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Abstract

Introduction This study evaluates the short-term clinical

outcome, radiological, histological and device retrieval

findings of two patients with second generation lumbar

total disc replacement (TDR).

Materials and methods The first patient had a single level

L4-L5 Activ-L TDR, the second patient a L4-L5 Mobidisc

and L5-S1 Activ-L TDR. The TDRs were implanted else-

where and had implantation times between 1.3 and 2.8

years.

Results Plain radiographs and CT-scanning showed slight

subsidence of the Activ-L TDR in both patients and facet

joint degeneration. The patients underwent revision surgery

because of recurrent back and leg pain. After removal of

the TDR and posterolateral fusion, the pain improved.

Histological examination revealed large ultrahigh molec-

ular weight polyethylene (UHMWPE) particles and giant

cells in the retrieved tissue surrounding the Mobidisc. The

particles in the tissue samples of the Activ-L TDR were

smaller and contained in macrophages. Retrieval analysis

of the UHMWPE cores revealed evidence of minor adhe-

sive and abrasive wear with signs of impingement in both

TDR designs.

Conclusion Although wear was unrelated to the reason

for revision, this study demonstrates the presence of

UHMWPE particles and inflammatory cells in second

generation TDR. Long-term follow-up after TDR is indi-

cated for monitoring wear and implant status.

Keywords Total disc replacement � Disc degeneration �
(Un)constrained � Revision surgery � Polyethylene wear

Introduction

Total disc replacement (TDR) has been developed as an

alternative to spinal fusion for the treatment of degenera-

tive disc disease [1–3]. Presumed advantages of TDRs are

motion preservation, prevention of adjacent level degen-

eration and restoration of disc height [2–4]. Second gen-

eration TDR designs, such as the Mobidisc (LDR Spine,

Troyes, France) and Activ-L (Aesculap AG, Tuttlingen,

Germany) were developed from the first generation

biconvex SB Charité III (Waldemar link, Hamburg,

Germany) and Prodisc (Synthes, West Chester, PA, USA)

[3, 5–7]. Second generation TDRs have a sliding, convex

design with a spherical superior endplate combined with a

flat inferior endplate and an ultrahigh molecular weight

polyethylene (UHMWPE) core [2, 3, 5, 6]. These new

designs were developed because of varying long-term

success rates of the Charité TDR [1, 3, 8]. They were
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supposed to minimize UHMWPE wear debris, allow easier

implantation and improve implant stability [7].

A TDR is semi-constrained or unconstrained depending

on whether the centre of rotation (COR) is fixed or

mobile [5, 6]. Semi-constrained TDRs are divided in

designs with and without anterior–posterior (AP) transla-

tion [5, 6]. The Mobidisc is an unconstrained TDR and

the Activ-L TDR is a semi-constrained design with

absence of lateral translation and limited AP translation

[7, 9–11]. In a clinical case series on the Mobidisc TDR,

the back pain decreased from 6.8 to 2.6 on the visual

analog scale (VAS) 2 years after implantation [7, 12]. The

back pain of Activ-L patients decreased from 8.2 to 1.5

on the VAS 2 years postoperatively in a prospective

clinical trial [13].

There are few retrieval studies available for TDR and

little is known about the clinical effects of UHMWPE

wear debris in the lumbar spine [14–17]. UHMWPE

particles can activate an inflammatory response, which

may result in osteolysis and failure of total knee and hip

replacements [18, 19]. Punt et al. described the presence

of UHMWPE particles and inflammatory cells in peri-

prosthetic tissue after revision of Charité III TDR [14, 15,

17]. It is currently unknown whether UHMWPE wear

particles and inflammatory cells are present after second

generation TDR. The aim of the present study is to report

on the clinical, radiological, histological and device

retrieval findings of retrieved Activ-L and Mobidisc

TDRs.

Materials and methods

Two patients with a TDR presented with recurrent back

and leg pain at our outpatient clinic. The first patient had a

single level L4–L5 Activ-L TDR, the second patient a L4–

L5 Mobidisc and L5–S1 Activ-L TDR. The TDRs were

implanted elsewhere. Radiographs and VAS pain scores

were obtained during routine controls at our outpatient

clinic. The TDRs were extracted during revision surgery

and periprosthetic tissue was randomly collected. Bright

field microscopy (Leica DM5000B) was used for exam-

ining the presence of inflammatory cells and grading them

according to the Mirra classification [20]. Polarized light

was used for detection and morphometric analysis (Leica

Qwin software V3, Cambridge, UK) of the UHMWPE

particles (1009). Damage to the retrieved components

was analyzed using light microscopy and scanning elec-

tron microscopy (SEM). The UHMWPE cores were

inspected for evidence of abrasive, adhesive, third body

and fatigue wear mechanisms as well as evidence of

impingement.

