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Abstract: In this paper, we develop a random process theory to explain the 
laser speckle phenomena. The relation between the probability distribution 

of speckle‟s integrated intensity random process ( )tY  and the relative 

velocity v t  is derived. Based on the random process theory, traditional 

spatial or temporal laser speckle contrast analysis (i.e. spatial or temporal 
LASCA) can be derived as the spatial or temporal estimators respectively. 
Both spatial LASCA and temporal LASCA suffer from noise due to 
insufficient statistics and nonstationarity in either spatial or temporal 
domain. Furthermore, either LASCA results in a reduction of spatial or 
temporal resolution. A new random process estimator is proposed and able 
to overcome these drawbacks. In an in-vitro study, random process 
estimator outperforms either spatial LASCA or temporal LASCA by 
providing much higher SNR (random process estimator vs. spatial LASCA 

vs. temporal LASCA: 33.64±6.87 ( . . .mean s t d ) vs. 9.08±2.85 vs. 

3.83±1.05). In an in-vivo structural imaging study, random process 
estimator efficiently suppresses the noise in contrast image and thus 
improves the distinguishability of small vessels. In a functional imaging 
study of cerebral blood flow change in the somatosensory cortex induced by 
rat‟s hind paw stimulation, random process estimator provides much lower 
estimation errors in single trial data (random process estimator vs. temporal 
LASCA: 0.31±0.03 vs. 1.36±0.09) and finally leads to higher resolution 
spatiotemporal patterns of cerebral blood flow. 

©2009 Optical Society of America 

OCIS codes: (110.6150) Speckle imaging; (170.3880) Medical and biological imaging; 
(110.4280) Noise in imaging system. 
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1. Introduction 

Structural and functional brain imaging has become a very important tool in neuroscience 
research. As a simple two-dimensional imaging method, laser speckle imaging (LSI) [1] has 
been widely used in imaging the cerebral vasculature and cerebral blood flow (CBF) [2], e.g. 
the vasculature in brain tumor [3] and retina [4], the functional changes of CBF under focal 
cerebral ischemia [2], hypotension [5] and/or peripheral electrical stimulation [6]. Both 
spatial [7] and temporal [8] laser speckle contrast analysis methods, i.e. spatial LASCA and 

temporal LASCA respectively, have been used to estimate the contrast values ( 2K ) which is 

inversely proportional to the relative velocity ( v ) [9]. However, spatial LASCA decreases the 

spatial resolution while temporal LASCA is under the cost of temporal resolution. 
Furthermore, the inevitable noise in both LASCA methods not only decreases the 
distinguishability of vessels, but also results in errors in estimating functional changes of 
blood flow. 

In this paper, we develop a random process theory for explaining the speckle phenomena 
and derive the relation between the velocity of CBF and the probability distribution of 
speckle‟s random process. With the help of the random process theory, both LASCA methods 
are directly derived as the spatial and temporal estimators, and the noise is also modeled and 
analyzed. Finally, based on the property of noise, a new random process estimator is proposed 
to improve the signal-noise ratio (SNR) of the estimation, which thus leads to a better 
structural and functional imaging of CBF. 

2. Theory 

2.1 Background and preparation 

When coherent laser light illuminates a surface of rat‟s cortex, the random interference 
patterns, i.e. laser speckles, are produced by the coherent addition of scattered laser lights 
with slightly difference in light-path lengths. The motion of scattering particles, i.e. the red 
cells in blood vessels, changes the temporal pattern of speckles. The principle of LASCA is to 
estimate the relative velocity of CBF by analyzing the changing speckle patterns. 

Essentially, light is a kind of electromagnetic radiation. According to the electromagnetic 
theory, the area under coherent laser illumination can be modeled as a „complex electric field‟ 
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( ), [0, )E t t  [10,11]. Following the dynamic light scattering (DLS) theory [12], the 

scatters‟ velocity ( )v t is related to ( )E t ‟s autocorrelation function 1( )g : 

 * *

1( ) ( ) ( ) / ( ) ( ) .temporal temporalg E t E t E t E t  (1) 

where is the delay time; *( )E t is the complex conjugate of ( )E t ; · temporal
expresses the 

temporal average. The relation between ( )v t and 1( )g relies on different models. For example, 

based on the assumption of Lorentzian distribution of velocity, Fercher and Briers [13] 

proposed the first model: 1 0( ) exp( / )g  ( 0  is the correlation time, 1

0 v ); based on 

diffusing wave spectroscopy (DWS) model [14], Bandyopadhyay et al. [15] suggested a more 

rigorous model: 1/2

1 0( ) exp( (6 / ) )g  ( is a constant parameter, 1

0 v ). In practice, 

it is very difficult to measure ( )E t  and 1( )g  directly, but it is common to study the 

intensity ( ), [0, )I t t , defined as 2( ) | ( ) |I t E t . Generally, the recorded laser speckle 

image contains the intensity information of a composition of speckles with same speckle 

size 2.44 f/ #s  ( is the wavelength of laser light, f/ # is the f number of the imaging 

system) [2]. For each speckle, the scattering particles‟ velocity ( )v t  is related to ( )E t and thus 

related to the statistical property of ( )I t . 

