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Abstract
Cohort studies typically sample unrelated individuals from a population, although family members
of index cases may be also be recruited to investigate shared familial risk factors. Recruitment of
family members may be incomplete or ancillary to the main cohort, resulting in a mixed sample of
independent family units, including unrelated singletons and multiplex families. Multiple methods
are available to perform genome wide association (GWA) analysis of binary or continuous traits in
families, but it is unclear whether methods known to perform well on ascertained pedigrees, sib-
ships, or trios are appropriate in analysis of a mixed unrelated cohort and family sample.

We present simulation studies based on Multi-Ethnic Study of Atherosclerosis (MESA) pedigree
structures to compare the performance of several popular methods of GWA analysis for both
quantitative and dichotomous traits in cohort studies. We evaluate approaches suitable for analysis
of families, and combined the best performing methods with population-based samples either by
meta-analysis, or by pooled analysis of family- and population-based samples (mega-analysis),
comparing type 1 error and power. We further assess practical considerations, such as availability
of software and ability to incorporate covariates in statistical modeling, and demonstrate our
recommended approaches through quantitative and binary trait analysis of HDL cholesterol (HDL-
C) in 2,553 MESA family- and population-based African-American samples. Our results suggest
linear modeling approaches that accommodate family-induced phenotypic correlation (e.g.,
variance component model for quantitative traits or generalized estimating equations for
dichotomous traits) perform best in the context of combined family- and population-based cohort
GWAS.
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Introduction
Large-scale cohort studies have been established over the past several decades as an
effective way of gathering rich epidemiological data, typically focused on uncovering risk
factors for a specific disease of interest. Advantages of this study design include
representative sampling of the study population coupled with rich phenotypic data, often
with repeated measures over an extended period. A considerable amount of time and
resources are put into establishing these well-phenotyped cohorts. Once this initial
investment has been made, collection of biomarker specimens such as blood for genetic
studies expands the cohort utility and, in recent years, has yielded cohort genome-wide
association studies (GWAS) (Manolio 2009).

The Multi-Ethnic Study of Atherosclerosis (MESA) is an example of a cohort study of
unrelated individuals enhanced by many ancillary studies focused on specific phenotypic
and exposure domains (Bild et al. 2002). One ancillary study (MESA Family Study,
MESAFS) recruited family members specifically for genetic analysis. Another ancillary
study (MESA Air) evaluated the effects of air pollution on atherosclerosis risk.
Approximately 38% of the recruited participants are White, 28% African-American, 22%
Hispanic, and 12% Asian, predominantly of Chinese descent. Participants recruited by the
original MESA cohort (6,814), and MESAFS (2,128 from 528 families) and MESA Air
(5,479 from MESA, 257 external cohort, and 490 from MESAFS) have recently been
genotyped using the Affy 6.0 genome-wide SNP array under the NHLBI SNP Health
Association Resource (SHARe) program (MESA SHARe). A total of 8,298 participants who
provided consent had both phenotypic and genotypic data, including 6,657 independent
“families”, 10.5% of which are multiplex (17.6% in African American families, 20.6% in
Hispanic).

When a GWAS is undertaken for an existing cohort study, traditional ascertainment
strategies for genetic studies are bypassed. As a result, it is unclear whether methods known
to perform well on ascertained pedigrees, sib-ships, or trios are appropriate for the analysis
of family-based cohort data. In addition, large-scale cohort studies typically involve the
additional challenge of incorporating considerable numbers of population-based samples.
Many widely used tests of association focus on within-family analysis (Abecasis et al. 2000;
Fulker et al. 1999), which assess transmission of alleles within a family, but without making
use of allelic association observed across families. Population-based tests of association
generally apply regression-based total association methods, assessing allelic association with
the trait of interest, and taking into account familial correlation where appropriate. Further
investigation is necessary to determine the optimal approach to combine family- and
population-based study designs.

