies induced by AT-62aa antigen can be protective against

dissemination of bacteria in vivo.

Mechanism of action studies
To delineate the mechanism of protection by AT-62aa vaccine,

we tested the effect of AT62-IgG on neutralization and oligomer-

ization of Hla. Toxin neutralization activity of the purified

polyclonal antibody was tested using rabbit red blood cells. AT62-

IgG effectively inhibited RBC lysis induced by 100 ng of purified

Hla (Toxin tech, FL) with an EC50 of 14 mg/ml (Figure 8).

Formation of Hla heptamers upon binding to cell surface

receptor is a key event in pore formation and subsequent lysis of

target cells [26]. Given the role of the N-terminal domain, we

hypothesized that antibodies to AT-62aa interfere with the

formation of Hla heptamers and consequently inhibit target cell

lysis. To examine this hypothesis, we tested the effect of AT62-IgG

on heptameric Hla (Hla7) formation in a Western blot assay. Hla

was incubated with or without increasing concentrations of the

pAbs before incubating the mixture with RBCs. The cells were

pelleted, washed, lysed, and subjected to Western blotting without

prior boiling. AT62-IgG effectively prevented the formation of the

heptameric Hla structure in a dose dependent manner (Figure 9).

Taken together, these data suggest that antibodies to AT-62aa

neutralize the activity of Hla by binding to the N-terminal domain

by preventing oligomerization and the subsequent pore formation.

(grey diamond). Statistical analysis was performed using Log-Rank
(Mantel-Cox) test.
doi:10.1371/journal.pone.0038567.g004

Figure 5. Passive protection with rabbit polyclonal AT-62aa
(AT62-IgG) in bacteremia model. Protection from lethal challenge
with S. aureus USA300 (A) or USA400 (B) after passive immunization
with polyclonal rabbit antibodies AT62-IgG (black square) compared to
mock-treated mice (grey diamond). Statistical analysis was performed
using Log-Rank (Mantel-Cox) test, P,0.0001.
doi:10.1371/journal.pone.0038567.g005
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Discussion

S. aureus is a leading cause of community and hospital acquired

infections worldwide. S. aureus expresses numerous virulence

factors including a variety of toxins and other exoproteins that

are aimed at weakening the innate immune system by direct lysis

of phagocytes or inactivation of key innate response molecules,

cause tissue destruction and enable bacterial dissemination leading

to metastatic growth in distant organs, and provide the bacteria

with much needed iron by lysis of red blood cells. Given that alpha

hemolysin (Hla) plays a key role in the pathogenesis of S. aureus

infections [8,9,27], this toxin represents a prime candidate for

vaccine development or as a component of a multivalent S. aureus

vaccine. However, at present, such a crucial vaccine is not

available in the clinic. A great body of literature describes studies

performed with an experimental Hla vaccine with a single point

mutation at histidine 35. While these studies have clearly validated

Hla as a prime vaccine candidate, a toxin with a single point

mutation is not a viable candidate for human clinical development

due to safety concerns. In this study, we used a rational, structure-

based approach to design safe and effective vaccine candidates for

Hla and identified a candidate with remarkable efficacy profile

against S. aureus pneumonia and bacteremia in mouse models.

Our lead Hla vaccine candidate AT-62aa exhibits strong

immunogenicity in mice when used with two clinically tested

adjuvants (AlPO4 and GLA-SE) with significant protection shown

Figure 6. Passive protection against bacterial dissemination in bacteremia model. Bacterial burden in organs and blood was determined
after passive immunization with polyclonal AT62-IgG or naı̈ve IgG followed by IP infection with S. aureus USA300 in 3% Hog mucin. Statistical analysis
was performed with Mann-Whitney Test with two-tailed P value (P,0.0001 for all tested CFU).
doi:10.1371/journal.pone.0038567.g006
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in a mouse pneumonia model using the clinically relevant strains

Newman as well as USA300 (LAC), a highly virulent CA-MRSA

strain that is currently epidemic in the US. Using a mouse

bacteremia model, we demonstrated the key role of Hla in the

infection induced lethality, and concomitantly, showed the full

protection conferred by both AT-62aa and AT-79aa against IP

challenge with USA300. While an absolute cut off for protection

was not established in this study, protected mice generally showed

higher ELISA and neutralizing antibody titers. This finding was

consistent with the ability of antibodies to AT-62aa to effectively

neutralize Hla via inhibition of Hla oligomerization and suggests

that toxin neutralization may be the primary mechanism of

protection. This notion was supported by the ability of anti AT-

62aa antibodies, passively transferred to mice before challenge, to

protect against lethality and to dramatically reduce bacterial

burden in different organs up to 4 logs. Hla is best known for its

hemolytic activity [26] but it is also reported to induce injury to

alveolar epithelial cells [28], induce the release of nitric oxide and

other inflammatory mediators [29], and cause cell death in

monocytes presumably through excessive IL-1b release [30].

Given this broad profile of activities of alpha toxin, AT-62aa

induced neutralizing antibodies may contribute to tissue pro-

tection, contain excessive inflammatory response, protect key

innate immune cells from cell death, and reduce the availability of

iron for bacterial growth.

