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Perspective

Stripe phases in high-temperature superconductors
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Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferro-
magnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations
necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

Thirteen years ago, the discovery (1) of superconductivity in
layered copper–oxide compounds came as a great surprise, not
only because of the record-high transition temperatures, but
also because these materials are relatively poor conductors in
the ‘‘normal’’ (that is, nonsuperconducting) state. Indeed,
these superconductors are obtained by electronically doping
‘‘parent’’ compounds that are antiferromagnetic Mott insula-
tors—materials in which both the antiferromagnetism and the
insulating behavior are the result of strong electron–electron
interactions. Because local magnetic correlations survive in the
metallic compounds, it is necessary to view these materials as
doped antiferromagnets. A number of other related materials,
such as the layered nickelates (which remain insulating when
doped) and manganites (the ‘‘colossal’’ magnetoresistance
materials), are also doped antiferromagnets in this sense.

The conventional quantum theory of the electronic struc-
ture of solids (2), which has been outstandingly successful at
describing the properties of good electrical conductors (metals
such as Cu and Al) and semiconductors (such as Si and Ge),
treats the electronic excitations as a weakly interacting gas.
This approach, known as the ‘‘Fermi liquid theory,’’ breaks
down when applied to doped antiferromagnets. New principles
must be developed to deal with these problems, which are at
the core of the study of ‘‘strongly correlated electronic sys-
tems,’’ one of the central and most intellectually rich branches
of contemporary physics. One idea that has evolved over the
last decade, and which offers a framework for interpreting a
broad range of experimental results on copper-oxide super-
conductors and related systems, is the concept of a stripe
phase. A stripe phase is one in which the doped charges are
concentrated along spontaneously generated domain walls
between antiferromagnetic insulating regions.

Stripe phases occur as a compromise between the antifer-
romagnetic interactions among magnetic ions and the Cou-
lomb interactions between charges (both of which favor local-
ized electrons) and the zero-point kinetic energy of the doped
holes (which tends to delocalize charge). Experimentally,
stripe phases are most clearly detected in insulating materials
(where the stripe order is relatively static), but there is
increasingly strong evidence of fluctuating stripe correlations
in metallic and superconducting compounds. The existence of
dynamic stripes, in turn, forces one to consider new mecha-
nisms for charge transport and for superconductivity. More
generally, we will show that the concept of electronic stripe
phases developed for transition-metal oxides is applicable to a
broad range of materials.

Theoretical Background. Doped antiferromagnets are a
particularly important and well studied class of strongly cor-
related electronic materials. Here, the parent compound is
insulating, even at elevated temperatures, because of the
strong short-range repulsion between electrons. At sufficiently

low temperatures, antiferromagnetic order develops in which
there is a nonzero average magnetic moment on each site
pointing in a direction that alternates from site to site (see Fig.
1). Frequently the doping process, ‘‘hole doping,’’ involves
chemically modifying the material so that a small fraction of
electrons is removed from the insulating antiferromagnet.
Whereas the charge distribution in a doped semiconductor is
homogeneous, in a doped antiferromagnet the added charge
forms clumps—solitons in one dimension, linear ‘‘rivers of
charge’’ in two dimensions, and planes of charge in three
dimensions, as exemplified by organic conductors, cuprates or
nickelates, and manganites, respectively. Typically, these
clumps form what are known as ‘‘topological defects,’’ across
which there is a change in the phase of the background spins
or orbital degrees of freedom. In d dimensions, the defects are
(d-1)—dimensional extended objects (3). Stripes in a two-
dimensional system are illustrated schematically in Fig. 1.

Self-organized local inhomogeneities were predicted theo-
retically (4–7). These inhomogeneities arise because the elec-
trons tend to cluster in regions of suppressed antiferromag-
netism (8), which produces a strong short-range tendency to
phase separation (9–11) that is frustrated by the long-range
Coulomb interaction. The best compromise (7, 12) between
these competing imperatives is achieved by allowing the doped
holes to be delocalized along linear stripes, while the inter-
vening regions remain more or less in the undoped correlated
insulating state.