2.2 Random process theory for laser speckle phenomenon 

Due to the randomness property of speckle phenomena, the intensity ( ), [0, )I t t of one 

speckle is considered as a single realization of the continuous intensity random process ( )tX . 

In this section, we are going to develop the random process theory to explain the laser speckle 

phenomenon and derive the relation between ( )tX and velocity ( )v t . 

At any time 1t , 1( )I t is a single realization of the corresponding intensity random variable 

1( )tX  whose probability distribution is related to the velocity 1( )v t . In practice, a CCD 

camera is used to acquire the intensity information of the imaging plane. By carefully 

adjusting the f number of the imaging system, we can make the pixel size of the recorded 

image equal to the speckle size so that there is only one speckle in one pixel. Therefore, the 
„intensity‟ value of any pixel is actually equal to the integrated intensity over the exposure 
duration T : 

 
1

( ) ( )d
t T

t
I t I t t

T
 (2) 

where ( )I t is a single realization of integrated intensity random process
1

( ) ( )d
t T

t
t t t

T
Y X . 

Suppose the exposure time T  is designed to be very short ( ~ 5ms ), then at any time 1t , 

the velocity 1 1( ), [ , ]v t t t t T  can be approximately considered as a constant. Thus, the 

distributions of random variables 1 1{ ( ), [ , ]}t t t t TX  are the same, and each time-limited 

continuous random process 1 1( ), [ , ]t t t t TX  can be considered as a wide-sense stationarity 

(WSS) random process. The properties of WSS random process [16] include: (a) its mean 

value ( )t
X  is a constant when 1 1[ , ]t t t T ; (b) its temporal average value of the product 

of any two samples, i.e. ( )X t and ( )X t , 1 1, [ , ]t t t t T , depends only upon the time 

interval t t . 

Based on the property (a), when the number of ensemble samples N , we have: 
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1 1

1 1
1 1 1

1 1
( ) ( ) ( )d ( ) d ( )

t T t T

ensemble ensemble ensemble
t t

t t t t t t t
T T

Y X
Y X X (3) 

Based on the property (b), the „intensity autocorrelation function‟ 2 ( )g  of ( )tX  during the 

exposure 1 1[ , ]t t t T  exists: 

 2

2 ( ) ( ) ( ) / ( .)temporal temporalg t t tX X X  (4) 

According to the Siegert relation [12], we have: 

 2 2

1 1( ) ( ) ( ) (1 | ( ) | ),temporal ensemblet t t gX X X  (5) 

where 1 1[ , ]t t t T ,1/  is approximately the number of speckles per pixel (Here 1). 

Suppose we obtain infinite temporal realizations of 1 1{ ( ), [ , ]}t t t t TX , then we have: 

 

1 1

1 1

1 1

1 1

2

1 2

2

2

1 12

1
( ) ( ) ( )d d

1
                     ( ) ( ) d d

1
                     (1 | ( ) | )d d ( )

t T t T

ensemble ensemble
t t

t T t T

temporal ensemble
t t

ens

t t t t t
T

t t t t
T

g t t t t t
T

Y X X

X X

X
1 1

1 1

2

2 2 2

1 12 0 0

2 2 2

1 12 0 0

1

1
                     ( | ( ) | d d ) ( )

1
                     ( | ( ) | d d ) ( )

( )

t T t T

emble ensemble
t t

T T

ensemble

T T

ense

T g t t t t t
T

T g t t t t t
T

t

X

Y

Y
2 2

1
0

(1 2(1 ) ( )d )
T

mble g
T T

 (6) 

Notes: (i) the temporal average ( ) ( ) temporalt tX X in the time interval 1 1[ , ]t t T  is used 

instead of the function ( ) ( )t tX X  in the second step based on the WSS property of 

1 1{ ( ), [ , ]}t t t t TX ; (ii) Eq. (5) is applied in the third step; (iii) Eq. (3) is used in the fifth 

step; (iv) 
2 2

1 12 0 0 0

1
| ( ) | d d 2(1 ) ( )d

T T T

g t t t t g
T TT

 [15,17] is used in the last 

step. 
By simply manipulating Eq. (6), we conclude: 

 
2 2

21 1

12 0
1

( ) ( )
2(1 ) ( )d .

( )

T
ensemble ensemble

ensemble

t t
g

T Tt

Y Y

Y
 (7) 

Using 1 1( ) ( )N ensemblelim t t
Y

Y and 2 2 2

1 1 1( ) ( ) ( )N ensemble ensemblelim t t t
Y

Y Y , 

we rewrite Eq. (7) and define the contrast of integrated intensity random variable 1( )tY , i.e. 

2

1( )K t
Y

, as follows: 

 
2

2 21

1 12 0
1

( )
( ) 2(1 ) ( )d ,

( )

Tt
K t g

T Tt

Y

Y

Y

 (8) 

where 1( )g  is the 1( )E t ‟s autocorrelation function [18]. 

Based on different models describing the relation between ( )v t  and 1( )g , the relation 

between 2 ( )K t
Y

 and ( )v t  can also be derived directly [13,15,19,20]. For any single speckle, if 
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we can obtain its ensemble realizations (samples) 2

1{ ( )}iI t of the integrated intensity random 

variable 1( )tY  at time 1t , the ensemble samples can be used to estimate the 2K
Y

 and then the 

relative velocity v  can be estimated. 

