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observations have linked tortuous arteries and veins to 
aging, atherosclerosis, hypertension, genetic defects and 
diabetes mellitus  [4–8] . However, the mechanisms of tor-
tuous vessel formation and development are poorly un-
derstood. Therefore, the mechanisms of vessel tortuosity 
need careful investigation. 

  The objectives of this paper are first to review the an-
giographic findings, clinical symptoms and treatment of 
tortuous blood vessels, and then to summarize the cur-
rent clinical and biomechanical studies on their initiation 
and development.

  Symptoms 

 Clinical Phenotypes of Vessel Tortuosity 
 Arteries are normally straight conduits that efficiently 

transport blood to distal organs. However, arteries may 
take a tortuous path due to abnormal development or vas-
cular disease. Tortuous blood vessels have become a com-
mon angiographic finding in many studies and clinical 
screenings  [2, 9, 10] . With the advance of imaging tech-
nology, more and more tortuous vessels are being detect-
ed  [2, 11] . Various forms have been reported in clinical 
investigations, most commonly curving/curling, angula-
tion, twisting, looping and kinking vessels ( fig. 1 )  [1, 6, 
12] . 
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 Abstract 

 Tortuous arteries and veins are commonly observed in hu-
mans and animals. While mild tortuosity is asymptomatic, 
severe tortuosity can lead to ischemic attack in distal organs. 
Clinical observations have linked tortuous arteries and veins 
with aging, atherosclerosis, hypertension, genetic defects 
and diabetes mellitus. However, the mechanisms of their for-
mation and development are poorly understood. This re-
view summarizes the current clinical and biomechanical 
studies on the initiation, development and treatment of tor-
tuous blood vessels. We submit a new hypothesis that me-
chanical instability and remodeling could be mechanisms 
for the initiation and development of these tortuous vessels. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Tortuous or twisted arteries and veins are commonly 
seen in humans and animals  [1–3] . While mild tortuosity 
is a common anomaly without clinical symptoms, severe 
tortuosity can lead to various serious symptoms. Clinical 
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  Artery Tortuosity Is a Common Anomaly That 
Frequently Occurs in Many Vessels 
 Blood vessel tortuosity is a widely observed vascular 

anomaly affecting a range of vessels, from large arteries 
and veins to small arterioles and venules, in almost all 
locations in the body. Tortuosity has often been reported 
in the aorta and capillaries, as well as in the vertebral, 
iliac, femoral, coronary, cerebral and internal carotid ar-
teries (see  table 1 ). 

  Tortuosity and redundancy of the internal carotid ar-
tery is a common angiographic and MR angiographic 
finding  [1, 2, 9] . In one of the largest angiographic studies 
conducted by Weibel and Fields  [1] , internal carotid ar-
tery tortuosity and angulation, respectively, were ob-
served in 35 and 5% of 1,438 consecutive patients. Tortu-
ous vertebral, subclavian and lingual arteries have also 
been reported  [13–15] . Tortuous iliac and femoral arteries 

have been reported in some patients and cyclists  [2, 16] . 
Though rare, tortuosity has also been observed in other 
vascular branches in the arterial tree. These branches in-
clude, but are not limited to: the ulnar artery and radial 
and digital arteries  [17–19] . It seems that tortuosity can 
affect almost all medial-sized arterial branches.

  Tortuosity has also been frequently reported for small 
arteries and veins, most commonly in retinal and con-
junctival vessels, due to their easy accessibility. Tortuous 
retinal arteries and veins have often been observed in pa-
tients with retinopathy and other diseases  [20–22] . Tor-
tuosity also happens in arterioles  [5, 23, 24]  and capillar-
ies  [22, 25–28]  in the skeletal muscle, myocardium and 
brain tissues, as well as in tumors  [28, 29] . Tortuous cor-
onary arteries have been observed in patients with hyper-
tension and myocardial infarction  [13, 30–33] . Tortuous 
cerebral arteries have been frequently reported, including 
the basilar, communicating, anterior and posterior cere-
brals and the arterioles in white matter  [5, 23, 24, 34–36] . 

  In addition, tortuosity also occurs in veins and vascu-
lar grafts  [37–39] . Arteries and veins may become tortu-
ous after bypass grafting and reconstructive vascular 
surgery  [40, 41] . Twisting of vein grafts affects the paten-
cy of vein grafts  [37–39] . Tortuous veins also occur in 
many patients with varicose veins due to vein valve dis-
ease  [42, 43] . 