Experimental Evidence for Stripes. The most direct evi-
dence for stripe phases in doped antiferromagnets has come
from neutron scattering studies. Diffraction of a neutron beam
by long-period spin and charge density modulations, extending
over a few unit cells as indicated in Fig. 1, yields extra Bragg
peaks. The position of such a superstructure peak measures the
spatial period and orientation of the corresponding density
modulation, whereas the intensity provides a measure of the
modulation amplitude. Because neutrons have no charge, they
do not scatter directly from the modulated electron density,
but instead are scattered by the ionic displacements induced by
the charge modulation. The lattice modulation is also mea-
surable with electron and x-ray diffraction.

The antiferromagnetic order found in the parent com-
pounds of the cuprate superconductors is destroyed rapidly as
holes are introduced by doping. The first indications of long-
period (‘‘incommensurate’’) spin-density modulations were
provided by inelastic neutron scattering (13) of superconduct-
ing La22xSrxCuO4 and by related measurements on the insu-
lating nickelate analog (14). After the discovery of ‘‘incom-
mensurate’’ charge ordering in the latter system by electron
diffraction (15), the proper connection between the magnetic
and charge-order peaks was determined in a neutron diffrac-
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tion study (16) of La2NiO4.125. The positions of the observed
peaks indicate that the charge stripes run diagonally through
the NiO2 layers (as opposed to the vertical stripes shown in Fig.
1). More recent experiments (17, 18) on La22xSrxNiO4 have
shown that the diagonal stripe ordering occurs for doping
levels up to x ' 1y2 (corresponding to a hole density of 1 for
every two Ni sites), with the maximum ordering temperatures
occurring at x 5 1y3.

It is significant that the charge ordering is always observed
at a higher temperature than the magnetic ordering, which is
characteristic (19) of a transition that is driven by the charge.
It is also important to note that the period of the charge order
is generally temperature dependent, which means that the hole
concentration along each stripe also varies with temperature;
this is characteristic (20) of structures that arise from com-
peting interactions. These observations are consistent with the
idea that the stripes are generated by the competition between
the clustering tendency of the holes and the long-range Cou-
lomb interactions. [Weak density–wave order can occur in
conventional solids under special conditions (‘‘nested Fermi
surfaces’’), but the transitions tend to be ‘‘spin driven’’ and
occur at a fixed ‘‘nesting’’ wave vector (5)].

Charge order is most easily detected when stripes are static,
but perfect static charge order can be shown (21) to be
incompatible with the metallic behavior of the cuprates.
Nevertheless, to get a better experimental handle on the
charge order, one might hope to pin down fluctuating stripes
with a suitably anisotropic distortion of the crystal structure.
Just such a distortion of the La22xSrxCuO4 structure is ob-
tained by partial substitution of Nd for La. Neutron diffraction
measurements (22) x '1y8 a Nd-doped crystal with the special
Sr concentration of x '1y8 revealed charge and spin order
consistent with the vertical stripes of Fig. 1. (An anomalous
suppression of superconductivity, associated with the lattice
distortion, is maximum for x '1y8.) The charge order has since
been confirmed by high-energy x-ray diffraction (23). As in the
nickelates, the spin ordering occurs at lower temperatures than

the charge order, and the hole concentration on a stripe varies
as a function of the Sr concentration, x.

Although it has been difficult to observe a direct signature
of charge stripes in other cuprate families, the existing neutron
scattering studies of magnetic correlations are certainly most
easily understood in terms of the stripe-phase concept. The
doping dependence of dynamic magnetic correlations (24) in
Nd-free La2-xSrxCuO4 is found to be essentially the same as the
static correlations in Nd-doped samples (22), and a compre-
hensive study (25) of a Nd-free sample near ‘‘optimum’’ doping
(that is, maximum superconducting transition temperature)
indicates that ordering may be prevented by quantum fluctu-
ations. To keep things interesting, static magnetic order has
been observed (26) to set in near the superconducting tran-
sition temperature in La2CuO41d. Finally, a beautiful experi-
ment (27) on superconducting YBa2Cu3O61x has shown that
the low-energy magnetic correlations in that system have
strong similarities to those in La22xSrxCuO4.

An example of planar domain walls in a three-dimensional
system occurs in nearly cubic La12xCaxMnO3 with x 5 0.5.
Charge order has been imaged by transmission electron mi-
croscopy (28). The ordering phenomena are somewhat more
complex in this case because the occupied Mn 3d orbitals are
degenerate. As a consequence, charge, spin, and orbital or-
dering are all involved, although, again, charge order sets in at
a higher temperature than magnetic order.