2.3 The spatial and temporal estimators and the estimation noise 

In practice, at any time 1t , we can only get one realization of 1( )tY , i.e. 
1( )I t , for each 

speckle (pixel). So we have to estimate 2

1( )K t
Y

 in other ways. An alternative method is to 

estimate the 1( )t
Y  and 1( )t

Y  using the intensities of the pixel (
0 1( )I t ) and its surrounding 

pixels (
1( ), 1, , 1jI t j M ) based on the assumption that velocities at the surrounding 

pixels are very close. When this assumption is true, the distributions of integrated intensity 

variable 
1{ ( )}j tY  at different pixels are the same. Thus, spatial samples 

1{ ( ), 0 1}jI t j M  can be considered as ensemble samples approximately: 

1

1 1 10

1
( ) ( )

M

spatial j ensemblej
t I t t

M
Y Y  and 

12 2 2

1 1 10

1
( ) ( ) ( )

M

spatial j ensemblej
t I t t

M
Y Y . The estimations of 1( )t

Y , 1( )t
Y  and 

2

1( )K t
Y

 can be obtained as follows: 

 
2

2 21

1 12

1

( )
( ) ( )

( )

s

spatial

s

t
K t K t

t
Y  (9) 

where
1 1 1( ) ( ) ( )s spatialt t t

Y
Y , 2 2 2 2

1 1 1 1( ) ( ) ( ) ( )s spatial spatialt t t t
Y

Y Y . 

It is noted that this Eq. (9) is actually the spatial LASCA method [7]. Such estimation 
works well in most in-vitro simulation studies when the moving scattering particles in a large 
area have the same velocity. However, this assumption does not hold for a complex biological 
tissue, such as brain, where there is: 1) an abundance of scattering particles such as red cells, 
and 2) a large number of vessels with different diameters and velocities. 

Next, we analyze the estimation noise in spatial LASCA. Generally, the estimation of 

1( )s t  and 1( )s t  in a spatial window centered at the interesting pixel could be affected by 

(i) limited size of the window, which results in the estimation noises 1( )
s

NA t  and 1( )
s

NA t ; 

and (ii) the spatial inhomogeneity of velocities within the window, which could result in 

estimation noises 1( )
s

NB t  and 1( )
s

NB t . Therefore, 1( )s t  and 1( )s t can be modeled as 

follows: 

 1 1 1 1( ) ( ) ( ) ( ),s s s
t t NA t NB t

Y
 (10) 

 1 1 1 1( ) ( ) ( ) ( ).s s s
t t NA t NB t

Y
 (11) 

Although a larger window (e.g. 5 5 or larger) can result in smaller
s

NA and
s

NA based 

on central limit theory, the 
s

NB and
s

NB will increase due to higher inhomogeneity of 

velocities. In contrast, a smaller window (e.g. 3 3 ) will result in smaller
s

NB and
s

NB , but 

larger
s

NA and
s

NA . 

Another problem of spatial LASCA is the loss of spatial resolution. When we need a high 
spatial resolution image of cerebral vessels, spatial LASCA is not appropriate. To preserve 
the spatial resolution, the temporal estimator was developed. 
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If we assume that the velocity in the interesting pixel is constant during the time 

interval 1 2[ , ]t t , then the probability distributions of integrated intensity variables 

1 2{ ( ), [ , ]}t t t tY  are the same. In practice, we use a CCD camera to record the temporal 

samples ({ ( )}I t ) of integrated intensity random process ( )tY : 

 
1

1
1

1
( ) ( )d ,

t n t T

t n t
I t n t I t t

T
 (12) 

where 0, , 1n N , t  is the time interval between two frames. Temporal samples 

{ ( ), 0, , 1}I t n t n N are thus considered as ensemble samples of 

1

1 1 1 10

1
( ) : ( ) ( ) ( )

N

temporal ensemblen
t t I t n t t

N
Y Y Y  and 

12 2 2

1 1 10

1
( ) ( ) ( )

M

temporal ensemblen
t I t n t t

M
Y Y . Then the estimation of 2

1( )K t
Y

, i.e. 

1( )t
Y and 1( )t

Y  individually, is obtained by the temporal estimator defined as follows: 

 
2

2 21

1 12

1

( )
( ) ( ),

( )

t

temporal

t

t
K t K t

t
Y  (13) 

where
1 1 1( ) ( ) ( )t temporalt t t

Y
Y , 2 2 2 2

1 1 1 1( ) ( ) ( ) ( )t temporal temporalt t t t
Y

Y Y . 

Again the temporal estimator 2

temporalK  is actually the temporal LASCA method [8]. The 

temporal LASCA is also contaminated by the estimation noise, i.e. the noise components NA  

and NB  in 1( )t t  and 1( )t t  as follows: 

 
1 1 1 1( ) ( ) ( ) ( ),t t t
t t NA t NB t

Y
 (14) 

 
1 1 1 1( ) ( ) ( ) ( ).t t t
t t NA t NB t

Y
 (15) 

where 
tNA  and tNA  correspond to the noise due to limited statistics, 

tNB  and tNB  

correspond to the noise due to temporal inhomogeneity of velocities. 

