
review

1108� www.moleculartherapy.org  vol. 20 no. 6, 1108–1115 june 2012  

© The American Society of Gene & Cell Therapy

Introduction
Cystic fibrosis (CF) is the most common lethal monogenic dis-
ease among Caucasians.1,2 It affects multiple organs including the 
pancreas, sweat glands, intestines, liver, and reproductive tract. 
However, the respiratory disease, characterized by progressive 
airway infection and inflammation, is the most common cause 
of the morbidity and mortality in CF patients.1,2 CF is a recessive 
disease caused by mutations in the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene, which encodes an anion 
channel regulated by ATP hydrolysis and phosphorylation.3,4 CF 
is an attractive candidate for gene therapy because heterozygotes 
are phenotypically normal and the target cells lining the intrapul-
monary airways are potentially accessible for vector delivery via 
aerosol or other topical strategies.

Since the CFTR gene was first cloned in 1989,3–5 several gene 
therapy strategies for correction of CF lung disease have been 
investigated. However, the development of safe and efficient vec-
tor systems remains a major challenge. This is due, in part, to the 
multiple, sophisticated pulmonary barriers that have evolved to 
clear or prevent the uptake of foreign particles.6 Thick secretions 
and the secondary effects of chronic infection and inflamma-
tion in the CF lung present additional barriers to gene transfer. 
An understanding of the obstacles gene transfer vectors face is 
required to devise successful strategies for gene transfer to the air-
way epithelium. Early intervention is likely an important compo-
nent of optimal gene transfer for CF.

The respiratory epithelia lining the conducting airway are 
comprised of many cell types (Figure 1) including ciliated, non-
ciliated, basal, and goblet cells. CFTR is expressed in ciliated cells 
lining the surface epithelium and submucosal gland ducts7 as well 
as in serous cells of submucosal glands.8 Johnson and colleagues 
reported that expression of CFTR in as few as 6–10% of airway 

epithelia is sufficient to restore the function of chloride ion trans-
port.9 However, another study suggested higher levels of correc-
tion (25%) may be required to normalize sodium ion transport 
and mucociliary clearance.10 Further studies are required to deter-
mine the exact gene transfer targets and the level of CFTR correc-
tion required to prevent or slow disease progression.

The first clinical trial for CF took place in 1993. Since then, 25 
gene therapy clinical trials have been conducted.11 Among these, 
10 used adenovirus (Ad) vectors, 6 involved adeno-associated 
virus (AAV2) vectors, and 9 used nonviral vectors. The vectors 
were generally well-tolerated in the subjects. In some studies, the 
Cl− transport defect was partially and transiently corrected.12–20 
Here, we will review important barriers to vector delivery, and 
recent developments in viral and nonviral vectors, cell-based 
therapies, as well as CF animal models.

Current Gene and Cell Therapy Strategies
Gene addition
The majority of gene transfer strategies pursue gene addition, in 
which the wild-type CFTR complementary DNA (cDNA) is deliv-
ered to cells with a viral or nonviral vector. Viral vector systems 
under investigation for CF pulmonary applications include len-
tiviral (LV) vectors, helper-dependent Ad (HD-Ad), and AAV. 
LV vectors are widely used integrating systems. These vectors 
integrate across transcriptional units21 and have less risk of inser-
tional mutagenesis than early generation γ-retrovirus vectors.22 
Importantly, LV vectors can transduce dividing and nondividing 
cells and support pseudotyping with glycoproteins from many 
enveloped viruses. Pseudotyping allows targeting to specific tis-
sues and may enhance vector stability.23

Gene addition can also be achieved using non-integrating 
viral vectors such as Ad and AAV. Both vectors are encapsidated. 
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Although the risk of insertional mutagenesis is less,24 achieving 
lifelong expression may require repeated administration. Ad vec-
tors showed promise in early studies; however, the immunologic 
responses to capsid proteins and vector-encoded proteins reduced 
enthusiasm for use of Ad vectors in airway epithelium transduc-
tion. Interestingly, combining the epithelial cell-specific keratin 18 
expression cassette with HD-Ad vectors, devoid of all viral-coding 
sequences, resulted in significantly longer transgene expression 
and less inflammation upon airway epithelium transduction.25 
AAV vectors are nonpathogenic, less immunogenic, and also 
transduce both dividing and nondividing cells.26 Twelve differ-
ent AAV capsid serotypes with more than 100 variants transduce 
respiratory epithelia to varying degrees.27–29

