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Abstract

Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-
activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid
benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as
thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects
caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2
diabetes. In this study, by means of the powerful ‘‘core hopping’’ and ‘‘glide docking’’ techniques, a novel class of PPAR dual
agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-
gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel
agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had
more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME
(absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug
candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for
discovering more effective dual agonists for treating type-2 diabetes. Since the ‘‘core hopping’’ technique allows for rapidly
screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core
properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures
can also be utilized to find novel and more effective drugs for treating other illnesses.
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Introduction

Diabetes mellitus is a group of metabolic diseases that has been

classified as a disease of glucose overproduction by tissues without

enough insulin production, or a disease resulting from cells not

responding to the insulin in human body [1]. Type-2 diabetes is

the most common type among all the diabetes mellitus forms. The

risk of developing type-2 diabetes (T2D) increases with age,

obesity, cardiovascular disease (hypertension, dyslipidaemia), lack

of physical activity, and family history of diabetes. Increasing

dramatically in the US and worldwide, type-2 diabetes has

reached epidemic scale. There are nearly 50 million individuals

(US) and 314 million individuals (worldwide) with the metabolic

syndrome [2]. People suffering from overweight or obesity are of

huge risk for developing T2D.

Peroxisome Proliferator-Activated Receptor (PPAR) has drawn

increased attention as a drug discovery target by regulating glucose

and lipid metabolism [3]. PPAR, and its subtypes PPARa and

PPARc, belong to the superfamily of nuclear receptors that

function as transcription factors activated by several ligands.

PPARs played a vitally important role in treating obesity,

atherogenic dyslipidemia, hypertension, and insulin resistance as

main therapeutic targets [4]. The primary function of PPARa is to

act as regulator responding to transport and degradation of free

fatty acids as well as reverse cholesterol transport by peroxisomal

and beta-oxidation pathways [5]. A class of lipid-lowering drugs,

such as fenofibrate and gemfibrozil, specially activate PPARa
[6,7,8]. PPARc played a significant role in transcriptionally

regulating lots of physiological pathways, including adipocyte

differentiation and glucose homeostasis [9]. Thiazolidinediones

(TZDs) are a class of the antidiabetic drugs, which act by

activating the special PPARc [10]. If used alone, although each of

the antidiabetic drugs could enhance the insulin sensitivity and

hence lower glucose or fatty acid levels in type-2 diabetic patients

[9], some side effects would be caused, such as weight gain, fluid

accumulation, and pulmonary edema [11].

Recently, new dual agonists have received considerable

attention for developing powerful drugs against diabetes. The
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strategy of dual agonists was aimed to treat both insulin resistance

and dyslipidemia [12]. A critical challenge for developing dual

agonists is how to identify the receptor subtype selectivity ratio

[13].

Many studies have indicated that computational approaches,

such as structural bioinformatics [14,15], molecular docking

[16,17], pharmacophore modelling [18], QSAR techniques

[19,20,21,22,23,24], as well as a series of user-friendly web-server

predictors developed recently, such as GPCR-2L [25] for

identifying G protein-coupled receptors and their types, En-

zClassPred [26] for predicting enzyme class, iLoc-Euk [27] and

iLoc-Hum [28] for predicting subcellular localization of eukaryotic

and human proteins, NR-2L [29] and iNR-PhysChem [30] for

identifying nuclear receptors and their subfamilies, and HIVcleave

[31] for predicting HIV protease cleavage sites in proteins [32,33],

can timely provide very useful information and insights for drug

development. The software of ‘‘Core Hopping’’ [34] is another

very powerful and cutting-edge computational technique that is

particularly useful for de novel drug design [35].