  Furthermore, tortuosity often develops in collateral 
arteries after stenotic or occlusive disease in a major ar-
tery ( fig. 2 )  [44–46] . The so-called ‘corkscrew collaterals’ 
are a widely observed phenomenon that hinders collat-
eral development, a necessary component of arteriogen-
esis and tissue regeneration  [3, 46, 47] .

Table 1.  Tortuous vessel branches and associated diseases, with references

Vessel branch Aging Atherosclerosis Diabetes Hypertension Genetic Other

Aorta [118, 121] [48, 166] [166, 167] [67] [7, 94, 97] [67, 101] [166]
Carotid [4, 58, 59] [64] [4, 13, 57, 58] [113] [1, 4, 6, 12] [63] [60, 95] [73, 98] [122, 168]
Vertebral, lingual, 

or subclavian [13, 15] [13] [96] [14, 15] [14, 15] [99, 101] [73] [168]
Iliac or femoral [48] [57, 129, 167] [16] [16] [2, 10, 62]
Cerebral [24, 69] [82, 169] [5, 69] [93, 101] [23, 24, 73] [34–36]
Coronary [32, 33] [75] [74–76] [25, 32, 74] [25] [31, 77]
Retinal [22, 81] [88] [8, 22, 82] [20, 78, 79, 91] [79–81] [18, 88]
Conjunctival [8, 83, 84] [8, 83] [8, 83]
Capillary [22] [47] [8, 76] [27, 89, 91] [25, 26]
Varicose vein [106, 107] [107] [43, 107]
Collateral [34] [47] [3, 44, 46] [3, 44, 46] [33]

  Fig. 1.  Schematics of various phenotypes of tortuous vessels. Left 
to right: curving, angulation/kinking, looping and spiral twist-
ing. 
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  Measurement of Vessel Tortuosity 

 The level of vessel tortuosity is often described by the 
tortuosity indices. A commonly used tortuosity index is 
defined as the ratio of vessel curve length over the line 
distance between the two ends  [32, 35, 48]  (see  fig. 3 ).

  Alternatively, the tortuosity index can be defined as 
the total curvature or mean curvature, which calculates 
the cumulative sum of the angle between segment vectors 
normalized by vessel length  [48–52] . A simplification of 
the index is the use of the ratio of deflection amplitude 
versus the wavelength  [53, 54] . 

  These indices can be determined from the images ob-
tained from angiography and MR angiography and auto-
matic approaches have been developed for the calcula-
tions  [49, 52, 55, 56] . In general, these indices depend on 
wavelength, wave number and wave amplitude. Vessel 
caliber may also play a role in evaluating the severity of 
vessel tortuosity  [11] .

  Etiology: Association with Vessel Diseases and 

Clinical Consequences 

 With the advance of imaging technology and its wider 
application, many asymptomatic tortuous arteries are be-
ing diagnosed. While mild tortuosity in some patients is 

asymptotic and often largely ignored, many others show 
symptoms linked to various vascular diseases (see  ta-
ble 1 ). 

  Extensive clinical studies have shown that artery tor-
tuosity is associated with hypertension, aging, athero-
sclerosis and other pathological changes in the arteries 
 [4–8, 13, 24, 33, 57] . It is often reported in elderly popu-
lations with severe tortuosity and angulation being as-
sociated with aging; it rarely occurs in children  [4, 58, 
59] . The prevalence of artery kinking is tripled in the 
aged population and is quadrupled in the aged hyper-
tensive population  [6] . Severely tortuous arteries can 
hinder the blood flow and lead to a transit ischemic at-
tack of distal organs  [60] . Recent clinical studies have 
demonstrated that hypertensive pressure is a risk factor 
for artery tortuosity  [4–6, 20] . Below is a summary of 
some commonly seen vessel tortuosities and their asso-
ciated diseases.