Nonviral integrating vectors such as bacteriophage φC3130 
and DNA transposons (Sleeping Beauty31,32 and piggybac33)  or 
non-integrating nonviral vectors such as nanoparticles34 
and plasmids35 may also be used for gene addition. Most non-
viral vectors exhibit a lower transfection efficiency in airway 
epithelia compared to viral vectors.36 Plasmid-based vectors 
are  susceptible to endosomal and cytoplasmic degradation. 
On the other hand, plasmid-based vectors may be less immu-
nogenic compared to viral vectors. The transgene expression 
and persistence from nonviral vectors can be improved by the 
selection of promoters. For example, Hyde et al.35 demonstrated 
that a hybrid promoter, human cytomegalovirus enhancer cou-
pled to elongation factor 1α, conferred prolonged, high level of 
transgene expression in murine lungs. They also reported that 
transgene codon optimization increased protein translation. 
A recent study in an ovine large animal model identified the 
cationic lipid 67 (GL67A) as the most efficacious vehicle for 
delivery of a CFTR-expressing plasmid.37 In vivo delivery of 
nonviral vectors remains a challenge, but steady progress has 
been made.

Gene correction
Gene correction is an alternative approach by which repair of the 
defective gene sequences occurs through homologous recombi-
nation (HR). Zinc-finger nucleases (ZFNs) are increasingly used 
to enhance the frequency of HR at designated loci. ZFNs pos-
sess a DNA-binding domain, encoded by site-specific zinc-finger 
motifs, and a DNA-cleaving domain, derived from the nonspecific 
bacterial FokI endonuclease.38 A pair of ZFNs binds to opposite 
DNA strands of a specific target locus near a mutation, dimerize 
their cleavage domains, and introduce a double-stranded break 
into DNA. The double-stranded break is corrected via HR by co-
delivery of a wild-type repair template provided transiently. CFTR-
specific ZFNs constructed using oligomerized pool engineering 
(OPEN) bind and cleave near the ΔF508 mutation in CFTR.39 The 
frequency of cleavage by CFTR-specific ZFNs delivered by plas-
mids was ~1.2%.39 To further advance this approach, additional 
progress is needed to improve the delivery of the reagents and 
enhance the efficiencies of double-stranded breaks and HR. It is 
expected that delivery using viral vectors would increase the effi-
ciency of delivery to epithelial cells.

ZFNs may also be used for gene addition. In this case, instead 
of targeting repair of the genomic locus, “safe harbor” loci such 
as AAVS1,40 CCR5,41 or Rosa26,42 may be chosen for gene inser-
tion. The recent discovery of the ability of engineered transcription 
activator-like effector (TALE) nucleases to introduce site-specific 
double-stranded breaks provides an alternative reagent to 
ZFNs.43–45 The application of ZFNs as well as TALE nucleases for 
in vivo CF treatment is challenging. The use of these reagents in 
ex vivo cell-based approaches may provide more efficient gene 
correction.

Cell and tissue engineering
In addition to vector-based gene transfer strategies, cell-based 
approaches are under investigation. The stem cell properties of 
self-renewal and differentiation into specific cell types raise the 
possibility of their use for the treatment of many diseases, includ-
ing CF.