Encouraged by the aforementioned researches in successfully

utilizing various computational approaches for drug development,

the present study was initiated in an attempt to screen the

fragment database for finding new PPAR dual agonists for treating

type-2 diabetes. To realize this, the techniques of ‘‘core hopping’’

with glide docking [34,36] as well as molecular dynamic

simulation were utilized to analyze the binding interactions

between the agonist and PPARs in hoping that the findings thus

obtained may provide useful insights for developing new and

powerful agonists against diabetes mellitus.

Materials and Methods

The L-tyrosine analogue GW409544 was obtained by modify-

ing the structure of farglitazar, a dual agonist for both PPARa and

PPARc [37]. The main difference between GW409544 and

farglitazar is that the former contains a vinylogous amide as the L-

tyrosine N-substituent [37]. That is why we chose GW409544 as a

starting template structure for designing the new PPAR dual

agonists.

The representative complex crystal structures of PPARa (PDB

ID 1k7l) and PPARc (PDB ID 1k74) with the same ligand

GW409544 [37] were download from the PDB Bank [38], and

were to be used for the molecular modelling studies.

All the calculations were carried out on Dell PrecisionTM T5500

computer with Schrodinger software package [34,36] and

Desmond 2.4 [39].

1. Preparation of Receptor Structures and Databases
The proteins with PDB codes 1k71 and 1k74 were chosen for

modeling. In addition to the available knowledge of their 3D

(dimensional) structures, the reasons of selecting the two proteins

as receptors are as follows. (1) The two proteins contain the same

ligand GW409544 as PPARa and PPARc do, and their binding

affinities with the ligand are also quite similar; however, the former

selectivity is about 10-fold weaker than the latter [37]. (2) The

source organism of both PPARa and PPARc was from human.

In the process of preparing receptors for modelling, the protein

preparation facility [40] was used that included the operations of

assigning bond orders, adding hydrogen, treating metals, treating

disulfides, deleting waters and alleviating potential steric clashes,

adjusting bond order, building missing heavy atom and formal

charges, as well as minimizing energy with the OPLS2005 force

field [41] and refining the protein by imposing the 0.3 Å RMSD

limit as the constraint.

The protein binding-site was identified by the SiteMap tool

embedded in Schrodinger Suite 2009 (www.schrodinger.com) as

described in [42,43,44]. The binding-site encompassed the ligand

GW409544, which was observed in the crystal structures of both

PPARa (1k71) and PPARc (1k74) as a ligand.

The information of the binding pocket of a receptor for its

ligand is very important for drug design, particularly for

conducting mutagenesis studies [14]. In the literatures, the binding

pocket of a protein receptor to a ligand is usually defined by those

residues that have at least one heavy atom (i.e., an atom other than

hydrogen) with a distance #5 Å from a heavy atom of the ligand.

Such a criterion was originally used to define the binding pocket of

ATP in the Cdk5-Nck5a* complex [45] that has later proved quite

useful in identifying functional domains and stimulating the

relevant truncation experiments [46]. The similar approach has

also been used to define the binding pockets of many other

receptor-ligand interactions important for drug design

[15,17,47,48]. In this study, we also used the same criterion [45]

to define the binding pockets of proteins 1k7l and 1k74 for the

ligand GW409544. A close-up view for the protein-ligand

interaction at the binding pocket thus defined is shown in Fig. 1,

where panel A is for the interaction between PPARa (1k71) and

GW409544, while panel B for the interaction between PPARc
(1k74) and GW409544.

Because the natural ligands of PPARs are fatty acids, the

binding site of PPARs is almost hydrophobic. Several hydrophobic

interactions with three arms of the Y-shaped ligand binding to the

site are taken as the key point for designing the new PPARs agonist

[49]. The PPAR binding site is composed of three arms, namely

Arm I, Arm II, and Arm III, as explicitly marked in Fig. 1. The

first arm has mainly polar character including the AF2 (transcrip-

tional activation function 2) helix indicated by red ribbon. The

hydrophilic head group of the PPAR ligands forms a network of

hydrogen bonds with AF2 of Arm-I; while the hydrophobic tail of

PPAR agonist is either interacts with Arm II or Arm III. The

network hydrogen bonds forms an important conformation for

AF2-helix to generate a charge clamp, thus reducing the mobility

of AF2 via binding a ligand and hence make it able to regulate the

gene expression [4]. The drug-like database and the fragment

database derived from ZINC [50] were used for virtual screening

and core hopping searching, respectively.

