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Abstract

Intercontinental disjunctions between tropical regions, which harbor two-thirds of the flowering plants, have drawn great
interest from biologists and biogeographers. Most previous studies on these distribution patterns focused on woody plants,
and paid little attention to herbs. The Orchidaceae is one of the largest families of angiosperms, with a herbaceous habit
and a high species diversity in the Tropics. Here we investigate the evolutionary and biogeographical history of the slipper
orchids, which represents a monophyletic subfamily (Cypripedioideae) of the orchid family and comprises five genera that
are disjunctly distributed in tropical to temperate regions. A relatively well-resolved and highly supported phylogeny of
slipper orchids was reconstructed based on sequence analyses of six maternally inherited chloroplast and two low-copy
nuclear genes (LFY and ACO). We found that the genus Cypripedium with a wide distribution in the northern temperate and
subtropical zones diverged first, followed by Selenipedium endemic to South America, and finally conduplicate-leaved
genera in the Tropics. Mexipedium and Phragmipedium from the neotropics are most closely related, and form a clade sister
to Paphiopedilum from tropical Asia. According to molecular clock estimates, the genus Selenipedium originated in
Palaeocene, while the most recent common ancestor of conduplicate-leaved slipper orchids could be dated back to the
Eocene. Ancestral area reconstruction indicates that vicariance is responsible for the disjunct distribution of conduplicate
slipper orchids in palaeotropical and neotropical regions. Our study sheds some light on mechanisms underlying generic
and species diversification in the orchid family and tropical disjunctions of herbaceous plant groups. In addition, we suggest
that the biogeographical study should sample both regional endemics and their widespread relatives.
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Introduction

Tropical regions harbor almost two-thirds of the flowering

plants [1,2], where intercontinental disjunctions occur commonly

within and among plant genera due to Gondwana breakup,

immigration from the Laurasian tropics and transoceanic dispersal

[3,4]. Compared with the Southern Hemisphere biogeography,

whether vicariance or long distance dispersal has played a more

important role during and after the fragmentation of Gondwana

(160-30 Mya) [5,6], biogeography of the Northern Hemisphere is

more complex because of not only the impact of climatic and

geological changes [7–9], but also the frequent migration by the

North Atlantic land bridge and the Bering land bridge in the

Tertiary [10–14]. A series of studies have suggested the

boreotropical region as a corridor for the migration of thermo-

philic groups, such as Magnoliaceae [15,16], Alangiaceae [17],

Burmanniaceae [18], Altingiaceae [19], and Malpighiaceae [20].

However, most of them focused on woody plants, and paid little

attention to herbs, which have shorter life histories, higher rates of

molecular evolution [21], and much fewer fossils due to differential

leaf and pollen production [22]. It would be of great interest to

investigate the biogeographical history of herbaceous plant groups

showing tropical disjunct distributions.

On the other hand, owing to the occurrence of a series of

climatic oscillations and geographic events in the past 65 Mya

[12,13,23–25], plants not only experienced expansion and

contraction of their ranges [26–30], but also diversified to adapt

to new niches [31–35]. It may explain why Wing [36] detected

a mixture of tropical and temperate elements in the Eocene floras

of the Rocky Mountains. Lavin & Luckow [37] and Wen [38]

proposed that the study of disjunctions in temperate groups should

include their subtropical and tropical relatives, and vice versa.

Orchidaceae is one of the largest families of flowering plants,

accounting for approximately 10% of seed plants [39]. All orchids

are herbaceous, of which about 73% are epiphytic or lithophytic

[39]. According to fossil records, a fossil orchid with its pollinator

in particular, the common ancestor of modern orchid lineages

could be dated back to the late Cretaceous [40–42], although the

radiation of most clades of the Orchidaceae occurred in the

Tertiary. The subfamily Cypripedioideae (slipper orchids) is one of

the monophyletic groups of Orchidaceae [43–48], including all the

species with a pouchlike lip, two fertile stamens, a shield-like
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staminode and a synsepal composed of the fused lateral sepals

[49]. There are almost 200 species of slipper orchids (http://apps.

kew.org/wcsp/), belonging to five accepted genera, i.e., Cypripe-

dium, Mexipedium, Paphiopedilum, Phragmipedium and Selenipedium [50].