Electronic Liquid Crystals. Once the idea of stripe phases
of a two-dimensional doped insulator has been established, a
major question arises: How can a stripe phase become a
high-temperature superconductor, as in the cuprates, rather
than an insulator, as in the nickelates? Typically, interactions
drive quasi one-dimensional metals to an insulating ordered
charge density wave (CDW) state at low temperatures (29)
(and quenched disorder only enhances the insulating tenden-
cy). However, we have shown (21) that the CDW instability is
eliminated and superconductivity is enhanced if the transverse
stripe fluctuations have a large enough amplitude. To satisfy
this condition, the stripes could oscillate in time or be static
and meandering. They are then electronic (and quantum-
mechanical) analogues of classical liquid crystals and, as such,
they constitute new states of matter, which can be either
high-temperature superconductors or two-dimensional aniso-
tropic unconventional metals.

Classical liquid crystals are phases that are intermediate
between a liquid and a solid and spontaneously break the
symmetries of free space. Electronic liquid crystals are quan-
tum analogues of these phases in which the ground state is
intermediate between a liquid, where quantum fluctuations
are large, and a crystal, where they are small. Because the
electrons exist in a solid, it is the symmetry of the host crystal
that is spontaneously broken, rather than the symmetry of free
space. An electronic liquid crystal has the following phases: (i)
a liquid, which breaks no spatial symmetries and, in the absence
of disorder, is a conductor or a superconductor; (ii) a nematic,
or anisotropic liquid, which breaks the rotation symmetry of
the lattice and has an axis of orientation; (iii) a smectic, which
breaks translational symmetry in one direction and otherwise
is an electron liquid; (iv) an insulator with the character of an
electronic solid or glass. These classifications applied to stripe
phases make the stripe notion, which is based on local elec-
tronic correlations, macroscopically precise. Neutron and x-ray
scattering experiments give direct evidence of electronic liquid
crystal phases (conducting stripe ordered phases) in the cu-
prate superconductors.

Charge Transport. In the standard theory of solids, the
electron’s kinetic energy is treated as the largest energy in the
problem, and the effects of electron–electron interactions are
introduced as an afterthought. As a consequence, the elec-
tronic states in normal solids are highly structured in momen-
tum space (k-space), and therefore, according to the uncer-

FIG. 1. Schematic picture of a stripe-ordered phase. The arrows
represent the magnetic or spin order, and the blue scale represents the
local charge density. Regions of high charge density (stripes) lie
between largely undoped regions, where the spin order is much the
same as in the undoped antiferromagnet. In the figure, the stripes lie
along the direction of the nearest-neighbor bonds, which we refer to
as ‘‘vertical’’ stripes; when the stripes lie at 45° to this axis, they are said
to be ‘‘diagonal.’’
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tainty principle, they are highly homogeneous in real space.
Moreover, as the ‘‘normal’’ (metallic) state is continuously
connected to the ground state of the kinetic energy, any phase
transition to a low-temperature ordered phase is necessarily
(30) driven by the potential energy, inasmuch as it involves a
gain in the interaction energy between electrons at a smaller
cost of kinetic energy. For transport properties, the central
concept of a mean free path l, that is, the distance an electron
travels between collisions, is well defined so long as l is much
larger than the electron’s de Broglie wavelength, lF, at the
Fermi energy.

A number of interesting synthetic metals, discovered in the
past few decades, seem to violate the conventional theory.
They are ‘‘bad metals’’ (31, 32), in the sense that their
resistivities, r(T), have a metallic temperature dependence
[r(T) increases with the temperature T] but the mean free
path, inferred from the data by a conventional analysis, is
shorter than lF, so the concept of a state in momentum space
would be ill defined. Among the materials in question are the
cuprate high-temperature superconductors; other oxides, in-
cluding the ruthenates, the nickelates, and the ‘‘colossal mag-
netoresistance materials’’ (manganites), organic conductors,
and alkali-doped C60. Most of these materials are doped
correlated insulators, in which the short-range repulsive inter-
action between electrons is the largest energy in the system.
However, the ground state of this part of the Hamiltonian is
not unique, so the kinetic energy cannot simply be treated as
a perturbation; such materials display substantial structure in
both real space and momentum space. As a consequence, the
conventional theory (2) must be abandoned. Neither the
kinetic energy nor the potential energy is totally dominant, and
they must be treated on an equal footing.