2. Molecular Docking with Core Hopping Method
Many useful insights for drug design could be gained via

molecular docking studies (see, e.g., [14,17,51,52]). To acquire

even more useful information for drug design, a new docking

algorithm called ‘‘Core Hopping’’ [36] was adopted in this study

that is featured by having the functions to perform both the

fragment-based replacing and molecular docking.

Core Hopping [36] is a very powerful and cutting-edge

technique for de novel drug design because it can significantly

improve the binding affinity of the receptor with its ligands, e.g.,

GW409544 (Fig. 2) in the current study. The binding conforma-

tion thus obtained will be taken as an initial structure for further

optimization by searching the fragment database to find the

optimal cores that are attached to other parts of the template.

During the process of core hopping, the 1st step is to define the

possible points at which the cores are attached. It is performed in

the ‘‘Define Combinations’’ step from the Combinatorial Screen-

ing panel in Schrodinger2009 (www.schrodinger.com). The 2nd

step is to define the ‘‘receptor grid file’’, which was done in the

‘‘Receptor Preparation’’ panel. The 3rd step is the cores

preparation that was operated with the ‘‘Protocore Preparation’’

module to find the cores attaching to the scaffold using the

Novel Dual Agonists Design for PPARa/c
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fragment database derived from ZINC [50]. The 4th step is to

align and dock the entire molecular structure built up by the core

and scaffold. The cores are sorted and filtered by goodness of

alignment and then redocked into the receptor after attaching the

scaffold, followed by using the docking scores to sort the final

molecules.

As the products of the core hopping operation, a total of 500

chemical compounds were prepared with the LigPre module [53],

which consists of the procedures of generating possible states by

ionization at target pH 7.062.0, desalting, retaining chiralities

from 3D structure and geometry minimization with the

OPLS2005 force field [41]. When the above steps were

accomplished, all investigated compounds were docked into the

receptor pocket through the rigid protein docking model with the

Stand-Precision (SP) scoring function [54,55] to estimate the

binding affinities.

3. Molecular Dynamics
Many marvelous biological functions in proteins and DNA as

well as their profound dynamic mechanisms, such as switch

between active and inactive states [56,57], cooperative effects [58],

allosteric transition [59,60], intercalation of drugs into DNA [61],

and assembly of microtubules [62], can be revealed by studying

their internal motions [63]. Likewise, to really understand the

interaction mechanism of a receptor with its ligand, investigations

should be aimed not only at their static structures but also at the

dynamic process obtained by simulating their internal motions.

Here, the ‘‘Desmond 2.4 Package’’ [39] was adopted to study

the internal motions of the receptor-ligand system. According to

the software, the OPLS 2005 force fields [64,65] was used to build

aqueous biological systems, and the TIP3P model [66] was used to

simulate water molecules. The orthorhombic periodic boundary

conditions were set up to specify the shape and size of the

repeating unit. In order to get an electrically neutral system, the

minimum number of sodium and chloride ions needed to balance

the system charge was placed randomly in the solvated system, and

0.15 mol/L sodium and chloride were then added to mimic the

osmotic effect of water. Molecular dynamics simulations were

carried out with the periodic boundary conditions in the NPT

ensemble. The temperature and pressure were kept at 300 K and

1 atmospheric pressure using Nose-Hoover temperature coupling

and isotropic scaling [67]. After all restrains were removed via the

3ns (nanosecond or 1029 of a second) system minimization and

relaxation, the operation was followed by running the 10 ns NPT

production simulation and saving the configurations thus obtained

in 2ps (picosecond or 10212 of a second) intervals. All the

molecular dynamics simulations were performed with a time step

of 2fs (femtosecond or 10215 of a second).