The attractive flowers of slipper orchids make them have high

ornamental and commercial values, and hold a special place in the

hearts of botanists and hobbyists [51]. Also, this group is the most

studied among all orchids due to its distinctive features [52–59].

Dressler [60] even considered that this group could have an

unusual way of specialization given its unique flower morphology.

Pfitzer [61] and Atwood [62] investigated the relationships of

slipper orchids based on morphological data, then Albert [63]

based on both morphology and the chloroplast rbcL gene, and Cox

et al. [64] using nuclear ribosomal DNA internal transcribed

spacers (nrDNA ITS). Besides, several phylogenetic studies of

Orchidaceae sampled slipper orchids [43,46–48,65]. All the

previous studies strongly support the monophyly of slipper orchids,

but have not reached a consensus about the intergeneric

relationships, and in particular the published chloroplast DNA

(cpDNA) phylogenies have low resolution or incomplete sampling

in this orchid clade [43,46,47,58].

The slipper orchids are widely distributed in temperate to

tropical regions of Eurasia and America. The genus Cypripedium

occurs in temperate and subtropical areas of the North Hemi-

sphere, with some species extending to tropical North America.

The two conduplicate-leaved genera Mexipedium and Phragmipedium

and the plicate-leaved genus Selenipedium are restricted to the

neotropics, whereas Paphiopedilum is confined to the palaeotropics

(Fig. 1). Atwood [62] and Albert [63] supported the boreotropical

hypothesis [66], and considered that fragmentation of continents

and the following climatic cooling in the Ice Ages caused the

present disjunct distribution of slipper orchids. While the ITS

analysis supports southern North America/Mesoamerica as the

origin center of slipper orchids [64], the sister relationship between

Mexipedium and Paphiopedilum revealed in the low copy nuclear Xdh

gene phylogeny [48], although with weak support and based on

a limited sampling, seems to suggest a long distance dispersal from

palaeotropical to neotropical regions. Therefore, the biogeograph-

ical history of slipper orchids is far from being resolved.

It has been widely recognized that the use of multiple genes is

helpful for the accuracy of phylogenetic and biogeographical

reconstruction (e.g. [67,68]). In addition to the widely used

cpDNA markers such as rbcL, matK, ndhF and ycf2 [69–72], more

and more studies indicate that ycf1, one of the two longest coding

genes of cpDNA, has great potential in plant phylogenetic

reconstruction [73–75]. Meanwhile, single or low copy nuclear

genes are increasingly used in plant phylogenetic studies due to

their rapid evolutionary rates and biparental inheritance [76–80].

For instance, LFY, which is involved in regulating flower meristem

identity and flowering time [81–84], has been successfully used as

a single copy gene to investigate intra- and inter-generic relation-

ships [68,85–88], and allopolyploid speciation [89]. Also, the ACO

gene, which encodes the ACC oxidase enzyme to catalyze the last

step of ethylene biosynthesis in plants [90], is important for flower

development, fruit ripening, and responses to biotic and abiotic

stresses [91]. This gene may also exist as a single locus in slipper

orchids according to the result of 39-RACE.

In the present study, we aim to reconstruct the phylogeny of

slipper orchids with multiple coding chloroplast and low copy

nuclear genes. In addition, we intend to estimate divergence times

of the five genera of slipper orchids, and to explore their

biogeographical history, particularly the disjunction between

neotropical and palaeotropical regions. This study may also shed

some light on the mechanisms underlying the diversification of

Orchidaceae.

Materials and Methods

Ethics statement
No specific permits were required for the described field studies.

Plant sampling
We sampled 31 species, which represent all five genera of the

subfamily Cypripedioideae and cover seven sections of Paphiope-

dilum and four sections of Phragmipedium. In the genus Cypripedium,

Figure 1. The distribution of slipper orchids modified from Pridgeon et al. [165]. Shaded areas show the current species distribution, with
different colors to represent the five genera. The tree topology indicates the phylogenetic relationships of slipper orchids reconstructed in this study.
doi:10.1371/journal.pone.0038788.g001
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16 species of nine sections were collected from eastern Asia and

North America. Owing to the rarity and difficulty in collection,

this study only sampled one individual of Selenipedium, a genus with

five accepted species that are morphologically similar and endemic

to the tropical regions of Central and South America [92]. In

addition, four species representing three genera of the two

subfamilies Apostasioideae and Vanilloideae were chosen as

outgroups, since previous studies showed that Apostasioideae

and Vanilloideae are sister to slipper orchids plus the other

monandrous orchids [44,48]. The origins of the materials are

shown in Supplementary Table S1.