In this report, we present simulation studies to compare performance of several popular
methods in GWAS analysis of both quantitative and dichotomous traits in cohort studies
involving both family-based and population-based samples, as is the case in MESA and
MESAFS. We use a two-stage approach to identify the best methods for joint analysis of
family- and population-based samples. First, we evaluate approaches suitable for analysis of
families only (MESAFS), and compare their performance in terms of type I error rates and
power in analysis of our simulated pedigree data. For quantitative trait analysis in families,
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we consider seven approaches including two within-family analysis approaches: QFAM-
within (Purcell et al. 2007) and FBAT (Laird et al. 2000), four total-association methods that
account for familial correlation: QFAM-total (Purcell et al. 2007); linear mixed effects
(LME) modeling (Chen and Yang 2010); fastAssoc (Chen and Abecasis 2007); and
robustAssoc (Chen et al. 2009), and linear regression, that does not account for familial
correlation, included for comparison. For analysis of dichotomous traits, we consider five
approaches, including two within-family analysis approaches: GDT (Chen et al. 2009) and
DFAM (Purcell et al. 2007), two tests of total association that account for familial
correlation: MQLS (Thornton and McPeek 2007) and GEE (Chen and Yang 2010; Zeger and
Liang 1986), and a Cochran-Armitage Trend test (Agresti 2002; Purcell et al. 2007), that
does not account for familial correlation, included for comparison. The best performing
methods for family data (MESAFS) are then combined with population-based samples
(MESA) either by meta-analysis, or by pooled analysis of family- and population-based
samples, where appropriate. We further assess practical considerations such as availability
of software and ability to incorporate covariates in statistical modeling, and demonstrate our
recommended approaches through quantitative and binary trait analysis of HDL cholesterol
(HDL-C) in 2,553 family- and population-based African-American samples recruited
through MESA, MESA Air and MESAFS.

Methods
Simulation Studies

Our simulated samples each include a total of 8,227 individuals: 5,922 population-based
singletons, and 2,305 individuals across 687 families with 2–13 genotyped individuals each.
This sample composition reflects that of the MESA SHARe cohort available for accession
through a Data Access Request in dbGaP (study accession phs000209,
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000209.v4.p1),
with 8,227 individuals passing genotype QC and assembled into pedigrees based on
Coordinating Center records and further relationship inference to remove any errors
involving first-degree relatives (Manichaikul et al. 2010). A detailed summary of the
pedigree structure used in simulations is shown in Table 1.

Simulation of phenotypes—For each of 100,000 simulation replicates, we considered a
single marker with minor allele frequency (MAF) 0.3, 0.05, and 0.01. Quantitative traits
were simulated in Merlin (Abecasis et al. 2002) such that the simulated disease marker
accounted for 0.5% of trait variance, with residual polygenic variance 39.5% and residual
environmental variance of 60% (Chen and Abecasis 2007). These quantitative traits were
then normalized against either a normal distribution, a chi-square distribution with 7 degrees
of freedom (df=7), or a chi-square distribution with df=3. The two chi-square distributions
were considered to examine the case that phenotypic distributions differed from normality.
We chose these moderately skewed distributions under the assumption that more heavily
skewed phenotypes would be transformed (e.g., log or square-root transform) prior to
analysis. We did not include population admixture effects in the simulation of phenotypes.

We simulated under the null and alternatives to test type 1 error rate and power for nominal
significance levels of P = 0.01 and P = 0.001; however, only the power for more stringent
nominal thresholds of P = 1×10−4 or P = 1×10−8 were used to limit computation.
Dichotomous traits were generated using a threshold model in which individuals with
quantitative traits falling in the top 5%, 10% or 50% were considered “affected”, while the
rest were labeled “unaffected”. In this manner, we induced a polygenic effect in simulation
of the dichotomous phenotypes.
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Analysis of simulated quantitative traits—All quantitative trait analysis was
performed using an additive genetic model. Initially, six widely used approaches for analysis
in pedigrees were employed: 1) QFAM-within from PLINK (Purcell et al. 2007), 2) FBAT
(Laird et al. 2000), 3) QFAM-total from PLINK (Purcell et al. 2007), 4) linear mixed effects
(LME) model which accounts for familial correlation according to the kinship matrix (Chen
and Yang 2010) 5) fastAssoc, a variance-component model (Chen and Abecasis 2007) using
a fast score test (Chen et al. 2009), 6) robustAssoc (Chen et al. 2009), a robust score test
derived from the same variance-component model (Chen and Abecasis 2007), and 7) linear
regression, that does not account for familial correlation, shown for comparison. Details of
the software used to perform the simulations are shown in Table 2. After examining
performance of these six methods for quantitative trait analysis in families, we found
performance of methods clustered notably into two groups, with regression-based total-
association methods (fastAssoc, robustAssoc, QFAM-total) displaying statistical power
more than double that of within-family association tests (QFAM-within and FBAT) for
similar levels of type I error, across a variety of phenotypic distributions. Therefore,
subsequent simulations to compare performance of methods for combined analysis of
family- and population-based samples examined total-association methods only.