4. ADME Prediction
The QikProp [68,69] is a program for predicting the ADME

(absorption, distribution, metabolism, and excretion) properties of

the compounds. With the QikProp software, a total of 44

properties of compounds can be predicted, including the principal

descriptors and physiochemical properties.

All the compounds investigated need not the treatment for

neutralization before using QikProp because it will be automat-

ically done in QikProp. The normal mode was applied in the

program. The property analyses for the partition coefficient (QP

logP o/w), van der Waals surface area of polar nitrogen and

oxygen atoms (PSA), predicted aqueous solubility (QP logSb ), and

apparent MDCK permeability (QPP MDCKc) [70], were

considered in the QikPro to evaluate the acceptability of the

compounds.

Results and Discussion

1. Design of PPAR Dual Agonist and Modeling of PPAR
Agonist Complex

The process of core hopping and the final agonists’ structures

thus selected are illustrated in Fig. 2, from which we can see the

following. The structure of GW409544, which is conceived as an

agonist model to develop novel therapeutic agents for treating

metabolic disorder, may be divided into three parts, Core A, Core

B, and Core C, as marked by dash lines. Considering the great

importance of the acidic head in Core A for activating PPARs

receptors, let us retain the Core A part during the core hopping

calculation as described below.

The 1st core hopping operation was aimed at the Core C part

(see red part of Fig. 2), generating five cores, Core C1, Core C2,

Core C3, Core C4, and Core C5, respectively, to replace Core C.

The 2nd core hopping operation was aimed at the Core B part (see

Figure 1. Illustration to show the conformation obtained by docking GW409544 and Comp#1, respectively, to (A) PPARa (1k7l)
and (B) PPARc (1k74). The binding pocket is defined by those residues that have at least one heavy atom with a distance of 5 Å from the ligand
[45]. The ligand GW409544 (in grey color) was extracted from the crystal structure while the ligand Comp#1 (rendered by three colors: grey for Core
A; red for Core B; and blue for Core C) was generated by the ‘‘core-hopping’’ method. The hydrophobic surface of the receptor is colored in green.
The blue dotted lines indicate the H-bond interactions of the receptor with its ligand. The red helix is a part of AF-2 function domain. See the text for
further explanation.
doi:10.1371/journal.pone.0038546.g001
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blue part of Fig. 2), also respectively generating five cores, Core

B1, Core B2, Core B3, Core B4, and Core B5 to replace Core B.

Consequently, we have a total of 1|5|5~25 different

combinations for the GW409544 derivatives thus generated.

Subsequently, each of the 25 derivative compounds was docked

into the two receptors PPARa (1k71) and PPARc (1k74),

respectively. Listed in Table 1 are the 25 derivative compounds

ranked roughly according to their docking scores to the receptors

Figure 2. Illustration to show how to generate the 25 derivative compounds from GW409544. (A) Structure of GW409544 and its three
Cores: Core A (black), Core B (red), and Core C (blue). (B) Five compounds derived from GW409544 by changing Core C to C1, C2, C3, C4 and C5
respectively but fixing Core A and Core B at Core B1. Panels (C), (D), (E), and (F) each show another five compounds generated by following the
similar procedure but fixing Core B at B2, B3, B4, and B5, respectively. See the text for further explanation.
doi:10.1371/journal.pone.0038546.g002
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PPARa and PPARc, respectively. The top ten compounds

highlighted with boldface type in Table 1 are those derivatives

that are stronger than the original GW409544 in binding affinity

with the two receptors. Of the top ten derivatives, the Comp#1,

i.e., ‘‘Core A-Core B1-Core C1’’, has the strongest binding affinity

with both PPARa (1k71) and PPARc (1k74), and hence it was

singled out for further investigation.