DNA extraction, PCR amplification, cloning and
sequencing

Total DNA was extracted from silica gel-dried leaves using

a modified cetyltrimethylammonium bromide (CTAB) protocol

[93] or Plant Genomic DNA Kit (Tiangen Biotech Co.). We

screened eight chloroplast coding genes (accD, rbcL, matK, rpoC1,

rpoC2, ycf1, ycf2, and ndhF) and two low-copy nuclear genes (LFY

and ACO). The LFY gene was amplified with the forward primer

LFYE1jF (59-TGAGGGAGGAGGAGGTSGACGAYATGAT-

39) located at the first exon and the reverse primer LFYE3kR

(59-AGATBGAGAGGCGSGGATGSGCGTT GAA-39) at the

third exon, and the ACO gene with ACOE1aF (59-GCNTGYGA-

GAA CTGGGGHTTCTTYGAG-39) and ACOE2aR (59-

ATGGTCTTCATGGCCTCAA ACCT-39). All the four primers

were designed based on the sequences available in the public

databases. However, the two LFY primers did not work in

Phragmipedium besseae, Paphiopedilum delenatii, P. vietnamense, and some

species of Cypripedium, and thus another reverse primer LFYE2S5R

at the second exon was further designed. The details of other

primers are shown in Supplementary Table S2. Although the ndhF

gene is conservatively located at the small single copy (SSC) region

of the published chloroplast genomes, e.g. Oryza sativa [94],

Amborella trichopoda [95], Nymphaea alba [96] and Acorus calamus [97],

it was reported to have been lost in the sequenced chloroplast

genomes of the four orchids Phalaenopsis aphrodite [98], Oncidium

Gower Ramsey [99], Rhizanthella gardneri [100] and Neottia nidus-avis

[101]. Therefore, we tried to amplify the ndhF gene with primers

trnNguu and trnLuag that are located in its two flanking regions, and

ndhFcF and ndhFaR in its coding regions, respectively.

Amplification reactions were conducted in a Tgradient Ther-

mocycler (Biometra) or a Mastercycler (Eppendorf, Hamburg,

Germany) in a volume of 25 mL containing 10–50 ng DNA

template, 200 mmol/L of each dNTP, 6.25 pmol of each primer

pair, and 0.75 U of Taq DNA polymerase (TakaRa Biotech Co.,

Dalian, China). PCR cycles are as follows: for the chloroplast

genes, 4 min at 70uC, 4 cycles of 2 min at 94uC, 30 s at 51uC, and

1–3 min at 72uC, followed by 36 cycles of 30 s at 94uC, 30 s at

53uC, and 1–3 min at 72uC, with a final elongation for 10 min at

72uC; for the nuclear genes, 4 min at 70uC, 4 cycles of 2 min at

94uC, 30 s at 57uC, and 5 min at 68uC, followed by 36 cycles of

30 s at 94uC, 30 s at 60uC, and 5 min at 68uC, with a final

extension for 15 min at 68uC. PCR products were separated by

1.5% agarose gel electrophoresis and purified with a Gel Band

Purification Kit (TIANgel Midi Purification Kit). The purified

PCR products of the chloroplast genes were directly sequenced

with the PCR primers and the internal primers designed in this

study (Supplementary Table S2). For the nuclear genes, the

purified PCR products were cloned with pGEM-TH Easy Vector

System II (Promega). Twelve clones were picked for each sample,

and 4–6 of them with correct insertion (determined by digestion

with EcoR I) were sequenced with primers T7 and SP6 and the

internal primers designed in this study (Supplementary Table S2).

After precipitation with 95% EtOH, 3 M NaAc and 125 mM

EDTA, the sequencing products were separated on an ABI

PRISM 3730XL DNA analyzer (Applied Biosystems). The

sequences reported in this study are deposited in GenBank under

accession numbers JN181400–JN181549 and JQ182152–

JQ182298 (Supplementary Table S1).