Several sources of stem cells demonstrated their ability to develop 
epithelial characteristics. Bone marrow (BM)-derived stem cells and 
mesenchymal stem cells are capable of differentiating into respira-
tory epithelia.46–48 Wang et al.47 isolated mesenchymal stem cells from 
homozygous ΔF508 CF patients and conferred CFTR expression by 
transducing cells with a Moloney murine leukemia virus vector car-
rying the CFTR cDNA. Cyclic adenosine monophosphate (AMP) 
stimulation resulted in apical chloride secretion in CFTR-transduced 
mesenchymal stem cells from CF patients. Wong et al.49 recently dis-
covered cell populations in mouse and human bone marrow that 
express Clara cell markers and differentiate into several epithelial 
lineages. Kajstura and colleagues50 identified human lung stem 
cells expressing c-kit, a known marker for hematopoietic stem cells 
and human cardiac stem cells, within normal human lung tissues. 
Interestingly, injections of these human lung stem cells into dam-
aged murine lungs resulted in the formation of chimeric conducting 
airways and pulmonary vessels. Since identifying appropriate cell 
populations that can differentiate into and function within the lung 
has been a major obstacle, these findings could lead to advances in 
cell-based therapy for lung diseases including CF.
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Figure 1 C ell types comprising the human tracheal and bronchial 
airway epithelium. (a) Light microscopy of hematoxylin and eosin 
stained bronchus airway epithelium reveals the abundance of goblet cells 
(G), ciliated cells (C), basal cells (B). (Bar = 50 μm). (b) Freeze fractured 
scanning electron microscopy separates the ciliated cell layer from basal 
cells and the basement membrane. The mucus or gel layer (M) overlay-
ing the ciliated cells remains intact (Bar = 10 μm). (c) Transmission elec-
tron microscopy of human bronchial airway epithelium highlights the 
abundance of cilia and the morphology of goblet cells (Bar = 10 μm).
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Complementation of CFTR using transplanted stem cells was 
also determined. Lori and colleagues51 transplanted BM-derived 
cells collected from wild-type mice into CFTR-null mice. A 
small percentage of cells differentiated into airway epithelia 
(0.025%), with some expressing CFTR protein (0.01%). Bruscia 
et al.52 transplanted wild-type CFTR carrying BM cells into irra-
diated CFTR-null mice. Very low levels of BM-derived epithelia 
and CFTR-expressing cells were detected. The same results were 
observed when transplantation of BM-derived cells was carried 
out in newborn mice. Cell-based therapies could be an important 
application for the gene correction strategies discussed earlier. 
One can envision collecting or deriving stem cells from a patient, 
correcting the genetic defect ex vivo, and reimplanting corrected 
cells, or implanting stem cells on a tissue-based or synthetic 
matrix.53,54

Currently, stem cell-based approaches to treat CF lung dis-
ease have not achieved the efficiencies of delivery and engraft-
ment needed for therapy. In order to restore CFTR function, 
the number of stem cells that can differentiate into airway epi-
thelia must be increased. In addition, new strategies to induce 
cell differentiation and homing to the epithelium need to be 
identified since stem cells only differentiate after lung injury. 
Bioluminescent and fluorescent imaging techniques may be used 
to assess short- and long-term efficacy of preclinical cell therapy 
studies in vivo; however, safety concerns, such as the immuno-
genic potential of exogenous stem cells in the lung, will also need 
to be addressed.

Stem cells were also used to create cell lines carrying muta-
tions specific to disease. Pickering and colleagues55 created human 
embryonic stem cell lines carrying a homozygous mutation of 
ΔF508 CFTR. Somers et al.56 generated induced pluripotent stem 
cells from dermal fibroblasts of CF patients. These cells may be 
useful for drug screening, development of techniques to gener-
ate and transplant epithelia, as well as examining the toxicity and 
efficacy of gene transfer in vitro.

Perhaps the most difficult hurdle for cell-based therapy is 
the identification of efficient means to achieve sufficient engraft-
ment into the airway epithelium. Macchiarini and colleagues57 
demonstrated successful transplantation of ex vivo engineered 
donor trachea. In this single patient report, cells along with major 
histocompatibility class antigens were removed from the tissue 
scaffold, followed by colonizing with patient-derived epithelia 
and lung-derived chondrocytes. The repopulated graft was suc-
cessfully transplanted into the left mainstem bronchus, providing 
clinical improvement.

Progress has also been made in the field of whole lung engi-
neering. Recently, Petersen et al.58 and Ott et al.59 generated rat 
lung tissue ex vivo. A scaffold of decellularized rat lung was 
seeded with epithelia and vascular endothelial cells. The engi-
neered lung tissues had a similar mechanical phenotype as native 
lung tissue in vitro. Interestingly, the engineered lungs could 
support gas exchange for a short time when implanted into rats. 
Although exciting, these studies are still in early preclinical stages. 
A major challenge for a corrected stem cell-based approach for 
CF treatment is devising a cell delivery or tissue engineering 
strategy to replace epithelial cells in multiple generations of the 
conducting airways. Improvements in techniques and further 

evaluation in appropriate animal models could lead to new treat-
ment strategies.