Case reports

Case 1

A 48-year-old male had experienced low back pain since

the age of 20 with irradiation to the right leg and left but-

tock non-radicular in origin. A herniated disc was removed

at L5–S1 when he was 30 years old. After 2 years of pain

relief, the pain recurred after an automobile accident. The

patient was dissatisfied with the result of corset treatment

and a pain management program. In July 2006 at the age of

43, he received an Activ-L TDR at L4–L5, and intercor-

poral cage fusion with anterior spinal instrumentation at

L5–S1 because of two-level degenerative disc disease.

The patient reported some pain relief for several weeks,

however, the pain exacerbated to the pre-operative level. At

presentation in February 2007 at our outpatient clinic, the

pain was localized in the lower back with irradiation and

numbness in the buttocks and both legs. Walking was limited

to 10 min, standing to 10 min and sitting to 20 min. He woke

up approximately four times a night due to pain. The VAS

was 8 for the back, 4 for the right leg and 2 for the left leg.

Plain radiographs demonstrated that the TDR was

slightly undersized, eccentrically positioned (Fig. 1).

Limited motion of the Activ-L TDR was visible on flex-

ion–extension radiographs [range of motion (ROM): 3�].

CT- and MRI-scanning revealed facet joint degeneration at

L4–L5, but no signs of disc herniation, spinal stenosis or

post-operative scarring. Therefore, the recurrent back pain

was assumed to be due to facet joint degeneration. It was

decided to remove the TDR by a left sided lumbotomy in

October 2007, 1 year and 4 months after initial surgery

Fig. 1 Lateral (left) and AP (right) radiographs showing a slightly

undersized L4–L5 Activ-L TDR that slightly subsided
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because the patient strongly posed for TDR removal. Despite

good fixation of the TDR to the bone, there was no osseous

integration of the bone into the coating. The disc space was

filled with a strut allograft. A small peritoneal lesion was

sutured without remaining complaints. Instrumented pos-

terolateral fusion of L4–L5 was performed during the same

session. Intra-operative cultures were sterile.

The mean number of UHMWPE particles in the peri-

prosthetic tissue was 3 particles/mm2 with a mean curve

length of 3.89 lm (range 2.05–9.59 lm). The particles had

a round to oval shaped morphology. Histological exami-

nation showed a mild inflammatory reaction with mainly

macrophages and an incidental giant cell (Fig. 2). An

overview of the size and morphology of the UHMWPE

particles and the amount of inflammatory cells is summa-

rized in Table 1. There was no evidence of metallosis in

the periprosthetic tissue.

Overall, this retrieved UHMWPE core exhibited mini-

mal wear. Burnishing and multi-directional scratching was

observed on the backside and the articulating dome of the

core. However, the original machining marks were still

present, indicative of material removal on the order of

micrometers. There was also evidence of the metallic

endplates contacting one another at the anterior portion of

the device. Impingement was confirmed using SEM. At

high resolutions (38–2,0009), the areas where the end-

plates impinged were burnished and very smooth as com-

pared to the unimpinged areas (Fig. 3).

Three years and 5 months after removal of the TDR, the

patient experienced relief of the back pain (VAS 3.5) and no

leg pain (VAS 0). The back pain consisted of a cramping

sensation in the lower back at night which did not disturb

sleeping. Radiographs showed fusion of the operated seg-

ment with slight anterior collapse into the allograft (Fig. 4).

Case 2

A 49-year-old female patient had low back complaints with

non-radicular irradiation to the right buttock since 2001.

Discography revealed painful disc degeneration at L4–L5

and L5–S1. She received a Mobidisc TDR at level L4–L5

in August 2004 at age 42 and an Activ-L TDR at L5–S1 in

September 2005.

The back and buttock complaints were relieved after

insertion of the Activ-L TDR but recurred in 2006. When

the patient presented in August 2006 at our outpatient

clinic, walking was limited to 30 min, standing to 10 min

and sitting to 60 min. At night she woke up approximately

three times and had to get out of bed to relieve the pain.

The pain did not improve with pain medication, physical

therapy and nerve blockage.