Data analysis
The ContigExpress program of the Vector NTI Suite 6.0

(Informax Inc.) was used to assemble sequences from different

primers. Sequence alignments were made with BioEdit 7.0 [102]

and refined manually. Nucleotide diversity (Pi) was estimated using

DnaSP version 5.0 [103]. Indels were coded using GapCoder

[104], with a ‘1’ for present, ‘0’ for missing, and ‘-’ for

inapplicable. The unalignable regions of the rpoC1 intron were

excluded from our analyses. The incongruence length difference

(ILD) test [105] was used to assess the congruence between

different datasets. Phylogenetic analyses based on maximum

parsimony (MP), maximum likelihood (ML) and Bayesian in-

ference (BI) were performed with PAUP version 4.0b10 [106],

PhyML 2.4.4 [107] and MrBayes 3.1.2 [108], respectively. In the

MP and ML analyses, the missing data were coded by ‘‘?’’, while it

was excluded from the BI analysis. The MP analysis used

a heuristic search with 1000 random addition sequence replicates,

tree-bisection-reconnection (TBR) and MULTREES on, and

branch support was evaluated by bootstrap analysis [109] of

1000 replicates using the same heuristic search settings. The

evolutionary models for the ML and BI analyses were determined

by Modeltest 3.07 [110] and MrModeltest v2.2 [111], respectively

(Table 1). The ML analysis used the GTR model and a BIONJ

tree as a starting point, and branch support was estimated by

bootstrap analysis [109] of 1000 replicates. For the Bayesian

inference, one cold and three incrementally heated Markov chain

Monte Carlo (MCMC) chains were run for 1,000,000 cycles and

repeated twice to avoid spurious results. One tree per 100

generations was saved. The first 300 samples for each run were

discarded as burn-in to ensure that the chains had become

stationary. Phylogenetic inferences were made based on the trees

sampled after generation 30,000.

Molecular dating is very helpful to interpret plant distribution

patterns [112,113]. The likelihood ratio test (LRT) was used to test

the rate constancy among lineages [114]. Log likelihood ratios of

the chosen model with and without an enforced molecular clock

were compared. The degree of freedom is equivalent to the

number of terminal taxa minus two [115]. Significance was

assessed by comparing two times the log likelihood difference to

a chi-square distribution. Due to the lack of fossil evidence for the

Table 1. Results of Model test and MrModel test.

Model test MrModel test

AIC hLRTs AIC hLRTs

combined cpDNA TVM+I+G TVM+I+G GTR+I+G GTR+I+G

ACO K81uf+G K80+G GTR+G SYM+G

LFY GTR+G TrN+G GTR+G GTR+G

combined nuclear
DNA

GTR+G GTR+G GTR+G GTR+G

cpDNA+nuclear
DNA

TVM+I+G TVM+I+G GTR+I+G GTR+I+G

doi:10.1371/journal.pone.0038788.t001
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subfamily Cypripedioideae, we first performed a family-level

analysis to get a more reliable estimate of the divergence times in

Orchidaceae by integrating all the three available fossils of the

family. The analysis was based on the combined matK and rbcL

gene sequences and a sampling following the latest angiosperm

phylogeny APG III [116]. In addition to the sequences of the

slipper orchids and their close relatives determined in the present

study, the matK and rbcL sequences of 165 taxa were downloaded

from GenBank (see Supplementary Table S3), which represent

119 genera of Orchidaceae, 24 genera of non-orchid Asparagales,

5 genera of Commelinids, and 3 genera of Liliales as outgroups.

The final data matrix comprised 200 taxa, which are many more

than that sampled in previous studies. Divergence times were

estimated using the nonparametric rate smoothing (NPRS) [117]

and penalized-likelihood (PL) [118] implemented in the program

r8s v1.71 [119], and Bayesian inference in BEAST v1.5.4 [120].