  Carotid Artery Tortuosity 
 Clinical studies have shown that internal carotid ar-

tery tortuosity may lead to symptoms including dizzi-
ness, vertigo, syncopes, blackout or persistent tinnitus 
(ringing in the ears)  [61] . Severe tortuosity may lead to 
arterial kinking (acute angulation) which causes artery 
occlusion and is associated with severe symptoms includ-
ing transient ischemic attack, stroke  [60] , hemiplegia and 

  Fig. 2.  Tortuous collaterals form after occlusion of a femoral ar-
tery (from [45]). 
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other cerebrovascular deficiencies  [6, 9, 62] . Tortuous ca-
rotid arteries are often reported in hypertensive patients 
 [4, 6, 63] . They are often associated with atherosclerosis 
 [4, 13, 57]  and there is speculation that they could be a 
factor leading to atherosclerosis  [57] . Carotid artery tor-
tuosity is often reported in elderly populations with se-
vere tortuosity and angulation being associated with ag-
ing  [4, 58, 59, 64] . Reduced wall thickness or lumen diam-
eter is associated with a higher prevalence of tortuosity, 
although there is discrepancy among the clinical reports 
on the correlation between atherosclerosis and artery tor-
tuosity  [63, 65] . Arterial degenerative disease is often con-
comitant with internal carotid artery tortuosity, but is not 
always associated with it  [1, 66–68] .

  Cerebral Artery Tortuosity 
 Tortuous cerebrals often occur in basilar, communi-

cating, anterior and posterior cerebrals as well as in arte-
rioles in the white matter  [5, 23, 24, 34–36] . Tortuosity of 
cerebral arteries has been reported for aged, hypertensive 
patients  [5, 23, 24, 69]  and in patients with ‘Moyamoya’ 
disease  [70–72] . Cerebral arteries may also become tortu-
ous due to malformation  [73]  or increased flow  [34, 35]  
associated with elastin degradation. Tortuosity of cerebral 
arteries was found to be associated with the severity of 
hypertension  [5] .

  Coronary Artery Tortuosity 
 Tortuosity of coronary arteries occurs in patients with 

hypertension and myocardial infarction  [13, 30–33, 74] . 
Tortuosity is associated with increased acute occlusion of 
coronary arteries  [75] , diabetes  [74–76]  and coronary ar-
tery fistula  [77] . Tortuous coronary arteries hamper ven-
tricular function  [31]  and have been proposed as an indi-
cator of ventricular dysfunction  [30, 31] . 

  Retinal Artery and Vein Tortuosity 
 Tortuous retinal arteries and veins are associated with 

hypertension, diabetes and genetic disorders  [8, 20, 22, 
78–81] . Tortuous conjunctival arteries and veins are also 
reported in patients with diabetic retinopathy  [8, 82–84]  
and hypertension  [84, 85] . Tortuosity of retinal vessels 
has been suggested as an indicator of arterial hyperten-
sion, retinopathy, cerebral vessel disease, stroke and is-
chemic heart disease  [49, 51, 86–88] .

  Tortuosity of Capillaries 
 Tortuous capillaries have been observed in both skel-

etal muscles and in the myocardium  [25–27, 76, 89]  as 
well as in other organs  [8, 22, 90] . Capillary tortuosity 

level increases and decreases with muscle contraction 
and relaxation allowing the vessel surface area and per-
meability to remain the same  [26] ; a higher level of tor-
tuosity has been associated with hypertension and dia-
betes  [8, 76, 89, 91] .

  Artery Tortuosity Syndrome 
 Artery tortuosity syndrome (ATS) is a rare condition 

caused by an autosomal recessive disorder (such as muta-
tion of the SLC2A10 gene  [7] ) and characterized by tor-
tuosity, elongation and aneurysm formation in major ar-
teries due to the disruption of elastic fiber in the medial 
layer of the arterial wall. ATS is seen in members of the 
same family and affects all major arteries  [7, 92, 93] . In 
addition, tortuous aortas have been observed in mice 
with an elastin gene knockout  [79, 94–97] . 

  Loeys-Dietz Syndrome 
 Artery tortuosity can also be associated with aneu-

rysms  [48, 98] . Loeys-Dietz syndrome is a recently de-
fined syndrome. Patients demonstrate tortuous aneu-
rysmal vessels  [99–101] . It is considered to be due to mu-
tations in the TGFbeta receptor  [100, 102] . As aneurysmal 
arteries are prone to tortuosity, it is possible that tortuos-
ity affects wall stress in aneurysms  [48, 103] , but the in-
teraction needs further study.

  Varicose Veins 
 Tortuous varicose veins cause morbidity and are a 

common manifestation of chronic venous disease  [43] . 
Varicose veins are often associated with venous hyper-
tension and valvular insufficiency  [42, 43]  and have a 
high prevalence in over one third of the population aged 
50 years or older  [104–107] . 