Shown in Fig. 1 is the docked conformation of Comp#1 when

aligned with GW409544 extracted from (A) the crystal complex in

PPARa (1k7l) and (B) the crystal complex in PPARc (1k74),

respectively.

As described in [37,71], the conversed H-bonding network

formed by the polar acidic head of Core A in both GW409544 and

Comp#1 to the four key residues of PPARa (or PPARc), such as

Ser280 (or Ser289), Tyr314 (or His323), Tyr464 (or Tyr473) and

His440 (or His449), were observed in our docking study. This H-

bonding network played the role in stabilizing the conformation of

the AF2-helix in arm I (red helix in Fig. 1), which is vitally

important for receptor-binding and activation

[37,72,73,74,75,76,77].

The hydrophobic tail of both Core A and Core C of agonists are

buried well in the hydrophobic arm I and arm II that are formed

by hydrophobic residues as shown by the green surface in Fig. 1.

Compared with GW409544 (shown with grey color in Fig. 1), the

compound of Comp#1 (purple color in Fig. 1) has more bulky

molecular volume owing to the large hydrophobic Core C1, which

is more fitted to the hydrophobic arm II, resulting in the much

better binding affinity than GW409544 (cf. Table 1).

2. Molecular Dynamics Trajectory Analysis
Molecular dynamics can provide useful information for

characterizing the internal motions of biomacromolecules with

time. For a comparison study, the 10 ns molecular dynamics

simulations were performed, respectively, for the crystal structures

Table 1. The 25 compounds ranked roughly according to the strength of their docking scores.

Rank Compound
Combination of
coresa Docking scores (Kcal/mol) ADME properties predicted