Temporal LASCA preserves the spatial resolution because 1( )t t  and 1( )t t  are 

calculated based on 
1( )( 0, , 1)I t n t n N  of the same pixel. Therefore, high resolution 

structural imaging of cerebral blood vessel network is achieved. When imaging rat‟s CBF 
under stable condition, the velocity in each speckle is approximately stable during the 

recording, and the noise component NB  can be ignored. However, if the blood velocity is 

changing, e.g. elicited in response to functional stimulation, the NB  noise will be prominent. 

To achieve a high performance of statistical calculation (low NA  noise), usually more 

than 50 frames are used in the temporal LASCA. In practice, the frame rate of the CCD 

camera is limited, for example 10 fps  in this study. So, the temporal resolution is 

compromised. Fewer frames, i.e. small time window, will reduce the loss of temporal 

resolution, but leads to larger NA  noise. 

2.4 Random process estimator 

Based on the properties of integrated intensity random process ( )tY , we propose a new 

estimator, called random process estimator hereafter, which provides high SNR estimation 
and high spatiotemporal resolution for both structural and functional imaging. 
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The velocity of CBF can be considered as a constant within a short exposure duration (e.g. 

~ 5ms ). For an interesting pixel, we calculate the 1{ ( ), 0, , 1}s t n t n N  using a 3 3  

window from each frame. Because the window is small, there would be large noise 

component 
s

NA  and small 
s

NB  in 1{ ( ), 0, , 1}s t n t n N . Then, Eq. (11) is 

simplified into: 
1 1 1( ) ( ) ( )s s
t n t t n t NA t n t

Y
, where 0, , 1n N . 

It is noted that each 1( )t n t
Y  is related to the velocity 1( )v t n t  and thus could 

change during the imaging procedure. The noise component 
s

NA  is due to the limited 

number of samples, so it is affected by the number of samples. Based on the central limit 

theorem, 
s

NA can be hypothesized to follow a zero-mean Gaussian distribution, i.e. 

2

1(0, )N , which will be confirmed based on the simulation data in Discussion. Therefore, the 

discrete sequences 
1{ ( ), 0, , 1}

s
NA t n t n N  can be considered as independent and 

identically-distributed (IID) random variables with the same Gaussian distribution. 

Then we calculate the average of 1{ ( )}s t n t  as the random process estimator for 

averaged 1( )t
Y : 

 
1 1

1 1 1 1

0 0

1 1
( ) ( ) ( ) ( ),

N N

rpe s

n n
s

t t n t t NA t n t
N N

Y
 (16) 

where 
1

1 10

1
( ) ( )

N

n
t t n t

N
Y Y

 corresponds to the averaged velocity v  during 

1 1[ , ( 1) ]t t N t . Because 
1{ ( )}

s
NA t n t  are IID random variables, based on the law of 

large number, 
1

10

1
lim ( ) 0

N

nN s
NA t n t

N
. So, there is a de-noising effect when N  is 

greater than one. 

1( )t t is used to estimate the averaged 1( )t
Y  in the random process estimator, so there is 

no loss of spatial resolution in the calculation of
1( )rpe t . Actually, each 

1( )I t n t  can be 

considered as a „spatial estimation‟ of 1( )s t n t  with a 1 1  spatial window, which leads 

to a large noise component 
s

NA  without 
s

NB  noise. Ignoring the NB  noise in Eq. (10), 

we have: 1 1 1( ) ( ) ( )
s

I t n t t n t NA t n t
Y . Then we get: 

 
1 1 1

1 1 1 1

0 0 0

1 1 1
( ) ( ) ( ) ( ).

N N N

rpe

n n n
s

t I t n t t n t NA t n t
N N N

Y
 (17) 

Similarly, we model 1( )
s

NA t n t  as a sequence of IID random variables with a zero-

mean Gaussian distribution based on the central limit theorem, i.e. 2

2(0, )N  (this assumption 

will also be confirmed based on the simulation data in Discussion). Therefore, when 

N , 
1

10

1
( ) 0

s

N

n
NA t n t

N
 and then

1

1 1 10

1
( ) ( ) ( )

N

rpe n
t t t n t

N
Y Y

, 

where 1( )t
Y  corresponds to the averaged velocity v  within 1 1[ , ( 1) ]t t N t . 

Finally, the new random process estimator is used to estimate 2

1( )K t
Y

 for the averaged 

velocity v  during time interval 1 1[ , ( 1) ]t t N t  as follows: 

(C) 2010 OSA 4 January 2010 / Vol. 18,  No. 1 / OPTICS EXPRESS  224
#119045 - $15.00 USD Received 26 Oct 2009; revised 7 Dec 2009; accepted 14 Dec 2009; published 23 Dec 2009



   

 

2 2
12 21

1 12 2

1 1

( ) ( )
( ) ( ).