Four calibration points were used for age estimation, including

Dominican amber (15–20 Mya) as a minimum age constraint for

the Goodyerinae [40], macrofossils of Dendrobium (20–23 Mya) and

Earina (20–23 Mya) [41] as the lower bound of the two genera

following Gustafsson et al. [42], the age of the oldest known

Asparagales (93–105 Mya) as the minimum age of the root of the

tree, and the age of the oldest known fossil monocot as the

maximum age at the root of the tree (110–120 Mya) [121]

following the phylogenetic placement of Ramı́rez et al. [40]. In the

r8s analysis, the oldest and youngest ages of the fossils were used

separately. In the BEAST analysis, the age was estimated with the

tree priors set as follows: i) age for the Goodyerinae (a mono-

phyletic subtribe) as uniform distribution with a lower bound of

15 Mya and an upper bound of 120 Mya; ii) age for both

Dendrobium and Earina as uniform distribution (lower bound:

20 Mya; upper bound: 120 Mya); iii) age for the root of the tree

with a normal prior distribution as 106.568.21 Mya (95% CI: 93–

120 Mya) [42]. The above 200-taxa analysis showed that the age

estimates by NPRS and PL are very close, but are older than that

by BEAST (see Results section). Considering that the use of

multiple gene sequences could yield a more accurate time

estimation when a constant diversification rate among lineages is

violated [122], we conducted a further analysis for the slipper

orchids (35 taxa, including outgroups) using combined six

chloroplast genes (combined cpDNA, including matK, rbcL, rpoC1,

rpoC2, ycf1, and ycf2) with NPRS and PL methods. We did not use

the BEAST estimate in this analysis due to its wide confidence

interval. The crown ages of Cypripedioideae were set to

6464 Mya (oldest age) and 5864 Mya (youngest age), according

to the result of PL analysis on the 200-taxa dataset. For the PL

method, a cross-validation procedure was used to determine the

most likely smoothing parameter. To calculate the standard errors,

one hundred bootstrapped trees with fixed topology were

generated with PAUP version 4.0b10. In the Bayesian analysis,

divergence times were estimated with a log normal relaxed

molecular clock using the Yule model of speciation. We ran

20,000,000 generations of Markov chain Monte Carlo (MCMC),

and sampled every 2000 generations, with a burn-in of 1000 trees.

The MCMC output analysis was conducted with TreeAnnotator

v1.5.4, and the chronological phylogeny was displayed by FigTree

v1.3.1.

The ancestral distribution of slipper orchids was reconstructed

with S-DIVA 1.9 beta [123,124], and Lagrange [125,126]. S-

DIVA complements DIVA, and considers the phylogenetic

uncertainty in DIVA optimization. We used the randomly

sampled 9000 post-burnin trees derived from the BEAST analysis

for ancestral area reconstruction. In contrast, as a likelihood-based

method under the dispersal-extinction-cladogenesis model, La-

grange enables the estimation of ancestral states, and calculates the

probabilities of the most-likely areas at each node. Based on the

present distribution of slipper orchids, we directly divided it into

two geographical areas, Old World and New World. The

biogeographical data were coded based directly on the distribution

of the studied species, and the distribution of outgroups was

excluded due to its wideness.

Results

Sequence characterization
Six chloroplast genes (matK, rbcL, rpoC1, rpoC2, ycf1, and ycf2)