We considered application of meta-analysis to combine p-values from linear regression of
population-based samples with analysis of family-based samples by the following
approaches: 1) QFAM-total, 2) LME, 3) fastAssoc, and 4) robustAssoc. For meta-analysis,
we applied the method implemented in METAL (Willer et al. 2010) that combines p-values
taking into account direction of effect, with weighting according to the number of
individuals in the population- and family-based samples. We also examined pooled analysis
of family and population-based samples with: 5) LME applied to pooled samples of families
and singletons, 6) fastAssoc applied to pooled samples, 7) robustAssoc applied to pooled
samples, and 8) linear regression applied to pooled samples. For each simulation replicate
we also performed a linear regression on the 5,922 singletons only, to provide a reference
indicating how much power in the combined analyses is derived from singletons. We did not
include pooled analysis by QFAM-total in the simulations because the number of
permutations needed to achieve genome-wide significance (e.g. 5 × 10−8) makes such
simulations for this approach computationally prohibitive. Although PLINK does support an
alternative permutation strategy that requires fewer permutations by examining the family-
wise error rate (accounting for multiple comparisons across the number of observed SNPs)
rather than the pointwise error rate, such a strategy is not within the scope of our simulation
study.

Analysis of simulated dichotomous traits—Analysis of dichotomous traits was
performed using an additive genetic model. We considered the following five approaches for
analysis of dichotomous traits in pedigrees: 1) GDT (Chen et al. 2009), 2) DFAM in PLINK
(Purcell et al. 2007), 3) the more-powerful quasi-likelihood score test (Thornton and
McPeek 2007), MQLS as implemented in the software GDT (Chen et al. 2009), 4)
generalized estimating equations (Zeger and Liang 1986) (GEE) using an independence
working covariance structure (Zeger and Liang 1986) with a robust variance estimate as
implemented in the package R/GWAF (Chen and Yang 2010), and 5) a Cochran-Armitage
Trend test (Agresti 2002; Purcell et al. 2007), that does not account for familial correlation.
Details of the software used to perform the simulations are shown in Table 2. As with
quantitative trait analysis, performance of methods for analysis of dichotomous traits in
families clustered into two groups, with regression based methods (MQLS and GEE)
providing more than double the power of methods examining within-family association
(GDT and DFAM) across a range of disease prevalence values. Based on these results, we
targeted subsequent simulations for combined analysis of family- and population-based
samples on these tests of total association.
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We considered application of meta-analysis to combine p-values from a Trend test of
population-based samples with analysis of family-based samples by the following
approaches: 1) MQLS and 2) GEE, with meta-analysis implemented in METAL (Willer et al.
2010). We also examined pooled analysis of family and population-based samples with: 3)
MQLS applied to pooled samples of families and singletons, 4) GEE applied to pooled
samples, and 5) a Trend test applied to pooled samples. For each of the simulation
replicates, we also performed a Trend Test on the 5,922 singletons alone to provide a
reference indicating how much power in the combined analysis is derived from these
individuals.

Analysis of Lipid Phenotypes for African Americans in the MESA SHARe Cohort
Genotype data were analyzed for 2,553 African American samples, representing 1,464
population-based samples and 312 distinct families of 2–8 individuals, through the Multi-
Ethnic Study of Atherosclerosis (MESA). SNPs were filtered for heterozygosity less than
53% and call rate greater than or equal to 95%. Monomorphic SNPs were removed prior to
analysis. Principal components of ancestry were calculated using an LD-thinned subset of
the 906,000 SNPs (Supplementary Methods). After examining the Scree-plot for the top 20
principal components, and checking for symmetry in the distribution of loadings for each
principal component, we determined that a single principal component of ancestry would
provide sufficient adjustment for population stratification in our GWAS of African
American samples.

We performed a genome-wide association scan of 844,771 autosomal SNPs with minor
allele frequency (MAF) greater than 1%. All analyses were performed using an additive
genetic model to assess statistical significance of the effect of each SNP on the outcome of
interest. Quantitative trait analysis was carried out for log-transformed HDL cholesterol
level (HDL-C), approximately normally distributed after log-transformation. Based on
simulation results (power and type I error) and practical considerations (computational speed
and ability to incorporate covariates), we applied LME (Chen and Yang 2010), fastAssoc
(Chen and Abecasis 2007) and robustAssoc (Chen et al. 2009) for quantitative trait analysis
with the MESA African American samples. For comparison, we also performed multiple
linear regression, that does not account for familial correlation, as implemented in PLINK
(Purcell et al. 2007).

We further performed analysis of a binary trait with prevalence 27.5%, constructed as an
indicator of HDL-C 60 mg/dL or higher, a level suggested by the American Heart
Association to confer protection against heart disease (American Heart Association 2010).
Binary trait analysis was performed using GEE with each family treated as a cluster, using
an independence working covariance structure to calculate robust variance estimates, as
implemented in the GWAF (Chen and Yang 2010) package. MQLS and logistic regression
implemented in PLINK (Purcell et al. 2007) were included for comparison. All analyses of
quantitative and binary traits were performed with adjustment for covariates age, gender,
study site, and a single principal component of ancestry, with the exception of MQLS which
was performed with no covariates due to a practical limitation of the method.