Plain radiographs showed slight subsidence of the Activ-L

TDR and a slight eccentric position of the Mobidisc TDR

(Fig. 5). Flexion–extension radiographs showed a ROM of 7�
for the Mobidisc and 4� for the Activ-L TDR. CT-scanning

revealed facet joint degeneration at L4–L5 and L5–S1, with no

signs of spinal stenosis or compression. The facet joint

degeneration could be a feasible explanation for the recurrent

back pain. It was the patient’s preference to have both TDRs

removed. In June 2007, the Mobidisc and Activ-L TDR were

retrieved using a left sided lumbotomy extended distally,

2 years and 10 months and 1 year and 5 months after

implantation, respectively [21]. The TDRs were well fixed to

the bone, but there was no osseous integration. The disc spaces

were filled with a strut allograft and bone chips. Two days after

the operation the patient developed respiratory complaints due

to acute respiratory distress syndrome most likely caused by

an allergic reaction to medication. She recovered without

remaining complaints. Six weeks later, after a delay of

5 weeks, posterior instrumentation and fusion at L4–S1 was

performed. All intra-operative cultures were sterile.

The mean number of UHMWPE particles in the retrieved

periprosthetic tissue was 1 and 2 particles/mm2 for the

Activ-L and Mobidisc, respectively (Table 1). The particles

retrieved from the Activ-L TDR had a round to oval shaped

morphology, the particles from the Mobidisc were more

flake shaped. The mean curve length was 3.07 lm (range

2.05–4.10 lm) for the Activ-L and 39.48 lm (range

Fig. 2 Hematoxylin and eosin stained sections of retrieved periprosthetic fibrous tissue surrounding the Activ-L TDR, with light microscopy

(left) and polarized light (right), containing small round polyethylene particles in macrophages
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2.05–73.56 lm) for the Mobidisc. Surrounding the Activ-L

TDR we observed macrophages and on both levels a small

amount of giant cells (Fig. 6). No metal particles were found

in the tissue surrounding both TDRs.

The UHMWPE cores in both retrievals exhibited minimal

wear. Although machining marks were still present on the

superior and inferior articulating surfaces of the Activ-L

core, they were eroded at locations on the Mobidisc core.

Nevertheless, we were unable to measure any deviation in

total height of the core from the manufacturer’s specifica-

tions (accuracy 0.001 mm). Multi-directional scratching and

burnishing was observed for both the Activ-L and the Mo-

bidisc TDR on both the dome and the backside of the cores.

There was evidence of metal-on-metal impingement on the

left side of the superior endplate of the Activ-L TDR. In the

case of the Mobidisc TDR, the right lateral wing of the core

had impinged with the superior endplate (Fig. 7).

Three years and 9 months after removal, the back

complaints were relieved (VAS 3) and there was no but-

tock pain (VAS 0). Initially, the back pain varied in

severity but gradually decreased after a revalidation pro-

gram and epidural injections. She resumed sports activities

and was able to refrain from pain medication. Radiographs

showed a solid fusion with unaltered position of the

instrumentation (Fig. 8).

Discussion

Two patients with second generation Activ-L and Mobidisc

TDRs had recurrent back and leg pain, which improved

after TDR removal and subsequent posterolateral fusion.

Plain radiographs and CT-scanning showed slight subsi-

dence of both Activ-L TDRs and facet joint degeneration.

UHMWPE particles and inflammatory cells were present in

the tissue surrounding the TDRs. The UHMWPE cores

exhibited minimal abrasive and adhesive wear, but showed

evidence of impingement.

The mean number of UHMWPE particles was two

orders of magnitude lower in the Activ-L (1–3 particles/

mm2) and Mobidisc (2 particles/mm2) compared to a pre-

vious study on the SB Charité III TDR (231 particles/mm2)

[14, 17]. The lower wear in the present study can be

explained by a combination of factors, including implan-

tation time, TDR design and material factors. The higher

number of UHMWPE particles in the Charité TDR study

can result from differences in mean implantation time (1.6

vs. 10.0 years) [14, 17]. Further, the Charité retrievals were

gamma sterilized in air, in a first generation oxygen per-

meable package [14, 17, 22–24]. The cores of the Mobidisc

and Activ-L TDR were gamma irradiation sterilized in a

second generation barrier package, designed to preserve the

mechanical properties of UHMWPE [3, 7, 22].T
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The difference in UHMWPE particle size between the

Activ-L and Mobidisc TDR could be explained by having

an unconstrained and semi-constrained TDR design. In

total knee replacement (TKR), the same phenomenon is

described [25, 26]. Larger UHMWPE particles are found in

tissue surrounding failed mobile bearing TKR than in tis-

sue surrounding failed fixed bearing TKR [25, 26]. Design-

dependant differences in loading and wear mechanisms can

be an explanation for these size differences [3, 7]. Large

flake shaped UHMWPE particles, present in the tissue

surrounding the Mobidisc TDR, were associated with

fewer inflammatory cells. It could be possible that the

particles of the Mobidisc TDR have a tendency to be less

bioactive.