Physical barriers
The lungs have evolved multiple barriers to prevent foreign par-
ticles and pathogens from accessing airway cells (shown sche-
matically, Figure 2). The conducting airway surface is lined by a 
ciliated epithelium. Cilia are bathed in the periciliary fluid layer 
(sol). The mucus (gel) layer (Figure 1b), another important phys-
ical barrier, covers the periciliary fluid layer. Mucins, which are 
secreted by surface airway goblet cells and submucosal glands, are 
primary components of mucus.60 The mucus layer traps inhaled 
particles and removes them by mucociliary clearance.61 An api-
cal surface glycocalyx, composed of carbohydrate, glycoproteins, 
and polysaccharides, is another barrier. It binds inhaled particles 
and prevents them from reaching cell surface receptors.62

To inhibit mucociliary clearance, Sinn et al.63 demonstrated 
that the formulation of Ad5, AAV5, or GP64-pseudotyped FIV vec-
tors with viscoelastic gels (carboxymethylcellulose or methylcellu-
lose) greatly enhanced their transduction efficiency. Presumably, 
such viscoelastic gels allow the virus to interact with cellular recep-
tors for a longer period of time. Disruption of the mucus layer is 
another strategy for enhancing gene transfer. Ferrari and colleagues64 
showed increased nonviral gene transfer in vitro and in vivo using 
the mucolytic agent N-acetylcysteine lysinate (nacystelyn) or the 
anticholinergic drug glycopyrrolate. Pretreatment with nacystelyn 
followed by administration of Ad vectors in conjunction with the 
polycation diethylaminoethyl (DEAE)-Dextran increased gene 
transfer to the airways of mice.65 In addition, the anti-inflamma-
tory property of nacystelyn reduces airway inflammation.66 Suk et 
al.67 demonstrated that pretreatment with N-acetylcysteine alone 
or in combination with recombinant human DNase improved dif-
fusion of the nonviral gene carrier, poly-L-lysine conjugated with 
a 10 kDa polyethylene glycol segment (CK30PEG10k) (PEGylated 
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Figure 2  Schematic representation of airway epithelia and potential 
barriers to viral and nonviral vectors. Ciliated and nonciliated epithelia 
(yellow) line the conducting airway surface with their basolateral sur-
faces interacting with the basal lamina (green). Basal cells (orange) are 
an important progenitor cell type. Submucosal glands are a major source 
of secreted liquid, host defense factors, and mucins. The mucus (gel) 
layer (purple) covers the periciliary fluid (sol) layer (blue) in which cilia 
are submerged. Macrophages circulate in the periciliary environment 
and engulf inhaled particles, including vectors. Neutrophils, dendritic 
cells, as well as lymphocytes represent additional barriers and sentinels 
for the adaptive immune system in airways.
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Poly-L-lysine DNA nanoparticles),34 across sputum. Intranasal pre-
treatment with N-acetylcysteine before CK30PEG10k/DNA nanopar-
ticle delivery increased gene expression in murine lungs with mucus 
hypersecretion due to Pseudomonas aeruginosa lipopolysaccharide 
induction. In addition, McLachlan and colleagues68 demonstrated 
in sheep airways that pretreatment with the antimuscarinic agent 
glycopyrrolate improved transgene expression when the cationic 
polymer polyethyleneimine formulated with empty plasmid DNA 
was delivered by aerosol.

Access to receptors expressed on the basolateral surface of 
epithelium can be achieved by transiently disrupting the tight 
junctions using calcium chelating agents, such as ethyleneglycol-
bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA),69 or 
the nonionic detergent, polidocanol.70 Sodium caprate increased 
the transduction efficiency of Ad vectors by disrupting claudin-1, a 
major component of the tight junctions.71 Stocker and colleagues72 
demonstrated that pretreatment with lysophosphatidylcholine 
(LPC) followed by a single dose of HIV-1 based LV vector resulted 
in the prolonged expression of transgenes for the lifetime limit 
of 24-months in mice. Cmielewski et al.73 also reported improve-
ment of LV vector-mediated gene transduction by pretreatment 
with LPC or LPC variants in vivo. They demonstrated that LPC 
disrupts junctional complexes in airway epithelia, allowing viral 
vectors to access basolateral receptors.73