Simulation results
Analysis of quantitative traits in families only

All methods examined for analysis of quantitative traits in pedigrees showed appropriate
control of type I error rate, except linear regression for which we observed type I error rates
about twice the nominal value at significance level P = 0.01 (Figure 1A) and three times the
nominal value at significance level P = 0.001 (Figure 1B). Indeed, we did not expect linear
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regression to perform well in analysis of pedigree data, but included it as a benchmark
because power of this test roughly indicates an upper bound on power under any given
simulation scenario.

Power to detect a statistically significant association in families (Figure 1C) differed
noticeably across two groups: tests that examine within-family effects (QFAM-within and
FBAT) and tests that examine total-association (QFAM-total, fastAssoc and robustAssoc).
For a normally distributed phenotype, power at P = 0.01 of the within-family association
tests QFAM-within was 31.0% and FBAT was 31.2%. In contrast, the power of the total-
association tests, QFAM-total was 66.2%, LME was 73.1%, fastAssoc was 72.8% and
robustAssoc was 72.2% at the same level of statistical significance. These differences in
power were seen consistently across all trait distributions under consideration. The
substantial difference in power across these two classes of tests highlights the fact that these
are cohort data in families of modest size; thus, the between-family effects represent a major
portion of the total power.

Among the tests of total association, accounting for familial correlation by permutation as in
QFAM-total (Purcell et al. 2007) was slightly outperformed by the formal linear mixed
effects model (LME) (Chen and Yang 2010) or variance-component model (fastAssoc and
robustAssoc) (Chen and Abecasis 2007). The LME and fastAssoc methods showed
comparable performance, having power estimates within 0.35% of one another across all
trait distributions. LME and fastAssoc performed better than all other methods under
consideration, uniformly across all trait distributions simulated, consistently giving 6.5% –
7% greater power than QFAM-total. The difference in power between fastAssoc and
robustAssoc was more subtle, ranging from 0.6% – 0.76%, and reflects the fact that these
two methods were derived using the same underlying regression model (Chen and Abecasis
2007; Chen et al. 2009). Observed power of LME and fastAssoc method falls no more than
4.7% below that of linear regression across all simulated trait distributions, indicating LME
and fastAssoc can achieve power comparable to that of linear regression while also
maintaining proper control of type I error rates.

All of the methods included in our simulations performed best in the case of a normally
distributed phenotype, and power was reduced for more skewed distributions. For each
method under consideration, the most skewed trait distribution (chi-square with 3 df) yielded
power 5.4% – 6.6% lower than under the “ideal” case of a normally distributed trait.

Analysis of quantitative traits in combined samples
Type I error rates when the nominal rate of statistical significance was P = 0.01 were
controlled appropriately for all tests under consideration, except for linear regression applied
to pooled samples. In this case, we observed type I error rates of 0.0126 (95% CI 0.0119 –
0.0133) when the phenotypic distribution was normal, 0.0128 (95% CI 0.0121 – 0.0135)
when the phenotype distribution was chi-square with 7 df, and 0.0126 (95% CI 0.0119 –
0.0133) when the phenotype distribution was chi-square with 3 df (Figure 1D), with a
similar pattern of inflation observed at the level of statistical significance P = 0.001 (Figure
1E). Thus, we observed evidence for inflation of type I error rates using linear regression on
pooled samples, although the extent of inflation was modest compared to what we saw in
analysis of pedigrees only (Figure 1A).

While analysis of the 5,922 singletons provides a substantial proportion of power to detect
genetic association in our simulated samples, inclusion of pedigrees (2,305 individuals
across 687 families) contributes considerably to overall power. At P = 10−8, analysis of
singletons alone provides 38.4% power (assuming a normally distributed trait) versus 66–
72% power when incorporating of families either by meta-analysis or in pooled analysis of
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singletons and families. Relative performance of methods combined with linear regression
on singletons by meta-analysis corresponds directly to performance of the same methods in
family analysis. Under a normal model, meta-analysis to combine unrelated individuals with
pedigrees by LME (Chen and Yang 2010) and fastAssoc (Chen and Abecasis 2007) has
power 71.7% and 71.5%, respectively, higher than the 66.6% power of permutation using
QFAM-total (Purcell et al. 2007). This comparison holds true for both skewed trait
distributions under consideration. For combined analysis of family and population-based
samples, we found pooled analysis using either LME or fastAssoc offered power
comparable to that of meta-analysis; power estimates comparing pooled analysis for each of
these two methods to meta-analysis by the same method were within 0.25%. Among
methods with proper control of type I error rates, we found LME and fastAssoc (using either
pooled analysis or meta-analysis) achieved the highest power across all trait distributions
under comparison (Figure 1F).