( ) ( )

rpe

rpe

rpe

t t
K t K t

t t

Y

Y

Y

 (18) 

Compared with spatial LASCA, 2

rpeK provides much higher spatial resolution because the 

calculation of 
rpe

 uses only a 3 3  window. Furthermore, because the frame number N  

only affects the averaging (denoising) performance of the random process estimator, we can 

use fewer frames (e.g. 10N ) than the temporal LASCA ( 50N images) to achieve a 

higher temporal resolution. Even using only 10 frames, the denoising performance of random 

process estimator is still significant while temporal LASCA is contaminated by both NA  

and NB . Therefore, random process estimator is very appropriate for functional imaging 

where both spatial and temporal resolutions need to be preserved as much as possible. 
Although temporal LASCA can provide high resolution image of blood vessel network 

based on a large number of raw images, the noise component NA  is unavoidable. 

Furthermore, some physiologic changes, e.g. body temperature, heart rate, blood pressure and 

medicine, could also lead to a time-varying CBF and thus the NB  noise, which will decrease 

the distinguishability of small vessels. On the other hand, larger N  in random process 

estimator will have better denoising performance according to Eq. (16) and Eq. (17). 
Therefore, although random process estimator produces a slight loss in spatial resolution 
compared to temporal LASCA, it significantly improves the distinguishability of vessels. 

3. Experiments 

3.1 Imaging setup 

The imaging plane was illuminated with a 632nm  He-Ne laser beam source (1508P-O, 

Uniphase, CA) which was reshaped by optical lens to expand the range of illumination. A 12-

bit cooled CCD camera (Sensicam SVGA, Cooke, MI) with a 60mm  macro (1:1 maximum 

reproduction ratio) / 2.8f lens was held and focused on the imaging plane. Exposure time of 

the CCD camera was set to 5ms . Frame rate was 10 fps . The resolution of image recorded 

by the CCD camera was 704 704  pixels corresponding to an imaging area about 
24.7 4.7mm . 

3.2 In-vitro simulation experiment 

A phantom is created to mimic blood vessels in vitro by flowing blood through plastic tubing 
using a syringe pump (PHD2000, Harvard Apparatus, MA). Real blood was obtained by ex-
sanguination of rats destined for sacrifice and mixed with heparin sodium (10 IU/ml, Sigma 
Chemical Co., St. Louis, MO) to prevent clotting. A syringe filled with such blood was fitted 

into the syringe pump and connected to a polyethylene tube (internal diameter 0.034" , PE90). 

Blood was infused into the tube at 2mm s . When the flow was steady after ~ 5min , the tube 

was imaged using the imaging setup described above. 600 frames were acquired for analysis. 

3.3 In-vivo structural and functional LSI experiment 

The experimental protocol used in this study has been approved by the Animal Care and Use 
Committee of the Johns Hopkins Medical Institutions. The female Sprague-Dawley rats 
( ~ 320g ) were used in this study. To avoid the influence of surgical preparation on the rats‟ 

CBF, the thinned skull preparation was done on the first day. On the second day, the rats were 
taken back for the structural and functional LSI experiment. 

On the first day, the rat was anesthetized with intraperitoneal (IP) injection of mixture of 

90 mg kg  of Ketamine and 10 mg kg  of Xylazine. The animal was placed in a stereotactic 

frame (David Kopf Instruments, Tujunga, CA) throughout the experiment. The scalp was 

shaved and disinfected with 70%  ethanol and povidone-iodine solution. All procedures were 
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performed using standard sterile precautions. After a midline scalp incision, the galea and 
periosteum overlying the parietal bone bilaterally were swept and retracted laterally. A 

5 5mm mm  area centered at 2.5mm  lateral and 2.5mm  posterior to the bregma over the 

right cortex was thinned using a high speed dental drill (Fine Science Tools Inc. North 
Vancouver, Canada), until the inner cortical layer of bone was encountered. Rectal 

temperature was maintained at 37 C  during the experiment using a homeothermic blanket 

system (model TP-500 T/Pump, Gaymar Industries, Inc., USA). 

On the second day, the rat was first held in a transparent chamber with 3%  isofluorane 

gas and room air flow until becoming drowsiness. Its mouth and nose were then placed within 
a customized anesthesia mask in a well-fitting rodent size, which was connected to a C-Pram 

circuit designed to deliver and evacuate the gas through one tube. A mixed flow of 1.5%  

isofluorane, 80% oxygen and room air was delivered to the mask at the flow of 2L min  for 

anesthesia. 600 frames were recorded for the structural imaging experiment. 
Afterwards, subcutaneous needle electrode pairs (Safelead F-E3-48, Grass-Telefactor, 

West Warwick, RI) were inserted just under the skin of left hindpaw, one on the top of the 
hindpaw between 2 and 3 digits, the other one on the back skin of the hind paw, without 
direct contact to the nerve bundle. An isolated constant current stimulator (DS3, Digitimer 
Ltd., Hertfordshire, England) was used for the electrical stimulation of the hindpaw. Positive 
current pulses of 3.5mA  magnitude and 200 s  duration at a frequency of 3Hz  were used 

for hind paw stimulation. Each stimulation trial consisted of pre-stimulus 200 frames ( 20s ), 

200 stimulation frames ( 20s ), and 400 post-stimulus frames ( 40s ), which was repeated ten 

times with several-minute in-between breaks. 