Although the disruption of tight junctions may create con-
cerns for clinical use, pseudotyping LV vectors with apical target-
ing envelopes such as the Zaire strain of the Ebola virus (EboZ),74,75 
influenza hemagglutinin from fowl plague virus (FPV),76 or the 
glycoprotein from baculovirus (GP64)77 holds promise. These 
pseudotyped LV vectors were shown to efficiently transduce air-
way epithelium from the apical surface. Mitomo and colleagues78 
generated simian immunodeficiency virus (SIV) pseudotyped 
with Sendai virus envelope proteins, hemgglutinin-neuramini-
dase, and fusion protein. Administration of F/N-pseudotyped SIV 
vector to nares of mice resulted in transgene expression for over 
1 year. Furthermore, vector readministration was feasible. In addi-
tion, the F/N-pseudotyped SIV vector expressed functional CFTR 
chloride channels in vitro.

Other vectors with natural airway tropism are useful in CFTR 
gene transfer. Kwilas et al.79 demonstrated that respiratory syn-
cytial virus carrying the CFTR gene could transduce and correct 
the anion transport defect in primary human airway epithelial 
cell cultures derived from CF patients. Zhang et al.80,81 reported 
that human recombinant parainfluenza virus type 3 efficiently 
transduced the apical surface of human airway epithelia and sup-
ported transient gene expression in respiratory epithelia of rhe-
sus macaques in vivo. The limitations of transient expression and 
immune responses need to be addressed to move these vector sys-
tems forward.

Another method to improve transduction efficiency is by cre-
ating hybrid AAV vectors. Excoffon and colleagues82 generated 
AAV2.5T, a chimera of AAV2 and AAV5 with one point mutation, 
by DNA shuffling of cap genes and selection on the apical surfaces 
of human airway epithelia. AAV2.5T increased the apical airway 
epithelia transduction efficiency by 100-fold, in part through its 
better binding capacity. AAV2.5T carrying a CFTR cDNA restored 
Cl− transport function in CF epithelia to wild-type level. Li et al.83 

also identified two AAV variants with improved transduction effi-
ciency and the ability to partially correct the Cl− transport defect 
in human airway epithelia.

AAV9 poorly transduces the conducting airways.84 Bell et al.85 
and Shen et al.86 identified terminal galactose as a cellular recep-
tor for AAV9. Administration of an AAV9 vector coincident 
with neuraminidase treatment, which cleaves sialic acid link-
ages, increased the transduction efficiency in murine lungs. This 
improvement was due to the exposure of terminal galactose residues 
on the apical surface of conducting airway epithelia. Pretreatment 
of mice with neuraminidase increased the transduction efficiency 
about onefold in murine nasal airways. Approximately 140 times 
more lacZ-positive cells/field were observed in conducting airway 
of neuraminidase-treated mice compared to non-treated mice. 
Since AAV9 has been successfully readministered in the pres-
ence of neutralizing antibodies and supports stable and prolonged 
expression of transgene in vivo,84 it may be an interesting candi-
date for further development.

Immune barriers
Innate and adaptive immune responses are major obstacles for 
successful gene transfer. The lung has multilayered, sophisticated 
defense mechanisms which protect the host from pathogens. 
Important players in this response include macrophages, dendritic 
cells, neutrophils, and lymphocytes (Figure 2). Pathogen recogni-
tion receptors trigger acute and transient innate immune responses 
through detection of pathogen-associated molecular patterns. 
Toll-like receptors, the antiviral cytoplasmic helicases (RIG-I and 
MDA5), and nucleotide oligomerization domain-like receptors are 
among the pathogen recognition receptors expressed in the air-
way epithelium. The recognition of pathogen molecules, as well as 
some gene transfer vectors, results in the secretion of inflammatory 
cytokines and maturation of antigen presenting cells.