Analysis of dichotomous traits in families only
All methods under consideration provided reasonable control of type I error rates for
dichotomous traits, except for the Trend test which assumes independent sampling and is
anticonservative when applied to correlated family data (Figure 2A) (Bourgain et al. 2003;
Rakovski and Stram 2009; Yang et al. 2007). Inflation of type I error rates increases with
disease prevalence for the Trend test. Type I error rates when the nominal level of statistical
significance was P = 0.01 were 0.0128 (95% CI 0.0121 – 0.0135) for simulated disease
prevalence of 5%, 0.0142 (95% CI 0.0135 – 0.0150) for simulated disease prevalence of
10% and 0.0172 (95% CI 0.0164 – 0.0180) for simulated disease prevalence of 50%. At
statistical significance level P = 0.001, we see a similar pattern in which inflation of type I
error rates for the Trend test increase with disease prevalence (Figure 2B).

As observed for analysis of quantitative traits, power of the methods under consideration
varies greatly across tests that examine within-family association (GDT and DFAM) versus
tests that examine total-association (MQLS and GEE), and this effect increases with disease
prevalence (Figure 2C). For a rare disease of prevalence 5% and P = 0.01, we observed
simulated power of 5.2% for the GDT and 4.5% for the DFAM methods. This compared
with power of 15.5% for the MQLS and 13.3% for the GEE methods. For a common disease
of prevalence 50%, power is considerably higher – 20.1% for GDT and 15.9% for DFAM as
compared to 50.9% for MQLS and 47.4% for GEE. That power increases with disease
prevalence for all methods under consideration reflects the cohort-based study design, in
which very few cases are sampled for a rare disease. Finally, we note that in all simulated
scenarios, power of methods for total-association in families is on par with the Trend test,
indicating these methods provide good power while maintaining proper control of type I
error rates in the presence of familial correlation.

Analysis of dichotomous traits in combined samples
As we observed for quantitative trait analysis, pooled analysis of all individuals performs
very similarly to meta-analysis in terms of type I error (Figures 2D and 2E) and power
(Figure 2F). For a rare disease of prevalence 5% at P = 10−4, pooled analysis using MQLS
(power of 16.3%) and GEE (power of 14.8%) was only marginally outperformed by meta-
analysis to combine a Trend test on singletons with MQLS (power of 16.4%) or GEE (power
of 15.0%) on family-based samples. For the higher-powered case of a common disease with
prevalence 50%, the observed difference in power seen for pooled versus meta-analysis
increased somewhat: pooled analysis by MQLS has 86.5% power compared to 87.5% power
by meta-analysis to combine population- and family-based samples. Across the full range of
disease prevalence studied, MQLS (either using pooled analysis or meta-analysis) achieves
power nearly equivalent to a Trend test on all samples pooled, and slightly higher than GEE.
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Since GEE and MQLS offer clearer control of type I error rates, we recommend either of
these two methods over a Trend test whenever pedigrees are included in the sample.

Extension of simulations to infrequent variants
Current GWAS panels are designed primarily to identify common variants that contribute to
genetic variation in phenotypes, but recent GWAS result have found low frequency variants
may contribute to human disease (Lachance 2010). The recent advent of next-generation
sequencing technologies have also opened opportunities for identification of rare variants
(Cirulli and Goldstein 2010). To assess whether methods in our simulation studies could
also be applied to analysis of infrequent variants, we extended our simulations to MAF 0.05
and 0.01, keeping all other simulation parameters the same.

For quantitative trait analysis, results for MAF 0.05 and 0.01 (Supplementary Figures 1 and
2) were remarkably similar to those for MAF 0.3 (Figure 1). Notably, observed power was
within the same range across all allele frequencies under investigation. However, for MAF
0.05, we did see modest inflation of type I error rates for full analysis of singletons and
families, at significance level P = 0.001. Overall, our results suggest methods of quantitative
trait analysis appropriate for common variants can be applied for the analysis of infrequent
variants.

For binary trait analysis, the observed type I error rates in family analysis at MAF 0.05 and
0.01 indicate the within-family analysis methods, GDT and DFAM, are conservative, while
the total-association methods, MQLS and GEE, exhibit inflation of type I error rates
(Supplementary Figures 3 and 4). For full analysis of families and unrelated individuals,
type I error rates are controlled appropriately for all methods under consideration at MAF
0.05, but type I error rates are seen to be inflated at MAF 0.01, particularly for the lower
disease prevalences. The power of all methods of binary trait analysis under consideration is
notably reduced for infrequent variants at MAF 0.05 or 0.01, especially in the analysis of
diseases at lower prevalences of 0.05 or 0.1. Results for binary trait analysis in the case of
infrequent variants of MAF 0.05 or 0.01 indicate rarer variants approaching the level of
MAF 0.01 will suffer from inflation of type I error rates, as well as reduced power,
particularly in the case of a rare disease. For these reasons, we caution against application of
methods for common variants toward analysis of rare and infrequent variants. In real data
analysis, it will be appropriate to filter results on some minimum MAF; the appropriate
cutoff may depend on the effective sample size as well as the disease prevalence.