PPARa (1k71) PPARc (1k74) PSAb logPo/wc logSd PMDCKe

GW409544 A-B-C 214.41 215.16 102.39 5.78 26.80 28.08

1 Comp#1 A-B1-C1 216.10 216.19 159.92 5.85 26.53 109.76

2 Comp#24 A-B5-C4 215.87 216.18 168.65 4.84 26.50 98.65

3 Comp#3 A-B1-C3 214.89 216.08 160.40 4.75 26.59 108.32

4 Comp#14 A-B3-C4 215.10 215.98 190.08 3.55 26.28 101.99

5 Comp#2 A-B1-C2 214.97 215.92 195.19 4.10 26.81 101.82

6 Comp#13 A-B3-C3 214.68 215.86 164.26 4.34 26.16 110.42

7 Comp#16 A-B4-C1 214.26 215.71 166.47 5.03 26.92 106.95

8 Comp#17 A-B4-C2 214.44 215.32 193.75 4.43 26.43 103.80

9 Comp#15 A-B3-C5 214.42 215.29 190.02 3.52 26.57 102.48

10 Comp#12 A-B3-C2 215.15 215.23 168.27 4.28 26.81 105.98

11 Comp#19 A-B4-C4 214.21 215.25 180.89 4.64 26.70 109.39

12 Comp#4 A-B1-C4 214.98 215.15 185.89 4.23 27.55 102.25

13 Comp#11 A-B3-C1 216.15 215.11 168.04 5.12 27.74 108.03

14 Comp#25 A-B5-C5 215.24 215.09 204.93 3.46 26.59 101.16

15 Comp#23 A-B5-C3 215.58 215.06 176.72 4.89 27.70 104.35

16 Comp#5 A-B1-C5 214.77 215.00 197.47 4.05 27.30 101.13

17 Comp#21 A-B5-C1 214.78 214.98 152.24 6.45 29.10 106.45

18 Comp#18 A-B4-C3 213.72 214.91 186.33 4.43 27.08 104.19

19 Comp#20 A-B4-C5 214.42 214.75 197.70 4.26 27.20 101.65

20 Comp#9 A-B2-C4 214.03 214.35 166.94 5.15 26.52 114.53

21 Comp#22 A-B5-C2 215.10 214.26 150.45 5.55 28.30 107.48

22 Comp#7 A-B2-C2 214.16 213.62 142.49 5.92 27.32 109.50

23 Comp#6 A-B2-C1 212.00 29.14 142.06 6.94 29.40 120.29

24 Comp#10 A-B2-C5 211.10 28.00 174.53 4.59 27.20 104.59

25 Comp#8 A-B2-C3 213.07 27.64 156.10 5.18 26.25 124.85

aSee Fig. 2 for the structure of cores.
bThe van der Waals surface area of polar nitrogen and oxygen atoms (7.0 to 200.0).
cThe predicted octanol/water partition coefficient (22.0 to 6.5).
dThe predicted aqueous solubility, where S (mol dm–3) is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid (26.5 to
0.5).
eThe apparent MDCK permeability (nm/s); MDCK cells are considered to be a good mimic for the bloodbrain barrier. QikProp predictions are for non-active transport
(,25 poor; .500 great).
Listed are also their corresponding physiochemical descriptors calculated by QP (QikProp [69]) simulations [68].
doi:10.1371/journal.pone.0038546.t001
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of PPARa (1k7l), PPARc (1k74), as well as their complexes with

GW409544 and Comp#1, i.e., PPARa-GW409544, PPARc-

GW409544, PPARa-Comp#1, and PPARc-Comp#1. As we can

see from Fig. 3, all the characters concerned reached the

simulation equilibrium within the 5ns (see panels A and C).

Meanwhile, the corresponding root mean square deviation

(RMSD) value curves of the protein backbone for PPARa,

PPARc, PPARa-GW409544, PPARc-GW409544, PPARa-

Comp#1, and PPARc-Comp#1 were also computed, respective-

ly. It is interesting to see that the RMSD curves for PPARa-

Comp#1 and PPARc-Comp#1 are remarkably more stable than

those of PPARa-GW409544 and PPARc-GW409544, particularly

for the case of PPARa (1k7l) system, where only a fluctuation of

around 0.3 nm was observed when the complex system reached

the plateau.

The detailed fluctuations of the aforementioned six different

structures, as well as the root mean square fluctuations (RMSF) of

Figure 3. Illustration to show the outcomes of molecular dynamics simulations for Comp#1 ranked number 1 in Table 1. (A) The
RMSD (root mean square deviation) of all backbone atoms for the receptor PPARa. (B) The RMSF (root mean square fluctuation) of the side-chain
atoms for the receptor PPARa. (C) The RMSD (root mean square deviation) of all backbone atoms for the receptor PPARc. (D) The RMSF (root mean
square fluctuation) of the side-chain atoms for the receptor PPARc. The green line indicates the outcome for the system of the receptor alone without
any ligand, the red line for that of the receptor with the ligand GW409544, and the black line for that of the receptor with the ligand Comp#1. The
curves involved with the AF2 helix region are framed with grey line. See the text for further explanation.
doi:10.1371/journal.pone.0038546.g003
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their side-chain atoms, were also computed within 10 ns molecular

dynamics simulations (see panels B and D of Fig. 3).

It is instructive to point out that the RMSF curve of PPARa-

Comp#1 or PPARc-Comp#1 is highly similar to that of PPARa-

GW409544 or PPARc-GW409544, respectively. This is especially

remarkable in the binding site of AF2 helix region with the

residues 459–465 for PPARa-Comp#1 and residues 469–477 for

PPARc-Comp#1 (see the grey frames in Fig. 3B and D),

indicating that the new designed compound, Comp#1, is very

likely to have the same function for activating the AF2 helix as

done by GW409544.

