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ABSTRACT The two-dimensional electron gas formed at
the semiconductor heterointerface is a theater for many
intriguing plays of physics. The fractional quantum Hall effect
(FQHE), which occurs in strong magnetic fields and low
temperatures, is the most fascinating of them. The concept of
composite fermions and bosons not only is beautiful by itself
but also has proved highly successful in providing pictorial
interpretation of the phenomena associated with the FQHE.

Elementary particles are classified into bosons and fermions.
The distinction is made on the basis of the symmetry of their
wavefunction upon particle exchange. In quantum mechanics,
the physical state of a group of particles is represented by a
wavefunction C(r1, r2, zzz, rN), where ri represents the position
of the ith particle. As the identical particles are indistinguish-
able, exchange of two particles changes the wavefunction at
most by a factor C, i.e., C(zzzrj, zzzri,zzz) 5 CC(zzzri, zzzrj,zzz). Doing
the two-particle exchange twice brings the system back to the
original situation, so that C2 5 1, and hence C 5 61. The
choice of the sign of C is intimately linked to the spin quantum
number of the particles, namely, particles having an integer
spin quantum number take C 5 11 and are called bosons,
whereas those with a half-odd spin take C 5 21 and are called
fermions. This can be expressed by writing C 5 eiu, in terms of
the change in the phase u of the wavefunction by 0 or p(mod
2p) upon particle exchange. Fermions and bosons exhibit quite
distinct types of behavior at low temperatures. Bosons, for
example, undergo Bose–Einstein condensation and become a
superfluid.

Electrons having spin 1⁄2 are fermions. In our three-
dimensional (3D) world, the distinction between fermions and
bosons is strictly enforced. In a two-dimensional (2D) world,
however, the rule can be relaxed by a trick called flux
attachment. One can transform a fermion to a boson (or vice
versa) by attaching to it fictitious magnetic f lux(es), which
takes care of the change in the phase of its wavefunction. The
reason why this sort of trick works lies in the following feature
of particle exchange operation in the 2D world. When we
exchange two particles in two dimensions, clockwise and
counterclockwise exchange operations are distinct, as shown in
Fig. 1. In three dimensions, by contrast, they are not distin-
guishable, because one can be transformed into the other by a
continuous transformation of the exchange path. This is linked
to the fact that winding number is a conserved quantity in two
dimensions, but not in three dimensions.

If we imagine that there is a fictitious vector potential field
a(r), an electron picks up an extra phase, Du 5 (ey\)*path
a(r)zd, as it moves along the path. This phase adds to the
fermionic (p) or bosonic (0) phase, and it can alter the overall

phase change upon particle exchange. If the path encloses a
single flux quantum f0 [ hye, the above-mentioned extra
phase is p, so fermionic electrons can be formally converted to
bosons. This trick can be applied to every electron if each
carries an odd number of fictitious fluxes of unit f lux quantum.
Likewise, attaching an even number of unit f luxes converts
fermions to fermions and bosons to bosons. Such particles with
fictitious fluxes attached are called composite particles (com-
posite fermions and composite bosons).

The idea of composite particles has evolved from the study
of the quantum Hall effect. The phenomenon occurs in a 2D
electron gas (2DEG) at the semiconductor interface subjected
to a strong magnetic field at low temperatures. The quantum
Hall effect was discovered in 1979 in Si-MOS (metal-oxide-
semiconductor) devices and was subsequently observed in
GaAsyAlGaAs HEMT (high electron mobility transistor)
devices.

When 2D electrons are subjected to a vertical magnetic field,
their energy states are quantized to a series of discrete levels
called Landau levels. Each Landau level can accommodate up
to eByh 5 1y2p,2 (, 5 =\yeB) electrons per unit area. The
electron density divided by this quantity gives the number of
Landau levels occupied by electrons, and is called the filling
factor n. The filling factor is the ratio of the number of
electrons to the number of flux quanta.