Application
To demonstrate a practical application of the presented methods, we performed genome-
wide association analysis of two phenotypes (one continuous, one binary) for pooled family-
and population-based African American samples from the Multi-Ethnic Study of
Atherosclerosis. We processed 2,590 self-reported African-American subjects recruited
through MESA and MESAFS. We removed 8 participants with principal components of
ancestry more than 10 SD from the mean along the top 6 principal components of ancestry.
We also removed 29 participants with missing HDL-C values. We performed pooled
analyses of the remaining sample of 2,553 individuals, consisting of 1,464 singletons and
317 pedigrees (pedigrees ranged in size from 2–8 individuals). For samples included in
GWAS analysis, 44% of individuals were male, the median age was 60 years (IQR 53–68),
and the median value of HDL-C was 50 mg/dl (IQR 42–61). After performing genotype QC,
applying filters on call rate > 0.95 and MAF > 0.01, there were 844,771 autosomal SNPs
available for analysis.
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Table 3 shows results from GWAS analysis of log-transformed HDL-C for all six SNPs with
P ≤ 5×10−6 for LME (Chen and Yang 2010), fastAssoc (Chen and Abecasis 2007) or
robustAssoc (Chen et al. 2009) quantitative trait analyses, with results from linear regression
shown for comparison. In the GWAS, both LME and fastAssoc had appropriate control over
false positives, with genomic control (GC) of 1.02 and 1.0, respectively. The three most
associated SNPs reaching the suggestive cutoff P ≤ 5×10−6 using robustAssoc were
identified at a similar level of statistical significance using fastAssoc. These results validate
the recommendation of using fastAssoc as a computationally efficient first-pass analysis,
with follow-up using a more computationally intensive approach such as robustAssoc (Chen
and Abecasis 2007; Chen et al. 2009). In comparison, analysis using linear regression that
does not account for familial correlation had relatively poor control over false positives,
with GC=1.11, and inflated statistical significance compared to LME, fastAssoc and
robustAssoc. These results highlight the need for linear mixed-effects or variance-
component models to take into account familial correlation.

Table 3 shows results for sixteen SNPs with P ≤ 5×10−6 by GEE or MQLS in the GWAS
binary trait analysis of a dichotomous trait of prevalence 27.5%, with individuals split into
two groups according to whether their values of HDL-C were considered protective against
heart disease (≥60 mg/dL) (American Heart Association 2010). The most significant gene
and SNP (CETP, rs247617) was identical in the quantitative and dichotomous trait analyses,
but was less significant in the dichotomous, reflecting the expected loss of power from
dichotomizing the quantitative trait. It is somewhat unexpected to see 16 SNPs reaching the
suggestive cutoff of P ≤ 5×10−6 in binary trait analysis, compared to only 6 for the
quantitative trait analysis. The fact that there is no overlap between continuous and
dichotomized trait analysis SNPs other than the CETP SNP probably reflects the fact that
dichotomizing the trait at 27.5% prevalence with prevalence-based case-control sampling
will relatively increase the power for detection of loci with risk models that are non-additive
across the 3 genotypes compared to the continuous outcome. Since the SNPs do not formally
meet genome-wide significance (5×10−8), these may be chance findings without biological
significance.

Relative to logistic regression with GC=1.07, GEE demonstrates improved GC=1.02,
attributed to the more robust model of familial correlation. Although MQLS achieves optimal
GC=1.0, GEE maintains an advantage in the ability to incorporate covariate adjustments in
the analysis of dichotomized HDL-C, a phenotype that demonstrated statistically significant
variation with age (P = 3.3 × 10−4) and gender (P < 2 × 10−16).

Among the most associated SNPs identified by either quantitative or binary trait analysis,
SNP rs247617 near the CETP gene represents the strongest association with HDL-C (by
fastAssoc, P = 9.0×10−15; by GEE, P = 3.8 × 10−10). This is the only SNP that appears as a
significant association from both quantitative trait analysis (fastAssoc) and binary trait
analysis (GEE). In confirmation, the CETP gene has been reported previously as a QTL for
HDL-C in a large meta-analysis of lipid traits, with one of the largest effect sizes of any
QTL reported for HDL-C in that study (Teslovich et al. 2010). Other SNPs reported among
those the most associated in MESA are shown in Tables 2 and 3, and do not achieve
genome-wide levels of significance (P = 5×10−8). These SNPs, however, may be taken as
suggestive findings for future follow-up studies.