  In addition to tortuous retinal veins, tortuous venules 
have been observed in cerebral, coronary, digital and oth-
er vascular beds  [24, 33, 108, 109] . Vein grafts may be-
come tortuous under arterial pressure if not stretched 
sufficiently in the axial direction  [40, 110] . Venous tortu-
osity may affect blood flow and venous wall remodeling 
and therefore be associated with venous diseases; it has 
been reported that it leads to sluggish blood flow and 
thrombosis  [111, 112] . 

  While evidence strongly demonstrates the association 
of artery tortuosity and vein tortuositywith vascular dis-
eases, the underlying mechanisms remain unclear and 
warrant further study to be understood. 
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  Surgical Treatment of Tortuous Vessels 

 While many mild tortuous arteries are left untreated, 
severely tortuous arteries with clinical symptoms can be 
treated with reconstructive surgery  [61] . Severely tortu-
ous or kinking carotid arteries have often been treated by 
surgical shortening reconstruction  [9, 113, 114] . The sur-
gical ‘stripping’ technique has been used  [115] . The arter-
ies are often treated while performing surgery for other 
vascular diseases such as stenosis, aneurysm or athero-
sclerosis  [9, 116] . Generally, surgical treatment achieves a 
better prognosis for symptomatic patients  [15, 117] .

  Mechanical Changes in Tortuous Arteries 

 Clinical and experimental studies have demonstrated 
a strong association between vessel tortuosity and me-
chanical factors, such as blood pressure, blood flow, axial 
tension and wall structural changes. 

  First, artery tortuosity has been shown to be associated 
with hypertension  [4, 5, 33] . Tortuosity of cerebral arter-
ies was found to be associated with the severity of hyper-
tension  [5] . Vein pressure has also been associated with 
tortuosity in retinal veins  [87, 91] .

  Second, artery tortuosity has been associated with re-
duced axial tension or elongation of the arteries. Normal 
arteries are subjected to a significant axial tension in vivo 
 [118, 119] . Certain levels of axial tension are essential in 
maintaining the stability of the arteries and preventing 
tortuosity. Axial tension may decrease with excessive 
growth of arteries and reduces with aging  [118, 120, 121] ; 
Jackson et al.  [122]  showed in a rabbit model that reduced 
axial tension by interpositional grafting in carotid arter-
ies can lead to artery tortuosity. 

  Third, weakening of the arterial wall has been associ-
ated with tortuous vessels. Degradation of elastin, an im-
portant extracellular matrix component, weakens the ar-
terial wall  [123]  and leads to tortuosity  [98] . Elastin de-
ficiency has been associated with tortuous arteries in 
patients with arterial tortuosity syndrome and Loeys-
Dietz syndrome as well as in mice with an elastin gene 
knockout  [79, 94–97, 124] . Increased blood flow also leads 
to tortuous cerebral arteries associated with elastin deg-
radation  [34, 35] . The fragmentation of elastin has been 
reported in the artery wall of subjects with artery tortu-
osity and has been considered a cause of vessel lengthen-
ing  [66, 68, 121] . 

  In addition, tortuous vessels occur when surrounding 
connective tissue degradation happens. It was reported 

that tortuous arterioles were associated with the develop-
ment of small lacuna cavities (status lacunaris) in human 
basal ganglia  [23] . In contrast, enhanced support of the 
surrounding tissue prevented vessel tortuosity  [40, 125, 
126] . 

  Combined, this evidence strongly suggests that hyper-
tensive pressure, reduced axial tension and weakened 
wall stiffness may play an important role in the develop-
ment of artery tortuosity. 

  On the other hand, tortuosity increases the resistance 
to blood flow and severe tortuosity can obstruct or even 
occlude blood flow  [33, 62] . Lumen shear stress and wall 
stress are also altered in tortuous arteries  [127]  ( fig. 4 ). 
Computational simulations have confirmed this  [128–
131] . Tortuous veins may also lead to thrombosis due to 
changes in the blood flow and shear stress  [111, 132, 
133] .

  While the clinical evidence strongly suggests that 
mechanical factors may play an important role in tortu-
ous blood vessels, few studies have been conducted to 
determine the possible biomechanical mechanisms in-
volved. 