Faint signs of impingement were observed in all three

TDRs, which is perhaps not surprising since the devices

had subsided into biomechanically unfavorable positions.

Unnatural motion patterns also could have contributed to

the impingement. Impingement has been observed in many

types of joint replacement, including the hip and shoulder,

as well as previous TDR designs [27–30]. It may lead to

UHMWPE degradation and increased amounts of wear

[27–30]. Because of the short implantation times, the long-

term implications of impingement of the two designs in this

study are unknown. However, the metal-on-metal wear

observed in the Activ-L TDR is of particular concern, as it

may produce metal wear debris.

The presence of UHMWPE wear particles results in the

activation of an inflammatory response, associated with

osteolysis and aseptic loosening of joint replacements

[18, 19]. Macrophages and giant cells release various

cytokines, such as tumor necrosis factor-a (TNF-a), inter-

leukin-1 (IL-1) and interleukin-6 (IL-6). These cytokines

are considered to be potent inducers of osteoclasts [18, 19].

They also play a role in the development of neuro-

inflammatory pain [31, 32]. Since osteolysis after TDR is

Fig. 3 Retrieved Activ-L TDR, 1.3 years after insertion. Note the impingement in the anterior portion of the superior endplate (center). The

impinged region has a smoother appearance (lower right) than the unimpinged region (upper right)

Fig. 4 Lateral (left) and AP (right) postoperative radiographs after

removal of the Activ-L TDR and posterolateral fusion of L4–L5 Fig. 5 Lateral (left) and AP (right) radiographs showing a Mobidisc

TDR at L4–L5 and an Activ-L TDR at L5–S1. The Mobidisc is

correctly sized and correctly positioned, the Activ-L TDR is

adequately sized but subsided (arrow)
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rarely observed, it could be possible that the UHMWPE

particle concentration after TDR is too low for causing

osteolysis in most cases, but is potent enough to initiate

neuro-inflammation and recurrent back pain. Therefore, the

presence of wear after TDR continues to be of clinical

concern. This is especially true for the younger and active

patients who frequently receive TDR.

Facet joint degeneration can contribute to recurrent back

pain after TDR [10, 33–35]. The patient in case 1 had an

anterior spinal fusion at L5–S1, which can accelerate facet

joint degeneration, as well as unnatural motions in the

L4–L5 Activ-L TDR [36–38]. In case 2, the patient

received a two-level TDR which can lead to hypermobility

and accelerates facet joint degeneration [39–41]. It is stated

that a fixed COR should prevent overloading of the facets

[6, 10]. While, others state that a mobile COR leads to a

lower facet contact force by an equilibrium between facet

loading and ligament tension [5, 9]. Also malpositioning of

the TDR causes higher stresses on the facets [11, 42].

Nevertheless, facet joint degeneration was present at

L4–L5 and L5–S1 in both cases with both TDR designs.

There is an ongoing discussion about the optimal revi-

sion strategy for failed TDRs [21, 43–45]. With acceptable

implant status and position, posterior fusion can be

addressed for treatment of recurrent back pain due to facet

joint degeneration [44, 45]. When the TDR has subsided,

migrated or mechanically failed, the pain can be addressed

by TDR removal [45]. The outcome of secondary fusion

Fig. 6 Hematoxylin and eosin stained sections of retrieved periprosthetic fibrous tissue surrounding the Mobidisc TDR, with light microscopy

(left) and polarized light (right), containing large flakes of polyethylene in giant cells

Fig. 7 Retrieved Mobidisc TDR (left), 2.8 years after implantation, with impingement on right lateral wing (center and right)

Fig. 8 Lateral (left) and AP (right) postoperative radiographs after

removal of the Mobidisc and Activ-L TDR and posterolateral fusion

of L4–S1
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with the TDR in situ has not been well reported. In our case

load of failed TDRs we started with posterolateral fusion

without removal of the TDR. Unfortunately, the results

were disappointing in most patients [21, 46]. Thereafter,

we combined fusion with TDR removal if the patient

accepts the risks of retrieval surgery.
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