As a negative control, the similar molecular dynamics simula-

tion was also performed for Comp#8 (A-B2-C3), which is ranked

number 25 according to the strength of binding affinity with

PPARa and PPARc (cf. Table 1). The corresponding simulation

results thus obtained are shown in the Fig. 4, from which we can

see that the fluctuating magnitudes of molecular dynamics for

PPARa-Comp#8 and PPARc-Comp#8, including the RMSD

Figure 4. Illustration to show the outcomes of molecular dynamics simulations for Comp#8 ranked number 25 in Table 1. (A) The
RMSD (root mean square deviation) of all backbone atoms for the receptor PPARa. (B) The RMSF (root mean square fluctuation) of the side-chain
atoms for the receptor PPARa. (C) The RMSD (root mean square deviation) of all backbone atoms for the receptor PPARc. (D) The RMSF (root mean
square fluctuation) of the side-chain atoms for the receptor PPARc. The green line indicates the outcome for the system of the receptor alone without
any ligand, the red line for that of the receptor with the ligand GW409544, and the black line for that of the receptor with the ligand Comp#8. The
curves involved with the AF2 helix region are framed with grey line.
doi:10.1371/journal.pone.0038546.g004
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and RMSF, are much larger than those of PPARa-Comp#1 and

PPARc-Comp#1, especially for the binding site of AF2 helix

region (see the gray frames in Fig. 4B and D). These phenomena

indicate that Comp#8 is not as good as Comp#1 in stably

binding to PPARa and PPARc, and hence Comp#8 might not

have the same function for activating the AF2 helix as GW409544

had.

3. ADME Prediction
Some pharmaceutically relevant properties of the new designed

agonist derivatives as well as the original GW409544 compound,

such as the ‘‘partition coefficient’’ (logPo/w), ‘‘van der Waals

surface area of polar nitrogen and oxygen atoms’’ (PSA), ‘‘aqueous

solubility’’ (logS), and ‘‘apparent MDCK permeability’’

(PMDCK), were predicted by means of the QP program

embedded in the ‘‘Schrodinger2009 Software Package’’. The

results thus obtained are also listed in the Table 1, respectively.

Since PPARa and PPARc have a more spacious pocket

(,1400 Å3) than any other nuclear hormone receptors [37,72],

it is quite natural that the agonist derivatives designed based on the

two receptors by combining their three cores would have relatively

large molecular weight (MW.500) and bulky volume, a trend

quite similar to case in designing the inhibitors against the protein

tyrosine phosphates (PTPase) [78].

As shown in Table 1, the values calculated by the QP program,

such as PAS, logPo/w, logS, and PMDCK for the newly designed

agonists are all within the reasonable ranges. Although the higher

logPo/w value of a compound, the stronger its affinity to PPARs

is, it is not a good idea to excessively enhance logPo/w because

this would induce bad distribution of the compound on fat and

body fluid [70]. It should be pointed out that, rather than the

experiential values within the range between 26.5 and 0.50, most

of the log S values for the new agonists are quite close to that of

GW409544. Such a phenomenon might result from the core A

part which was kept unchanged during the process of designing

the newly compounds as mentioned above. If the core A part was

modified as well, the log S value would be further improved

accordingly. Also, as mentioned above, the values for the four

ADME properties listed in Table 1 are all within the acceptable

range for human beings, indicating that most of the 25

compounds, particularly the top 10 derivatives found in this study

as highlighted in Table 1, can be utilized as candidates for the

purpose of developing new drugs.

4. Conclusions
The goal of this study was to find new and more powerful dual

agonists for PPARa and PPARc. The new technique of ‘‘core

hopping’’ adopted in this study allows for the rapid screening of

novel cores to help overcome unwanted properties by generating

new lead compounds with improved core properties. A set of 10

novel compounds were found in this regard. Compared with the

existing dual agonist, the new agonists not only had the similar

function in activating PPARa and PPARc, but also assumed the

conformation more favorable in binding to PPARa and PPARc. It

is anticipated that the new agonists may become potential drug

candidates. Or at the very least, they may stimulate new strategy

for developing novel dual agonists against type-2 diabetes.
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