Ragle and Bubeck-Wardenburg [15] showed that monoclonal

antibodies to the N-terminal domain of alpha toxin protect mice

against pneumonia induced by S. aureus strain Newman. A purified

Figure 7. Passive protection against bacterial dissemination in pneumonia model. Bacterial burden in organs and blood was determined
after passive immunization with polyclonal AT62-IgG or naı̈ve IgG followed by IN infection with S. aureus USA300. Mann-Whitney Test with two-tailed
P value (P values as indicated in figures).
doi:10.1371/journal.pone.0038567.g007

Novel Vaccine for S. aureus Alpha Toxin

PLoS ONE | www.plosone.org 9 June 2012 | Volume 7 | Issue 6 | e38567



recombinant protein comprising the first 50 amino acids of Hla

protected mice against S. aureus pneumonia, when used for

immunization with Freund’s adjuvant [15]. In contrast, when we

vaccinated mice with the purified protein representing this portion

of Hla (AT-50aa) along with GLA-SE (Figure 3) or Alhydrogel

(data not shown), very low ELISA titers were detected, neutral-

izing antibody titers were below 1:40, and all AT-50aa vaccinated

mice succumbed to lethal pneumonia (Figure 4B). The discrep-

ancy with the previously reported results [15] most likely reflects

the use of Freund’s adjuvant by Ragle and Bubeck-Wardenburg,

which is known to be an extremely potent inducer of antibody

response. However, Freund’s adjuvant cannot be used in humans

due to severe toxicity. When tested in bacteremia model, AT-50aa

provided partial protection against lethal challenge (Figure 4A),

suggesting that some level of protective response can be achieved

with AT-50aa consistent with the reported results in pneumonia

[15]. It must be noted that while Ragle and Bubeck-Wardenburg

used a GST fusion of AT-50aa, the protein used in the current

study contained only a short 6xHis tag. It is possible that the GST

tag may have additional conformational impact on the protein

further contributing to the observed efficacy.

The analysis of Hla crystal structure shows that the N-terminal

50 amino acids represent an incomplete domain consisting of two

beta strands. Our preliminary biophysical studies using circular

dichroism showed that the AT-50aa protein largely consists of

alpha helices and unstructured regions with no indication of beta

sheets (data not shown). The fusion construct AT-79aa showed

evidence of a mixture of beta sheets and alpha helices. These

structural deviations from the beta sheet structure correlate with

the reduced ability of these two proteins to induce a robust

protective immune response. We believe that the misfolding of

AT-79aa relates to the linker region connecting the third beta

sheet of the N-terminal domain to the distal F228-M234 sheet.

Our initial studies suggested that increasing the length of the linker

from 3 to 5 glycines improved the folding of the protein. We are

currently working on further testing a variety of linkers to evaluate

if a complete four beta sheet structure can be achieved and to

compare its immunogenicity to AT-62aa.

A large number of pathogens exploit the tendency of the

immune system to induce overwhelming antibody response to

immunodominant epitopes as an immune evasion strategy [31].

This tendency, coined as ‘‘deceptive imprinting’’, is hard wired in

the immune system and poses a major challenge in vaccine

development [32]. Previous reports and our unpublished data

indicate that most people have antibody titers against Hla. In

a recent study, we examined the antibody response to multiple

staphylococcal toxins in 100 patients with S. aureus bacteremia.

While all patients showed ELISA antibody titers to alpha toxin

(EC50 range: 130–89,000) only 52% had NT50 titers above 40

(Range: 1–1500, Manuscript in press; Adhikari et al, Journal of

Infectious Diseases). Importantly, in this study, an inverse

correlation between neutralizing antibodies to Hla and the

likelihood of sepsis could be established. It is a well established

strategy in the field of vaccine design to mask the dominant

epitopes and redirect the immune response towards protective

subdominant epitopes [33]. The majority of antibody response to

native Hla may be directed to non-neutralizing dominant epitopes.

Representing a key domain in Hla olgomerization, AT-62aa may

be refocusing the antibody response toward subdominant pro-

tective epitopes resulting in strong protective efficacy, a notion

consistent with previous reports of protective epitopes in the N-

terminal domain of alpha toxin [15]. We have generated a panel

of monoclonal antibodies to AT-62aa and 30% of the clones were

found to be neutralizing, suggesting a concentration of neutralizing

epitopes in this domain (unpublished data). Current efforts are

focused on identifying the protective epitope(s) that could be used

to refine our antigen design as well as potential immunotherapy

strategies for S. aureus infections.

Taken together, the results presented in this report demonstrate

that a rationally designed subunit vaccine can yield efficacy in

animal models against two major complications of S. aureus

infections. This remarkable efficacy may relate to refocusing of the

immune response to a limited number of highly protective

epitopes. Together with previous reports of Hla vaccine efficacy

in SSTI infection models [8], our attenuated and highly effective

alpha toxin antigen must be considered as an essential component

of future S. aureus vaccine.
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