Ad vectors are rapidly taken up by alveolar macrophages, 
inducing secretion of proinflammatory cytokines and chemok-
ines, and orchestrating a strong innate immune response.87 In 
animal studies, 70% of Ad vectors are eliminated within 24 hours 
by this process.88 Alveolar macrophages also inhibited retrovirus-
mediated gene transfer to airway epithelia in vitro.89

The secretion of interferons (IFN) is important for host defense 
against viruses. Type I IFNs and type III IFNs induce the expres-
sion of many genes whose products help establish an antiviral 
state, inhibiting viral replication and cell proliferation.90,91 Type I 
IFNs also activate antigen presenting cells and natural killer cells.92 
Zhu and colleagues93 demonstrated that Ad vectors trigger secre-
tion of type I IFNs from both plasmacytoid dendritic cells (pDCs) 
and non-pDCs. Blocking type I IFN by neutralizing antibodies 
allowed increased transgene expression and decreased inflamma-
tion. The same group showed that AAV vectors also induce type I 
IFN production by pDCs through toll-like receptor 9 (TLR9) rec-
ognition of viral DNA.94 Brown et al.95 reported that the intrave-
nous administration of an HIV vector induced IFNαβ responses 
in mouse liver and spleen. When LV vectors were administered to 
IFNαβR−/− mice, transduction improved and persistent transgene 
expression for over 5 weeks was observed in mouse hepatocytes. 
Type I IFNs are likely an obstacle for viral vector-mediated gene 
transfer, though the responses may be very cell-type specific.
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Nonviral vectors are generally less immunogenic than viral 
vectors. However, administration of CFTR cDNA-GL67 com-
plexes to the lower airways of CF patients elicited inflammatory 
responses in clinical trials.19,96 The presence of CG dinucleotides 
(CpG) in DNA plasmids triggers the inflammatory response via 
TLR9. Administration of CpG-free plasmid reduced inflammation 
and allowed sustained expression of a CFTR transgene in murine 
lungs.35 Interestingly, even a single CpG in a DNA plasmid may 
be sufficient to trigger an innate immune response.35 These results 
indicate that careful design and production of plasmid DNA is 
important for successful nonviral gene transfer.

Adaptive immune responses triggered by vector antigens or 
vector-encoded proteins can limit transgene persistence. Ad vec-
tors induce strong CD8+ T-cell responses to both the transgene 
product and vector antigens.97 Although they are much weaker 
when compared to Ad vectors, AAV vectors can also elicit CD8+ 
T-cells. AAV vectors induce a CD8+ T-cell response to a trans-
gene in mice preimmunized with Ad vectors expressing the same 
transgene.98 AAV vector capsids can also trigger memory CD8+ 
T-cell proliferation in humans.99 Limberis and colleagues100 dem-
onstrated that delivery of HIV-based LV vectors to the lungs 
induced a cytotoxic T-cell response to the transgene. While 
decreased transgene expression was seen in wild-type mice after 
intratracheal delivery of vesicular stomatitis virus-G (VSV-G) 
pseudotyped LV, sustained transgene expression was observed 
throughout the experiment in recombination-activating gene-
deficient mice lacking B and T cells.

Preexisting antibodies against Ad and AAV are found in many 
individuals since Ad and/or AAV infections are common.101,102 This 
is a potential obstacle for gene transfer, especially when repeated 
administration might be required. Studies of repeat administra-
tion will be important as the field advances and new candidate 
vectors for clinical trials are selected. To prevent inhibition of gene 
transfer by adaptive immune responses, transient immunosup-
pression can be applied. Cao et al.103 demonstrated that cyclophos-
phamide treatment during the primary administration of HD-Ad 
vectors significantly improved transduction efficiency by ~3.5-
fold compared to non-treated when HD-Ad vectors were read-
ministered to murine lungs. This increased gene transfer was due 
to inhibition of neutralizing antibody production against Ad and 
reduced infiltration of CD4+ T and CD8+ T-cells by cyclophosph-
amide. Importantly, transduction efficiency after the readminis-
tration of HD-Ad vectors in immunosuppressed mice was similar 
to the control mice receiving a single dose of HD-Ad vector with 
or without cyclophosphamide treatment. As to whether these pro-
cedures are applicable to CF patients, additional studies in larger 
animal models will be required. The risks of immunosuppression 
in persons with CF would need to be balanced by the therapeutic 
benefits. Targeting interventions early in the disease course and 
before the onset of chronic infection and inflammation may have 
a more favorable risk-benefit ratio.