  Mechanical Stability of Blood Vessels 

 Arteries are subjected to significant mechanical stress-
es generated by lumen blood flow, pressure and sur-
rounding tissue tethering. These stresses are influenced 
by movement of the body, e.g. from walking, exercise and 
gravity. It has been well documented that mechanical 
stresses play important roles in regulating the function of 
vascular cells  [134–137] . A high mechanical stress can 
lead to injury to the cells and damage to the vascular wall. 
It can also lead to mechanical instability and buckling of 
the blood vessels as tubular structures  [138, 139] . While 
the mechanical stress and strength of the arterial wall
as a biological tissue have been extensively studied, there 
are few studies on the stability of arteries as a functional 
structure. The stability of blood vessels under lumen 
pressure is essential to maintain their physiological func-
tion. The complete understanding of arterial function 
and disease cannot be achieved without understanding 
the mechanical stability of arteries under pressure and 
flow. 

  It has been well documented that blood vessel lumen 
may collapse when internal pressure is too low or the ex-
ternal pressure exceeds the lumen pressure by a critical 
value  [140] . Collapsible tube models have been developed 
to determine the critical pressures  [125, 140–142] . Re-
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cently, Han  [138, 139]  demonstrated that long vessel seg-
ments under lumen pressure can become unstable when 
the lumen pressure exceeds a critical value. The phenom-
enon was termed ‘vessel buckling’ because it is similar to 
column-beam buckling. Buckling equations were estab-

lished to estimate the critical pressure  [138, 139, 143] . In 
fact, there were a few reports that modeled blood vessels 
as close-ended vessel segments under axial compression 
and used the linear elastic Euler buckling equation to es-
timate the critical pressure  [87, 144, 145] .
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  Fig. 4.  Comparison of stresses in normal 
and tortuous arteries.  a  Illustration of uni-
formly distributed lumen shear stress ( � ) 
and tensile stresses in the axial, circumfer-
ential, axial and radial directions ( � z,  �  �  
and  � r, respectively).  b  Velocity profile at 3 
axial locations and wall shear stress varia-
tion along the bottom side in a sinusoidal 
vessel obtained from computational simu-
lations.  c  Axial wall stress distribution 
along the circumference at 2 peak deflec-
tion locations.   
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  Artery Buckling under Lumen Pressure 
 Using both adjacent equilibrium and potential en-

ergy approaches, Han established an artery buckling 
model that predicted the critical load for bent buckling 
of long vessel segments  [138, 139, 143] . The buckling 
equation is: 

2 2

2 2 2
s

cr
i i i

N EI n k lp
r r l r n

�

� � � �
                                             (1)

   where  k  s  is the modulus of the surrounding matrix,  N  is 
the axial force,  EI  is the cross-sectional bending modulus, 
 l  is the vessel length,  r  i  is the lumen radius and  n  is the 
wave number of the buckling mode shape  [138, 139] . Both 
 N  and  EI  are functions of the transmural pressure  p  and 
the strains.  

 This model equation demonstrates that arteries buck-
le (and thus become tortuous) when lumen pressure ex-
ceeds a critical pressure at a given length. The critical 
pressures of blood vessels are determined by vessel di-
mensions, wall stiffness and axial tension  [53, 146] . The 
critical pressure decreases when there is a decrease in the 
axial stretch (tension), the mechanical stiffness of the ar-
terial wall and/or the stiffness of the surrounding tissue. 
According to this equation, without surrounding matrix 
support ( k  s  = 0),  p  cr  is minimal at  n =  1 and with matrix 
support ( k  s   1  0); the 2nd term in the equation increases 
with increasing wave number  n  while the 3rd term de-
creases. So a minimum buckling pressure is reached at a 
wave number  n   1 1. Therefore, arteries buckle into mul-
tiple wave shapes within the surrounding tissue matrix at 
a higher critical pressure  [138] . 

  Experimental testing using porcine carotid arteries 
validated these model predictions. The critical pressures 
of porcine carotid arteries and veins decrease with re-
duced axial tension/stretch  [53, 54, 127, 147, 148] . Al-
though the classic linear elastic Euler column buckling 
model predicts a sudden, large, catastrophic increase of 
deflection with buckling, arteries do not show a sudden 
large deflection and catastrophic failure at buckling, but 
only a small deflection due to geometric nonlinearity 
 [139, 149] . The deflection of a buckled artery increases 
after buckling with increasing lumen pressure  [148] . 
While arteries submerged in saline solution (without 
matrix support) buckle into single-wave shapes, arteries 
embedded in gelatin gel buckle into multi-wave shapes 
( fig. 5 )  [148] . It has also been observed that elastin degra-
dation by elastase reduces the critical pressure of arteries 
associated with a reduced mechanical stiffness of the ar-
terial wall  [148] .