Discussion
We performed simulation studies to examine performance of existing methods for genome-
wide association analysis for application to cohort GWAS. Although other simulation
studies have reported performance of family-based association tests in a variety of scenarios
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(Chen et al. 2009; Nicodemus et al. 2007), ours is the first comprehensive investigation of
methods for cohort GWAS known to us.

In analysis of family data, we found methods that examined total-association substantially
outperformed methods that examined within-family association. In analysis of families
combined with population samples, analysis of pooled samples performed on par with meta-
analysis, in which family and unrelated samples were analyzed separately using the best
method for each respective subset. Further, analysis of pooled samples using statistical
modeling approaches that account for correlated outcomes (LME, fastAssoc or robustAssoc
for quantitative traits, GEE or MQLS for binary traits) provided power on par with linear
regression or a Trend test applied to the same data, indicating we can achieve good power
while maintaining proper control of type I error rates in analysis of correlated data. A bonus
of pooled analysis over meta-analysis is that we can complete analysis of all samples in one
step, rather than going through the process of performing separate analyses on subsets of the
data prior to combining those results.

Our results highlight the importance of including total-association for analysis of cohort
data, clearly distinguishing cohort GWAS from investigations involving ascertained
pedigrees. In making the choice to focus analysis on total-association, we forfeit the implicit
control over population stratification and confounding factors provided by within-family
analysis methods. Because confounding factors will undoubtedly present themselves in
cohort studies, it will be the investigator’s responsibility to account for these factors
appropriately, either by performing stratified analysis or by including covariate adjustments
(Price et al. 2006).

Our simulation studies provide a good overview of method performance using realistic
pedigree structures derived from a real cohort GWAS (MESA SHARe). In interpreting our
simulation results, it is important to keep in mind the pedigree structures under
consideration. Of the MESA families, 85% lack both parents, an expected finding for an
aging adult or elderly population where recruitment of parents of index cases may not be
possible. Thus our simulated pedigrees represent primarily sibships bearing a relatively
simple correlation structure, in which the GEE approach of treating each family as a cluster
works well, and there is little need to differentiate between different types of familial
relationships. For cohort GWAS that include multi-generational pedigrees and more
complex familial relationships, we expect methods such as fastAssoc, robustAssoc or MQLS,
that distinguish familial relationships (e.g., parent-offspring, first cousins, or spouse pairs) in
the modeled covariance, will perform better than methods that treat all familial relationships
uniformly.

The simulation strategy we used here presents a general strategy that can be applied for
specific study designs and phenotypic distributions of interest. The time invested in study-
specific simulations which condition on pedigree structure may be particularly worthwhile
for GWAS performed for well-phenotyped cohorts, in which simulation results can be used
to inform analysis of hundreds to thousands of phenotypes under consideration. In
performing simulation studies to evaluate performance of methods for genome-wide
association studies, there is a practical limitation on the number of simulation replicates
performed. Given a reasonable number of simulation replicates (at least 10,000), it is
feasible to evaluate type I error rates at a nominal level of statistical significance (P = 0.01).
However, in order to assess type I error rates at the level required for genome-wide
significance (e.g., P < 10−8), we would need considerably more simulation replicates.
Nonetheless, simulation studies are still a practical way of comparing the relative advantages
and disadvantages of available tools and methods of analysis. Taken in the context of
available theory grounding those methods, simulation results will provide a valuable
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resource in developing analysis pipelines for existing and emerging GWAS of well-
phenotyped cohorts.

One widely used approach that we did not consider explicitly in the present study is the
simple genomic control (GC) correction, performed by ignoring family-structure and
performing of post-hoc adjustment on the observed test statistic (Bourgain et al. 2003;
Rakovski and Stram 2009; Yang et al. 2007). Although we have seen this approach applied
as a correction for family structure in some published studies, direct modeling of known
familial correlation structure provides a clear advantage in terms of statistical power. This
phenomenon is documented in our own study: for both binary and quantitative traits, we
obtain power on par with standard methods for population-based samples (Trend test, or
Wald test from linear regression) through proper modeling of familial correlation structure.
Since methods that account for familial correlation maintain proper control of type I error
rates, while the Trend test and linear regression have inflated type I error rates in the
presence of familial correlation, it is clear that post-hoc correction of test statistics that do
not account for familial correlation will ultimately yield reduced power compared to proper
modeling of phenotypic correlation seen in families.