were successfully amplified and directly sequenced for all samples

except the cloning of ycf1 from Vanilla planifolia. The amplification

of accD failed in one of the outgroups, and thus this gene was

excluded from further analysis. The PCR products of primers

trnN/trnL had great length variation in slipper orchids, ranging

from ,1400 bp to ,6000 bp, which, together with the amplifi-

cation results of primers ndhFcF/ndhFaR, suggests that the ndhF

gene has been completely lost in Mexipedium and the studied species

of Phragmipedium (see Supplementary Table S4). Hence, this gene

was also excluded from the phylogenetic analysis. The amplified

matK region includes the complete matK coding sequence and

,180 bp of the trnK intron. It is interesting that only a pseudogene

of matK, with a frameshift mutation and an early stop codon, was

obtained from Vanilla sp. Although we tried to clone the PCR

product and to amplify the gene with redesigned primers specific

to Vanilla, the functional copy of matK was still not found. Actually,

several previous studies have reported that the functional matK

gene does not occur in some orchids [127–129]. The matK

pseudogene of Vanilla sp. was finally used in the phylogenetic

analysis, since it only differs from the sequence of its congeneric

species in several nucleotide substitutions and three nontriplet

indels (5 bp insertion, 13 bp insertion, and 4 bp deletion). The

amplification products of the rpoC1 gene cover about 1300 bp

coding and about 800 bp intron sequences. The direct sequencing

chromatogram of ycf1 from Vanilla planifolia showed double-peaks,

and therefore we cloned the purified PCR product. Consequently,

we obtained two distinct sequences of ycf1 from the species, both of

which can be successfully translated. We chose the ycf1 copy that

shows a higher similarity with the other outgroup species. A

summary of the sequences that we used is shown in Table 2.

Among the chloroplast genes, ycf1 is the most variable and

parsimony-informative.

The LFY gene of the slipper orchids amplified with primers

LFYE1jF and LFYE3kR ranges from 1853 bp to 3717 bp in

length, including partial sequences of exon 1 (258–270 bp) and

exon 3 (234 bp), and complete sequences of exon2 (417–432 bp)

and the two introns. In the three species Phragmipedium besseae,

Paphiopedilum delenatii and P. vietnamense, the LFY gene amplified

with primers LFYE1jF and LFYE2S5R includes partial sequence of

exon1 and almost the whole length of exon2 and intron 1.

Unfortunately, none of the two primer pairs worked in the five

species of Cypripedium (C. californicum, C. candidum, C. farreri, C. debile

and C. palangshanense). The intron sequences cannot be reliably

aligned among the five genera of slipper orchids, and thus were

excluded from our analyses. Except the failure of PCR amplifi-

cation in Phragmipedium besseae and Neuwiedia singapureana, we got the

ACO gene from all the other samples of slipper orchids, which

ranges from 909 bp to 2178 bp in length. After excluding the

introns, due to the difficulty in aligning, the coding region of ACO

ranges from 780 bp to 795 bp in length (Table 2). The ACO gene

has four exons and three introns except the loss of the second

intron in the two genera Mexipedium and Phragmipedium, Apostasia sp.

Evolution and Biogeography of the Slipper Orchids
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and two species of Cypripedium (C. fasciculatum and C. palangshanense),

and the loss of the third intron in the two species of Vanilla.

Phylogenetic analysis, molecular dating and ancestral
area reconstruction

Since the plastid genome behaves as a single locus, we directly

combined the six chloroplast genes into a single dataset (combined

cpDNA) for phylogenetic analysis. The MP analysis generated 60

equally most parsimonious trees (MPTs), with tree length = 4620

steps, consistency index (CI) = 0.78, and rentention index

(RI) = 0.84. The ML and Bayesian trees of the combined cpDNA

are nearly identical to the MP trees in topology except the slight

difference in interspecific relationships of Cypripedium and the weak

bootstrap support for the position of Selenipedium in the MP trees.

The ML tree is shown in Supplementary Fig. S1. The nuclear

gene analyses generated 1807 MPTs for ACO (tree length = 859

steps, CI = 0.67, RI = 0.85), and 80 MPTs for LFY (tree

length = 966 steps, CI = 0.70, RI = 0.86). Also, the MP trees of

the nuclear genes are identical to the ML and Bayesian trees in

topology except a minor difference in the Cypripedium clade (see

ML trees in Supplementary Figs. S2, S3).

Since the ILD test did not detect significant incongruence

between the two nuclear genes (p = 0.69) and between combined

cpDNA and nuclear DNA (p = 0.50), we further conducted

phylogenetic analyses using the two combined datasets. As a result,

27 MPTs were generated for the combined nuclear genes (tree

length = 1621 steps, CI = 0.71, RI = 0.80), and 6 MPTs were

generated for the combined cp- and nuclear DNA (tree

length = 5284 steps, CI = 0.79, RI = 0.84), respectively. The ML

and Bayesian trees generated based on the two combined datasets

show the same intergeneric relationships of slipper orchids as in

the MP trees (see ML trees in Supplementary Fig. S4; Fig. 2).