Coating the vector capsid with polyethylene glycol (PEG) 
can mask neutralizing antibody epitopes and reduce CD8+ T cell 
responses. Croyle and colleagues104 demonstrated that PEGylation 
of Ad vectors reduced CD8+ T cell responses and the production 
of neutralizing antibodies against Ad capsids after intratracheal 
delivery in murine lungs. Prolonged expression of the transgene 

(from 4 to 42 days) was also observed. In addition, they demon-
strated that alternating the formulations of PEG between doses is 
necessary to allow efficient gene transfer during repeated admin-
istration. Zhong and colleagues105 demonstrated that formulating 
an Ad vector with anionic liposomes improved the duration of 
gene expression in murine airways and reduced neutralizing anti-
body responses against Ad following a single intratracheal vector 
administration. Price et al.106 reported that an Ad vector formu-
lated with liposomes, composed of the anti-inflammatory cationic 
lipid dexamethasone-spermine (DS) and the neutral lipid dio-
leoylphosphatidhylethanolamine (DOPE), allowed homologous 
Ad vector readministration in murine lungs. Formulation with 
DS/DOPE reduced neutralizing antibody production as well as 
infiltration of CD4+ and CD8+ T-cells to the site of vector delivery. 
Evasion of antibody neutralization can also be achieved through 
mutating the neutralizing epitopes on viral vector capsids by site-
directed mutagenesis93,94 or by directed evolution.107

It is possible that a therapeutic transgene may elicit immune 
responses, as autoimmunity against the CFTR gene product has 
been reported. Limberis et al.108 demonstrated that human CFTR 
expression elicited CD8+ T cell responses when Ad vectors car-
rying human CFTR cDNA were delivered to CFTR knockout, 
heterozygote, and wild-type mice. Intratracheal delivery induced 
more effective CFTR-specific T-cell responses compared to intra-
nasal delivery. A minor T-cell response to an epitope conserved 
between human and mouse CFTR was observed in CFTR knock-
out mice but not wild-type mice. These results suggest that CFTR 
mutations associated with loss of protein translation, specifically 
class I mutations, may more likely elicit CFTR-specific T-cell 
responses.109 Further studies are required to understand the impli-
cations of these animal and in vitro studies.

Implications From New Animal Models
A lack of animal models presenting phenotypes similar to those 
of humans with CF has impeded studies of disease pathogenesis 
and new therapies. Mice have served as models in the majority 
of in vivo studies, and several different CF mouse models are 
available.110 Most of the CF mouse models exhibit severe gastro-
intestinal complications at weaning, which leads to death in a 
large fraction of animals without special diets or complementa-
tion with a human CFTR gene expressed in a gut.111 While the 
lungs are severely affected in CF patients, CF mice have minimal 
spontaneous lung pathology. There are several possible reasons 
for these species differences including the presence of alternative 
Ca2+-mediated Cl− secretory pathways.111 Large animals, including 
sheep37,68 have proven very useful in vector scale up studies, safety 
analyses, evaluation of immune responses, efficiency studies, and 
assessment of vector delivery/distribution. However, there is cur-
rently no available ovine CFTR loss of function model. Advances 
in gene-targeting technologies, including zinc finger and TALE 
nucleases, may facilitate CFTR gene disruption in additional 
species.

Recently, new CF animal models have been developed. Rogers 
and colleagues112,113 generated CFTR-null and CFTR-ΔF508 hetero
zygote pigs and subsequently CFTR-ΔF508 homozygous ani-
mals.114 Advantages of the pig as a CF model include lung anatomy, 
physiology, histology, and biochemistry that are more similar to 
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humans.115 In addition, pigs are more homologous to humans 
genetically, have a larger body size, and longer life spans. CF pigs 
manifest several phenotypes present in humans with CF. Loss of 
CFTR function in pigs results in exocrine pancreatic destruc-
tion, pancreatic insufficiency, focal biliary cirrhosis, and micro 
gallbladder.112,116 The penetrance of meconium ileus is 100% in CF 
pigs. This form of intestinal obstruction is observed in about 15% 
of newborn humans with CF. CF pig lungs exhibit no inflammation 
at birth, but interestingly their lung tissue was less frequently ster-
ile compared to wild-type littermates.114,117 When challenged with 
Staphylococcus aureus intratracheally, CF pigs exhibited reduced 
bacterial eradication compared to wild-type. The animals sponta-
neously developed lung disease within the first month after birth 
characterized by bacterial infection, inflammation, airway injury, 
and remodeling.117 The lung disease manifestations were hetero-
geneous and severity varied from mild to severe.117 These findings 
suggest that defects in bacterial eradication lead to inflammation 
and the development of lung disease.