4. Results 

4.1 The denoising performance of random process estimator 

The denoising performance of random process estimator is evaluated in the in-vitro 
simulation experiment. During the experiment, the blood flow velocity in the polyethylene 

tube was strictly maintained at 2mm s  using the syringe pump. According to Eq. (16) and 

Eq. (17), the noise parts 
1

10

1
( )

N

n s
NA t n t

N
 and 

1

10

1
( )

N

n s
NA t n t

N
 in the random 

process estimator would be very closed to zeros with 600N . Therefore, for any pixel, 

rpe
and 

rpe
 based on all 600 raw images were considered as the true Y  and Y . Figure 

1(a) shows one frame of the 600 raw images. Figure 1(c) is the estimated contrast image 2K
Y

 

using random process estimator. One pixel (the white point in the white box area in Fig. 1(c)) 
is selected arbitrarily to compare the estimation results based on spatial LASCA, temporal 
LASCA and random process estimator. 

For the selected pixel in Fig. 1(c), the result of spatial LASCA is calculated using a 7 7  

spatial window at each second ( 1 0,1, ,59t s ) while the results of temporal LASCA and 

random process estimator are calculated using a 1s  temporal window (10 frames) starting 

from each second. Figure 1(b) shows the estimations of 2

Y
 based on spatial LASCA, 

temporal LASCA and random process estimator respectively. As expected, all estimations 
vary around the true value (white dashed line). Among all three methods, temporal LASCA 

produces the largest fluctuations because of large noise component NA  (small temporal 

window) in Eq. (15). Although both LASCA methods are contaminated by NA  noise, spatial 
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Fig. 1. The denoising performance of random process estimator: (a) one frame of raw images; 

(b) the estimation results of 
Y

 using different methods; (c) the contrast image 
2

K
Y

 estimated 

based on all 600 raw images using the random process estimator; (d) the estimated 
2

K
Y

 using 

different methods. 

LASCA still provides a better estimation using a comparably bigger window size (spatial 

LASCA: 7 7 49N ; temporal LASCA: 10N ). Furthermore, according to the 

hydrodynamics, the blood velocity is still not distributed uniformly within the tube. 

Therefore, besides the NA  noise, there is also NB  noise in the result of both LASCA 

methods. Compared to the conventional LASCA methods, random process estimator provides 

the best estimation of Y  in the sense of smallest fluctuations. Since the estimations of Y  

are the same in temporal LASCA and random process estimator, we did not show the results 

of Y . 

Figure 1(d) shows the estimations of 2K
Y

 at each second ( 1 0,1, ,59t s ) based on 

spatial LASCA, temporal LASCA and random process estimator where random process 
estimator outperformed the others again. To quantitatively compare the denoising 
performances of different methods, we define the signal-noise ratio (SNR) for the estimation 

of 2K
Y

 as follows: 
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 (19) 

where T=60 in this study. For the selected pixel, 2 0.0053K
Y

, the SNRs are 2.75  (temporal 

LASCA), 10.34  (spatial LASCA), and 31.09  (random process estimator) respectively. For 

all 60 100  pixels in the white box area in Fig. 1(c), the averaged SNR of random process 

estimator is 33.64 6.87  ( . . .mean s t d ) while the spatial LASCA and temporal LASCA are 

only with the averaged SNR 9.08 2.85  and 3.83 1.05  respectively. Clearly, random 

process estimator provides higher denoising performance than either spatial LASCA or 
temporal LASCA. 

Although spatial LASCA provides a slightly better estimation than temporal LASCA, the 
loss of spatial resolution is unavoidable and usually unacceptable. Since small vessels play an 
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important role in the in-vivo structural and functional studies, we‟ll only compare temporal 
LASCA and random process estimator in the rest sections. 

4.2 Random process estimator for structural imaging 

In the in-vivo experiment, 600 raw images ( 60s ) are recorded for imaging the structure of 

blood vessel network. During the imaging procedure, the rats were anesthetized and kept in 
stable condition, so blood velocities in the imaging area are assumed to be stable. Figure 2 
shows the contrast images estimated from the first 2 (Fig. 2(a,d)), 10 (Fig. 2(b,e)) and 80 (Fig. 
2(c,f)) frames using random process estimator and temporal LASCA respectively. For either 
method, the distinguishability of small vessels is improved when more frames are used. For 
example, the small vessel designated with black arrow in Fig. 2 (b) and (c) is hard to see in 
Fig. 2(a). 

 

Fig. 2. Structural imaging of rat‟s cerebral blood vessels: (a, b, c) show the contrast images 
2

K
Y

 estimated from the first 2, 10 and 80 frames using random process estimator; (d, e, f) 

show the contrast images 
2

K
Y

 estimated from the first 2, 10 and 80 frames using temporal 

LASCA. 

According to Eq. (15), when more frames are used, the noise component NA  decreases 

but still exists in the result of temporal LASCA. Furthermore, if there are small changes of 

blood velocity during the imaging procedure, the NB  noise is also introduced in. However, 

using random process estimator, the noise part is rapidly averaged out according to Eq. (16), 
17) provided that more frames are used. More precisely, based on the same number of frames, 
random process estimator always provides better estimation and thus better distinguishability 
than temporal LASCA. For example, the small vessels in the white circled area in Fig. 2(c) 
are more distinguishable than in Fig. 2(f). 