  Vessel buckling has been observed in vivo as well. 
Buckling of vein grafts under arterial pressure has been 
observed in vivo (e.g.  [150] ). It has been observed that ca-
nine vein grafts sometimes become tortuous immediate-
ly after being exposed to arterial pressure, and this buck-
ling can be corrected by shortening the length of the graft 
(to increase the axial tension)  [40, 126] . 

  Further model analysis demonstrated that geometric 
variations such as initial curvature, tapering, eccentric or 
oval cross sections, stenosis and aneurysm often reduce 
the stability, as shown by the reduced critical pressures 
 [103, 131, 135, 143, 151] .

  Comparison of Artery Buckling and Tortuosity 
 Buckling is an instant deflection under internal pres-

sure due to mechanical instability; arterial tortuosity is a 
chronic presentation as a result of arterial remodeling. 
Artery buckling initiates a small deflection that gradu-
ally increases if the pressure continues to increase  [53, 
148] . Tortuous vessels often demonstrate a finite ampli-
tude of waviness.

  While vessel buckling and vessel tortuosity are two 
different phenomena, buckled arteries and tortuous ar-
teries demonstrate great similarities. First, their curved 
shapes look alike. Arteries surrounded by elastic matrix 
(gel) buckle into wavy shapes in vitro and tortuous arter-
ies in vivo demonstrate waviness within the surrounding 
tissues. Second, the mechanical factors that cause buck-

a

b

  Fig. 5.  Photographs of an artery within a supporting matrix under 
elevated internal pressure buckling into tortuous shapes.  a  Under 
an internal pressure (140 mm Hg) beyond its critical pressure (80 
mm Hg) in PBS solution.  b  Under an internal pressure (230 mm 
Hg) beyond its critical pressure (150 mm Hg) in gelatin. (Photo-
graphed by Mr. Shawn Lamm in the author’s laboratory).                 
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ling are a risk factor for patients. High blood pres-
sure (hypertension), weakened wall due to internal elas-
tic lamina/elastic fiber degradation and reduced axial 
stretch/tension not only lead to artery buckling in vitro 
and in vivo, but are also associated with a high prevalence 
of tortuosity in patients (as described in previous sec-
tions). A straight artery may develop into wavy tortuous 
shapes when the surrounding tissues are weakened by 
degenerative diseases. These similarities suggest a possi-
ble link between vessel buckling and vessel tortuosity. 
Furthermore, a recent in vivo experiment of rabbit ca-
rotid arteries and our ex vivo experimental evidence 
showed that axially offloaded arteries adapt over time 
and may become permanently tortuous in shape, sug-
gesting that buckling may lead to tortuosity  [122] . More 
research needs to be done to further elucidate the rela-
tionship between artery buckling and tortuosity.

  A New Hypothesis 

 Based on the lines of evidence presented above, we 
submit a new hypothesis that mechanical instability and 
remodeling could be mechanisms for the initiation and 
development of tortuous blood vessels. We propose that 
mechanical buckling and the loss of mechanical stability 
could initiate the development of tortuous arteries. Buck-
ling stimulates wall remodeling and the interaction be-
tween artery dynamics, buckling and wall remodeling 
leads to further development of vessel tortuosity. 

  Tortuosity may be caused by multiple factors: genetic 
factors, degenerative vascular diseases and an alteration 

in blood flow and pressure. Previous studies indicated 
that degenerative diseases, aging and genetic defects 
could also lead to artery buckling by altering wall proper-
ties and thus reducing the critical pressure ( fig. 6 ). While 
buckling may not be the only possible mechanism of tor-
tuosity, it seems to be a mechanism that links many of the 
factors that cause tortuosity.

  Future Challenges 

 While we have gained some understanding of the devel-
opment of tortuous vessels, there is a long way to go. There 
are many unanswered questions yet to be investigated.

  Buckling and Mechanical Stability under Pulsatile 
Flow Need Investigation 
 Arteries in vivo are under pulsatile pressure and flow. 

Artery buckling can lead to cyclic bending under pulsatile 
pressure. Dynamic analysis of artery stability demonstrat-
ed that arteries may become unstable under certain pulsa-
tile pressures  [152, 153] . Recent studies from the author’s 
laboratory suggested that arteries under pulsatile pressure 
buckle when the peak pressure reaches the critical pres-
sure as determined under static pressure  [154] . However, 
further work needs to be done to better understand the 
artery buckling behavior under pulsatile pressure. 