Another new CF animal model is the ferret. Sun et al.118 demon-
strated that CFTR−/− ferrets develop meconium ileus with 75% pen-
etrance, pancreatic disease, liver disease, and their lungs are often 
spontaneously colonized with bacteria including  Streptococcus 
and Staphylococcus species within the first 4 weeks after birth. 
Progressive development of lung disease, as well as defects in bac-
terial clearance have also been observed in newborn CF ferrets 
challenged with bacteria (J.F. Engelhardt, The University of Iowa, 
unpublished observation).

Importantly, both models spontaneously develop lung dis-
ease and recapitulate several features of CF disease progression 
observed in humans. The availability of these new animal models 
should provide new insights into disease pathogenesis and provide 
opportunities for testing treatment strategies, including gene- and 
cell-based therapies.

Importance of preclinical model choice
Preclinical models must be carefully chosen based on the goal of 
the studies. Each model has advantages and disadvantages that 
must be considered for each vector system.

For example, tripartite motif protein 5α (TRIM5α) restricts ret-
roviral infection in a species-specific manner by blocking the early 
postentry phase of retroviral infection. Thus, while TRIM5α of Old 
World monkeys blocks HIV-1 infection, it blocks SIV only mod-
erately.119 Human TRIM5α blocks N-tropic murine leukemia virus 
(N-MLV)120,121 and equine infectious anemia virus,122 but not HIV-1 
infection.119 Restriction by TRIM5α is initiated by the recognition 
of incoming retroviral capsids by the PRYSPRY domain, which 
is followed by rapid disassembly of the viral capsids.123 TRIM5α 
bound to the capsids of restriction-sensitive virus is degraded via 
the proteasome,124 causing reduction of reverse-transcribed prod-
ucts.125 Due to the species-specific restriction by TRIM5α, out-
comes of studies with lentiviral vectors may vary depending on the 
vectors and animal models selected. Therefore, recognition of the 
species-specific restriction patterns of TRIM5α should help guide 
the selection of animal models for preclinical studies with LV vec-
tors. It is important to be mindful of the evolving literature of host- 
and virus-specific restriction factors to consider their implications 
for the design of informative preclinical studies.

Liu and colleagues29 conducted a comparative study of the 
transduction profiles of AAV vector serotypes 1, 2, and 5 in pig, 
ferret, mouse, and human polarized airway epithelia. They demon-
strated that AAV serotype preferences for transduction in pig, fer-
ret, and human airway epithelia were similar, but differed in mouse 
airway epithelia. Furthermore, the receptors required by each AAV 
vector serotype for transduction were different among species. 
While AAV1 and AAV5 required N-linked sialic acid receptors 
for transduction of human and mouse airway epithelia, these vec-
tors did not require the same receptor for transduction of pig and 
ferret airway epithelia. Their results indicate that while pigs and 
ferrets are suitable models to study AAV-mediated gene transfer, 
they may not be appropriate models to examine the mechanism of 
AAV transduction to airways. In order to select relevant systems to 
evaluate new therapies, additional comparative studies of vectors 
of interest in available animal models are required.

Concluding Remarks and Perspective
The efficacy and safety of vectors applicable for CF pulmonary 
gene therapy have been improved through intensive studies. 
Better strategies to overcome host immune responses and physical 
barriers are still needed to increase the gene transfer efficiency to 
airway epithelia. Further development of new or modified vectors 
may also enhance airway epithelial cell transduction. Cell-based 
therapies for CF are still at a very early stage. However, the ability 
to generate rat lung tissue ex vivo is a novel prospect. As the appro-
priate cell populations capable of efficiently differentiating into 
airway epithelium are identified and methods for engraftment are 
further optimized, cell-based therapies may be an attractive treat-
ment for CF. New animal models are providing significant new 
insights into CF pathophysiology. They will also help in develop-
ing new therapies, as well as in evaluating the effectiveness and 
adverse effects of such treatments. Significant progress has been 
made in the 22 years since the CFTR gene was first discovered. 
Continued advancements will bring us closer to a gene therapy 
strategy to treat CF lung disease.
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