Superconductivity. The highly successful theory of super-
conductivity (33) developed by Bardeen, Cooper, and Schrief-
fer in the 1950s was designed for good metals, not for doped
insulators. A key issue, therefore, is the relation of stripes to
the mechanism of high-temperature superconductivity. In fact,
there is a strong empirical case for an intimate relation
between these phenomena: (i) strongly condensed stripe order
can suppress superconductivity (as it does in La1.62y-
NdySrxCuO4); (ii) weak stripe ordering can, at times, appear at
the superconducting transition temperature Tc (as it does in
La2CuO41d; (iii) there is a simple linear relation between the
inverse stripe spacing and the superconducting Tc observed in
several materials (24, 34) (including La22xSrxCuO4 and
YBa2Cu3O61x); and (iv) stripe structure and other features of
the doped insulator, together with high-temperature super-
conductivity, disappear as the materials emerge from the
doped-insulator regime (‘‘overdoping’’). Moreover, there is a
clear indication that the optimal situation for high-
temperature superconductivity is stripe correlations that are
not too static or strongly condensed, but also are not too
ethereal or wildly fluctuating. We have argued (21, 35, 36) that
the driving force for the physics of the doped insulator is the
reduction of the zero-point kinetic energy. This proceeds in
three steps: (i) the development of an array of metallic stripes
lowers the kinetic energy along a stripe; (ii) hopping of pairs
of electrons perpendicular to a stripe in the CuO2 planes
creates spin pairs on and in the immediate neighborhood of a
stripe; and (iii) at a lower temperature, pair hopping between
stripes creates the phase coherence that is essential for super-
conductivity. Steps ii and iii lower the kinetic energy of motion
perpendicular to a stripe.

Generality of the Stripe Concept. The physics of charge
clustering in doped correlated insulators is general and robust,
so one might expect that local stripe structures would appear
in other related systems. Indeed, topological doping has long
been documented in the case of quasi one-dimensional charge-
density-wave systems, such as polyacetylene (29, 37); it is an
interesting open question whether it occurs in other higher

dimensional systems. One recent fascinating discovery is the
observation (38, 39) that, under appropriate circumstances,
quantum Hall systems (that is, an ultra-clean two-dimensional
electron gas in a high magnetic field) spontaneously develop a
large transport anisotropy on cooling below 150 mK. It is likely
that this anisotropy is related to stripe formation on short-
length scales (40, 41), and it apparently reflects the existence
of an electronic nematic phase in this system (42).

Stripe-like structures have also been observed (ref. 43 and
references therein) in many other systems with competing
interactions, on widely differing length scales. Beyond this
generality, the existence of spontaneously generated local
structures is clearly important for understanding all of the
electronic properties of synthetic metals, including the anom-
alous charge transport and the mechanism of high-
temperature superconductivity. Many of these implications
have already been explored in considerable detail, but many
remain to be discovered. Here we content ourselves with a few
general observations.

The phenomena described above represent a form of ‘‘dy-
namical dimension reduction’’ whereby, over a substantial
range of temperatures and energies, a synthetic metal will
behave, electronically, as if it were of lower dimensionality.
This observation has profound implications because conven-
tional charge transport occurs in a high-dimensional state, and
fluctuation effects are systematically more important in lower
dimensions. In particular, in the quasi two-dimensional high-
temperature superconductors, stripes provide a mechanism for
the appearance of quasi one-dimensional electronic physics,
where conventional transport theory fails, and is replaced by
such key notions as separation of charge and spin and solitonic
quasi-particles (29). At the highest temperatures (up to 1,000
K), in what is often called the ‘‘normal state’’ of the high-
temperature superconductors, where coherent stripe-like
structures are unlikely to occur, it is still probable that local
charge inhomogeneities occur because of the strong tendency
of holes in an antiferromagnet to phase separate (44). This
behavior can lead to quasi zero-dimensional physics (quantum
impurity model physics), which also produces a host of inter-
esting and well documented quantum critical phenomena and
may be at the heart of much of the anomalous normal-state
behavior of these systems.
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