  The Effect of Bent Buckling on Blood Flow Needs 
Investigation 
 Blood flow in the curved arteries, especially in the aor-

ta, superior femoral arteries and coronary arteries, has 
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  Fig. 6.  A proposed new mechanism for the 
initiation and development of vessel tortu-
osity.                     
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been studied via experimental tests and numerical simu-
lations  [129, 155, 156] . Back et al.  [156, 157]  examined the 
flow in a human femoral artery model with reverse cur-
vature and measured the flow in a sinusoidal coronary 
artery model. These and many other studies have shown 
that vessel curvature has significant effects on blood flow. 
Curvature increases pressure loss, flow resistance and sec-
ondary flow, as well as pressure and lumen shear stress on 
the outer curvature  [129, 158] . Results from computation-
al fluid dynamics showed that the shear stress is approxi-
mately 60% higher on the outer wall than on the inner 
wall of a curved human right coronary artery  [158] . How-
ever, buckled arteries and tortuous corkscrew collaterals 
are often severely tortuous. More studies are needed for 
severely and continuously tortuous arteries. It is unclear 
how the severity of arterial tortuosity is related to the lev-
el of flow alteration. However, artery buckling or tortuos-
ity will lead to complex wall stress distributions in the 
arterial wall that vary circumferentially and longitudinal-
ly compared to the axisymmetric wall stress in straight 
cylindrical arteries  [53, 151, 159] . A systemic study of the 
blood flow and wall stress analysis is needed to fully il-
lustrate the stress alterations in the tortuous arteries due 
to the buckling effect. 

  It has been suggested that arterial tortuosity affects 
blood flow and may make the arteries prone to athero-
sclerosis  [4, 57, 129] . By causing increased local stress con-
centrations, tortuosity may also render atherosclerotic 
plaques prone to rupture  [160–162] .

  Wall Remodeling in Buckled Arteries 
 It is well known that both wall stress and shear stress 

influence vascular cell biology  [134–137] . However, it is 
unclear how the tortuosity-induced flow and wall stress 
alterations affect the vascular cells and extracellular ma-
trix and thus arterial wall remodeling. Previous studies 
have shown that the cyclic flexure of porcine femoral ar-
teries affects extracellular matrix gene expression and 
cell proliferation  [163, 164]  and is related to atherosclero-
sis  [159] . Similarly, our laboratory recently observed non-
symmetric cell proliferation in buckled arteries  [165] . 
Further studies are needed to understand the long-term 
adaptation of the buckled artery.

  Recent experimental evidence from animal models 
demonstrated that the development of tortuosity in cere-
bral arteries, secondary to flow increase, occurs as a grad-
ual increase of the waviness that progresses over days and 
weeks  [34, 35] . The development of tortuosity of an artery 
is likely to stem from instability, i.e. the growth of small 
waviness. Such tortuosity development would have to in-

volve interactions between arterial dynamics and active 
vascular remodeling. Mechanical buckling creates un-
even mechanical stress on the inner and outer curve sides 
of the arterial wall and stimulates gradual, uneven wall 
remodeling  [165]  which creates an imperfection in the 
arterial wall and thus decreases the critical pressure for 
buckling. So the deflection will gradually magnify and 
buckling effects will be exacerbated under the same pres-
sure. Future work is needed to investigate the develop-
ment process of the buckling tortuosity.

  Conclusions 

 Tortuosity is a common anomaly in arteries and veins 
associated with various vascular diseases and aging. The 
mechanisms underlying the initiation and development 
of tortuous arteries remain unclear. Fundamental under-
standing of the biomechanical mechanisms of artery tor-
tuosity will have wide applications in vascular biology, 
physiology and pathology, as well as in vascular surgery. 
It will also be useful in understanding the ‘corkscrew col-
lateral’ phenomenon in the development of collateral ar-
teries, which is important in studying arteriogenesis and 
tissue regeneration.

  Biomechanical studies of vessel buckling (mechanical 
instability) provide a promising new approach to eluci-
date the underlying mechanism of the initiation and de-
velopment of vessel tortuosity. They also provide a basis 
for developing new techniques for the prevention and 
treatment of vessel tortuosity. 
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