The salient features of the quantum Hall effect (QHE) are
as follows: (i) the Hall conductivity sxy as a function of
magnetic field exhibits plateaus at around integer values of n;
(ii) the values of the Hall conductance at the plateaus are n
(integer) times the universal constant e2yh 5 (25.813kV)21;
and (iii) the longitudinal conductivity sxx vanishes concomi-
tantly. That a quantity such as conductivity which generally
depends on many parameters of a particular sample takes a
universal value was a big surprise. The physical origin of the
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FIG. 1. (a) Clockwise and counterclockwise exchange operations
are distinct in two dimensions. (b) The way the phase of the wave-
function is changed upon particle exchange can be altered by attaching
a fictitious flux to each particle.
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phenomenon is explained in terms of electron localization in
a random potential (Anderson localization). The phenomenon
is now called integer quantum Hall effect (IQHE), to distin-
guish it from fractional quantum Hall effect (FQHE), which
was discovered a few years later.

The FQHE is similar to the IQHE, except that it occurs at
fractional values of n, such as 1⁄3, 2⁄3, 2⁄5. Electron–electron
interaction plays an essential role in the FQHE. In a strong
magnetic field such that all electrons are accommodated in the
lowest Landau levels, the kinetic energy of electrons is
quenched so that the electron–electron interaction becomes
important. At a series of fractional values of filling factor with
odd denominators, the electrons take special configurations
that are particularly effective in minimizing the repulsive
Coulomb interaction. Fig. 2 shows the Hall resistivity rxy and
longitudinal resistivity rxx of a high- quality GaAsyAlGaAs
2DEG sample. The FQHE features at n 5 1⁄3, 2⁄5, 3⁄7, . . . and
n 5 2⁄3, 3⁄5, 4⁄7, . . . show up strongly.

The wavefunction describing the n 5 1 state is written as

Cn51~z1, z2, . . ., zN! 5 P
i, j

~zi 2 zj!expS2O
i

uziu2y4,2D ,

where zi 5 xi 1 iyi represents the position of the ith electron.
It is readily seen that this wavefunction vanishes whenever two
electrons come to the same position, as required by the Pauli
exclusion principle.

The ground state at n 5 1⁄3 is well described by the following
wavefunction proposed by Laughlin:

Cn51y3~z1, z2, . . ., zN! 5 P
i, j

~zi 2 zj!
3expS2O

i
uziu2y4,2D ,

which is depicted in Fig. 3 Lower. As seen by comparing Fig.
3 Upper and Lower, the n 5 1⁄3 state can be generated from the
n 5 1 state by attaching two more fluxes to each electron. It
is readily seen that the operation of attaching two more fluxes
converts a n state to a (n21 1 2)21 state. Therefore, applying
the same flux attachment operation to the IQHE states n 5 1,
2, 3, . . . generates a series, n 5 1⁄3, 2⁄5, 3⁄7, . . . , which is the major
sequence of the FQHE states. In other words, the FQHE states
can be viewed as the IQHE states of composite fermions, each
of which consists of an electron and two fluxes. In this scheme,
the n 5 1⁄2 state corresponds to n 5 ` (zero magnetic field)
state of the composite fermions.

An alternative view of the QHE states involves composite
bosons. As mentioned earlier, an electron accompanied by an
odd number of fluxes can be regarded as a composite boson.
Therefore, the n 5 1 and n 5 1⁄3 QHE states depicted in Fig.
3 can be viewed as a composite boson gas in zero magnetic
field, and the QHE states can be interpreted as superfluid
states of those composite bosons.
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FIG. 3. Schematic drawings of the n 5 1 and n 5 1y3 states.

FIG. 2. The Hall and longitudinal resistivity of a GaAsyAlGaAs
heterojunction sample at low temperatures, exhibiting rich structures
associated with the integer and fractional QHEs. Reproduced with
permission from ref. 1, © 1987, American Institute of Physics.
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