The contrast values along the vertical white line in Fig. 2(c) estimated from different 
number of frames using the two methods is plotted in Fig. 3. There are six vessels denoted as 
V1~V6 crossing the line. In Fig. 3, the results of random process estimator are always 
smoother than temporal LASCA. In particular, based on only 2 frames, the noise in the result 
of temporal LASCA was prominent (Fig. 3(a)), while the result of random process estimator 
still reveals the denoising aspect especially in the vessel areas V1 and V2. For 10 frames (Fig. 

3(b)), the random process estimator already provides an efficient estimation of 2K
Y

 with high 
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Fig. 3. Denoising performance of random process estimator for structural imaging: the contrast 

values 
2

K
Y

 along the vertical line in Fig. 2 (c) estimated from different number of frames: N=2 

(a), N=10 (b), N=80 (c) using random process estimator and temporal LASCA. 

 

Fig. 4. Spatiotemporal change of 
2

K
Y

 during the pre-stimulation stage: the first row shows the 

2

20 19 16
, , ,K F F  (from the left to the right) using random process estimator; the second raw 

shows the 
2

20 19 16
, , ,K F F  (from the left to the right) using temporal LASCA. 

SNR while the result of temporal LASCA is still very noisy. Furthermore, the denoising 
performance of random process estimator is better in the tissue areas compared to vessel 
areas. 

Although more frames can be used in the calculation by random process estimator, no 
significant improvement is found compared to Fig. 2(c). Therefore, 80 images are enough for 
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the structural imaging using random process estimator. In conclusion random process 
estimator provides better distinguishability of structural information of cerebral blood vessels. 

 

Fig. 5. The averaged errors of single trial result using temporal LASCA and random process 
estimator respectively. 

4.3 Random process estimator for functional imaging 

In the functional stimulation experiment, each trial includes recording 800 raw images ( 80s ) 

continuously, i.e. 200 pre-stimulus frames ( 20s ), 200 stimulation frames ( 20s ) and 400 post-

stimulus frames ( 40s ). Images within each second (10 frames) are used to calculate one 

contrast image using random process estimator and temporal LASCA. Therefore, for each 

trial, we obtain 80 contrast images ( 2 2

20 59, ,K K ). 2

20K is used to normalize the change of 

contrast values as follows ( 19, ,59n ): 

 
2 2

20

2

20

100%,n

n

K K
F

K
 (20) 

Because the stimulation procedure is 20s, other cortex areas may also be activated besides 
the somatosensory cortex. In this study, the area covering the activated somatosensory cortex 
is selected as the region of interest in the following discussions. 

To analyze the denoising performance for functional imaging, the 2

20 19 16{ , , , }K F F  of 

the interesting region in pre-stimulation stage of the first trial are shown in Fig. 4 using 
random process estimator (the first row) and temporal LASCA (the second row) respectively. 
Since the rat‟s condition was kept stable before the stimulation, there should not be 

significant changes in the contrast images and thus the values in images { , 19, , 1}nF n  

are expected to be much closed to zero. However, as shown in Fig. 4, temporal LASCA leads 
more noises than random process estimator. To quantify this estimation error, we define the 

„averaged errors‟ in each nF  as follows: 
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1 1
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Fig. 6. The changing patterns of CBF under functional stimulation calculated by random 
process estimator. 
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Fig. 7. The changing patterns of CBF under functional stimulation calculated by temporal 
LASCA. 

Figure 5 shows the averaged errors of single trial estimation using temporal LASCA and 
random process estimator respectively. For random process estimator, the averaged errors in 

all { , 19, , 1}nF n  is only 0.31 0.03  ( . . .mean s t d ), in contrast with 1.36 0.09  for 

temporal LASCA. 
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0 59{ , , }F F correspond to functional changes during the stimulation and post-stimulation 

procedure. By averaging the 0 59{ , , }F F  of all ten trials, the averaged spatiotemporal 

changing map (
0 59{ , , }F F ) is obtained. Figure 6 and Fig. 7 show the averaged changing 

map
0 33{ , , }F F , using random process estimator and temporal LASCA respectively. As a 

reference, the first frames in Fig. 6 and Fig. 7 are the structural image calculated by random 
process estimator. 

In the functional imaging experiment, the blood flow in the somatosensory cortex changes 

in response to electrical stimulation. Therefore, besides the NA  noise, the NB  noise is also 

introduced into the result of temporal LASCA. Hence, the result of temporal LASCA (Fig. 7) 
is too noisy to precisely quantify the changes of CBF in small vessels. However, random 
process estimator (Fig. 6) provides high SNR and high spatiotemporal resolution for the 
functional changing pattern of CBF. 

 

Fig. 8. The functional changes of contrast values corresponding to the pixel designated by a 

white circle in the first frame of Fig. 6: (a) the averaged changes, i.e. , 19, , 59
n

F n s , 

using temporal LASCA and random process estimator; (b) the standard deviation of the 

, 19, , 59
n

F n s across all ten trials using temporal LASCA and random process 

estimator. 

In Fig. 6, the response of CBF induced by functional stimulation starts from 4s  and 

reaches maximum at 20 ~ 22s s , then recovers to the baseline at 32s . All significant changes 

can be located to small vessels (e.g. V1~V4 in Fig. 6). V1 is the vessel with the most 
significant changes, which is activated earlier than other vessels and shows longer recovery 
duration. With the help of high spatial resolution, we also find that not all vessels are 
activated in this area (e.g. V5). 