Recently, new approaches such as ROADTRIPS (Thornton and McPeek 2010) and
EMMAX (Kang et al. 2010) have been proposed to account for family- and population-
structure jointly using genome-wide SNP data to estimate the appropriate covariance matrix.
While these approaches are practical for cases of complex and unknown family structure,
they are not appropriate for analysis of samples in which family structure is clear and well-
documented. Further, it has been demonstrated that methods such as EMMAX (Kang et al.
2010) that incorporate random effects without requiring explicit specification of family- or
population-structure perform poorly in the presence of strong population structure (Price et
al. 2010). Since the family structure in MESAFS is well-documented, thoroughly checked
and validated (Manichaikul et al. 2010), and the MESA samples reflect strong population
structure, particularly in African-American and Hispanic samples, we recommend explicit
modeling of population structure, using approaches such as principal components of
ancestry (Price et al. 2006) included as fixed-effect covariates. Given the importance of
population admixture for the analysis of MESA data, it will also be of interest to build on
existing simulation studies (Zhu et al. 2008) and extend our current simulation studies to
incorporate effects of population admixture.

An important consideration in generalizing our simulation results to practical data analysis
methods is the incorporation of covariates. Although our simulations have not treated
covariates directly, practical application of the methods presented here will undoubtedly
require covariate adjustments. Even in treatment of very basic models, inclusion of
covariates will provide the basis for population stratification adjustment, e.g., principal
components (Price et al. 2006), and basic covariates such as age, sex and site (a standard
adjustment in multi-center studies) will be included routinely in analysis. Further, covariate
adjustment opens opportunities for assessing gene-environment interactions systematically.
From this point of view, “real” data analysis requires software that can include covariates.
Taking this requirement into account, the variance-component models (Chen and Abecasis
2007) for quantitative traits, and generalized estimating equations (Chen and Yang 2010;
Zeger and Liang 1986) for dichotomous traits provide the most practical solution for
application to real data. Because these linear-modeling based approaches provide effect-size
estimates with associated standard errors accounting for familial correlation, their results can
also be incorporated directly into meta-analysis when combining multiple studies through
joint efforts of genetic consortia (Psaty et al. 2009).
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In studies of admixed populations, further considerations will be required to properly
account for population structure. For example, in the MESA African-American and Hispanic
samples at hand, application of proper methods to account for admixture will be crucial to
ensure that reported genetic associations are not an artifact of undetected population
structure. Although these considerations have not been a primary focus of the current
investigation, we recognize the particular importance of accounting for population structure
in GWAS of MESA and other admixed samples. Development of principles for genome-
wide association analysis of MESA samples to account for both family and population
structure will be the focus of future work.

For practical purposes, efficiently implemented software is crucial, especially as the number
of phenotypes under consideration becomes large, for example, for GWAS of gene
expression phenotypes. Currently, variance-component regression models (fastAssoc and
robustAssoc) are efficiently implemented in C/C++ for quantitative trait analysis of family
data using the aforementioned software GDT (Chen et al. 2009), with similar efficiency
achieved using the C/C++ packages MERLIN (Abecasis et al. 2002) and ProbABEL
(Aulchenko et al. 2010). The linear mixed effects models (LME) are implemented in the R/
GWAF package is relatively slower than the C/C++ implementations of comparable
variance-component methods (requiring about 20–40 times the computation time, according
to our comparison in Supplementary Table 1). However, the increased computing time
required to perform LME using R/GWAF can be offset somewhat by running genetic
analysis in parallel (Chen and Yang 2010). For binary trait analysis, the R/GWAF (Chen and
Yang 2010) package is currently the only software implementation of generalized estimating
equations tailors to genome-wide association analysis known to us. Although this package
provides a user-friendly interface, and acceptable computing speed, we anticipate that a C/C
++ implementation capable of performing similar analysis of binary traits with family data
could provide an order-of-magnitude improvement in computational efficiency.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of type I error rate and power for quantitative trait analysis, when the
minor allele frequency (MAF) is 0.3
(A) Type I error rate at significance level 0.01, (B) type I error rate at significance level
0.001, and (C) power in quantitative trait analysis of 687 multiplex families. (D) Type I
error rate at significance level 0.01, (E) type I error rate at significance level 0.001, and (F)
power in quantitative trait analysis 687 multiplex families and 5,922 singletons, with results
for analysis of 5,922 singletons alone shown for reference. Uncertainty in point estimates of
type I error rates is depicted through 95% confidence intervals constructed by inverting an
exact binomial test (Clopper and Pearson 1934).
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Figure 2. Comparison of type I error rate and power for binary trait analysis, when the minor
allele frequency (MAF) is 0.3
(A) Type I error rate at significance level 0.01, (B) type I error rate at significance level
0.001, and (C) power in binary trait analysis of 687 multiplex families. (D) Type I error rate
at significance level 0.01, (E) type I error rate at significance level 0.001, and (F) power in
binary trait analysis 687 multiplex families and 5,922 singletons, with results for analysis of
5,922 singletons alone shown for reference. Uncertainty in point estimates of type I error
rates is depicted through 95% confidence intervals constructed by inverting an exact
binomial test (Clopper and Pearson 1934).
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