One pixel in vessel V1 is chosen for quantitative analysis (the white circle in the first 

frame of Fig. 6). The averaged value and standard deviation of { , 19, ,59 }nF n s  at this 

pixel across all 10 trials are plotted in Fig. 8 for both methods. The result of temporal LASCA 

exhibits a noisy fluctuations ( 10% ~ 40% ) even in the pre-stimulation stage, so that only 

changes greater than 50%  can be considered as significant change during stimulation. 
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However, the result of random process estimator shows much smaller fluctuations and a more 

stable profile. Furthermore, the standard deviation of the { , 19, ,59 }nF n s  over all 10 

trials using random process estimator are always less than that using temporal LASCA (Fig. 8 
(b)), implying that random process estimator also suppress the noisy variations over trials. 

 

Fig. 9. Gaussian assumptions confirmed by the data acquired in the in-vitro experiment: (a) the 

pdf of
s

NA ; (b) the P-P plot of all 600 
s

NA s; (c) the pdf of
s

NA ; (d) the P-P plot of all 

600 
s

NA s. 

5. Discussion 

5.1 The Gaussian noise assumptions for random process estimator 

In the development of random process estimator, the most important hypotheses are the 
Gaussian noise models in Eq. (16) and Eq. (17). Using the data acquired in the in-vitro 
experiment, we could test the hypotheses. 

For the selected pixel in Fig. 1(c), 600 estimations of Y  can be obtained using a 3 3  

spatial window. The noise component 
s

NA  of each estimation is then calculated by 

subtracting the true value Y . The probability density function (pdf) is then calculated from 

all 600 
s

NA  by the kernel smoothing density estimation (Fig. 9(a)). The pdf is very close to 

a Gaussian distribution with 
30 2.158 10  ( . . .mean s t d ). The P-P plot of all 600 

s
NA  in 

Fig. 9(b) is also very close to that of a Gaussian distribution. The hypothesis that the 

distribution of 
s

NA  is a Gaussian distribution is further confirmed by the K-S test with a 

high z  value ( 0.859z ). 

Similarly, the distribution of the noise component
s

NA , i.e. ( 1, ,600)iI i
Y

, is also 

tested by K-S test with a high 0.848z . The pdf of the distribution (
30 9.405 10 ) and the 

P-P plot are shown in Fig. 9(c) and (d) respectively. These tests confirm that the distribution 

of 
s

NA  is also a Gaussian distribution. 
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5.2 Comparison with hybrid temporal and spatial method 

Recently, a hybrid temporal and spatial method was proposed to improve the SNR by 

spatially averaging ( 5 5 spatial window) the result of temporal LASCA which was 

successfully applied in imaging rat‟s retinal blood flow [21]. Similar to spatial and temporal 
LASCA, the hybrid method works well when blood flow is constant within both spatial and 

temporal window, i.e. NB noise does not exist. We further process the same data set in our 

study using the algorithm in [21] to compare the performances of random process estimator 
and hybrid method in SNR, distinguishability of small vessels and revealing the functional 
responses in small vessels. 

In the in-vitro simulation experiment, for the selected pixel in Fig. 1(c), the hybrid method 
produces a higher SNR (16.48) than temporal LASCA (2.75) and spatial LASCA (10.34), 
which, however, is still significantly lower than the SNR by random process estimator 

(31.09), because the use of a 5 5 spatial window increases the NB noise while suppressing 

the NA noise. In the structural imaging of the selected area in Fig. 10(a), the details of small 

vessels (indicated with black arrows) would be hardly visible by the hybrid method with 

a 5 5 spatial window (Fig. 10(b)). Although using a 3 3  spatial window in hybrid method 

slightly improves the spatial resolution (Fig. 10(c)), but the distinguishability of the vessels is 
still not as good as that by random process estimator (Fig. 10(d)) due to the decrease of SNR. 

Furthermore, the hybrid method cannot suppress the NB noise when there are significant 

blood flow changes within the temporal window. For example, NB noise is so large that the 

small functional changes are strongly contaminated by background noise in temporal LASCA 
(Fig. 11(b)) under the functional stimulation. Hybrid method will filter out noise and the weak 
functional signals as well (Fig. 11(c)). However, random process estimator well reveals the 
functional changes in the small vessel while removing the noise (Fig. 11(d)). 

 

Fig. 10. The vascular details in the white box area in (a) using hybrid method with 5 5  (b) 

and 3 3  (c) spatial window, random process estimator (d). 

 

Fig. 11. The functional CBF changes of selected area in (a) at the 8th sec estimated by 
temporal LASCA (b) as in Fig. 7, hybrid method (c) and random process estimator (d) as in 
Fig. 6. 

6. Conclusion 

In this paper, we develop the random process theory for the laser speckle phenomenon and 

thus propose a new random process estimator to estimate the true value of 2K
Y

. Compared 

with traditional spatial LASCA and temporal LASCA, random process estimator provides 
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higher SNR and higher spatiotemporal resolution contrast images for both structural and 
functional imaging of cerebral blood vessels and flow. 
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