All gene trees generated in the present study, either based on

separate genes or on combined datasets (Fig. 2; Supplementary

Figs. S1, S2, S3, S4), are consistent about the intergeneric

relationships of slipper orchids. That is, the widespread Cypripedium

diverged first, followed by Selenipedium from South America, and

finally the three conduplicate genera. The monotypic genus

Mexipedium is most closely related to the South American

Phragmipedium, and the two New World genera form a clade sister

to the Old World Paphiopedilum (Fig. 2; Supplementary Figs. S1,

S2, S3, S4).

The LRT test rejected a clock-like evolution of combined

matK+rbcL (d= 1815.1177, df = 198, P,0.001) and combined six

chloroplast genes (d= 5839.3257, df = 33, P,0.001). Therefore,

we used NPRS and PL in r8s and Bayesian methods to estimate

the divergence times. The family-level analysis (200 taxa) showed

that the crown ages of Orchidaceae and its five subfamilies are

older than the estimates by previous studies [40,42], although the

BEAST estimates showed a wide range (Table 3, Fig. 3). It is

interesting that the crown ages of the subfamily Cypripedioideae

estimated by NPRS and PL in the present study are very close,

not as in Ramı́rez et al. [40] that obtained very different

estimates by the two methods. This implys that a good sampling

is important for molecular dating. The divergence times within

Cypripedioideae estimated from the combined six chloroplast

genes are generally congruent with those from the family-level

analysis (Table 3). According to the age estimate, the genus

Selenipedium originated in Palaeocene, while the most recent

common ancestors of conduplicate slipper orchids (Mexipedium,

Phragmipedium and Paphiopedilum) and of Cypripedium could be dated

back to the Eocene (Table 3, Figs. 3, 4). Since the divergence

times estimated with NPRS and PL are very close (Table 3), and

thus only the PL estimates were used in the discussion. The

ancestral area reconstruction suggests a New World origin or

a wide ancestral distribution of slipper orchids, and indicates that

vicariance is responsible for the disjunct distribution of condu-

plicate slipper orchids in palaeotropical and neotropical regions

(Fig. 4).

Discussion

Phylogeny and evolution of the slipper orchids
In previously reported phylogenies of slipper orchids, the main

discrepancies are phylogenetic positions of Selenipedium and

Mexipedium. Atwood [62] proposed Selenipedium be merged into

Table 2. Sequence information of the genes used in the present study.

Genes Length (bp) Alignment Length (bp) Pi Parsimony-informative sites

Within
Cypripedioideae

Entire
dataset

Within
Cypripedioideae

Entire
dataset

Within
Cypripedioideae

Entire
dataset

Within
Cypripedioideae

Entire
dataset

matK 1492–1518 1470–1523 1545 1581 0.04238 0.05872 175 302

rbcL 1266 1266 1266 1266 0.01132 0.01679 42 90

rpoC1 2003–2096 1962–2096 2056* 2090* 0.01959* 0.02892* 91* 210*

rpoC2 2616–2661 2616–2691 2712 2811 0.02393 0.03884 159 415

ycf1 1570–1690 1405–1690 1831 1870 0.05108 0.07255 200 357

ycf2 1449–1512 1449–1644 1575 1836 0.00566 0.01809 17 157

combined
cpDNA

10431–10627 10400–10627 10985* 11454* 0.02570* 0.03875* 684* 1531*

ACO Exon 780–795 780–795 798 801 0.08798 0.11352 204 303

LFY Exon 912–933 912–945 942 978 0.08745 0.11450 172 239

combined
nuclear
DNA

1704–1725 1704–1734 1740 1776 0.08965 0.11381 306 439

Total 12141–12323 12134–12375 12683* 13173* 0.03349* 0.04854* 915* 1736*

*The unalignable regions of the rpoC1 intron were excluded from our analyses.
doi:10.1371/journal.pone.0038788.t002
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Cypripedium. The morphological study [61] and the combination

analysis of morphological and rbcL data [63] as well as the nrDNA

ITS tree [64] indicate that Selenipedium is basal to the other slipper

orchids, whereas the phylogenies based on the low copy nuclear

gene Xdh [48], atpB [130] and the combined matK+rbcL [47]

suggest a basal position of Cypripedium. On the other hand, nrDNA

ITS [64] and cpDNA [43,46] trees supports a sister relationship

between the two North American genera Mexipedium and

Phragmipedium, whereas the Xdh tree indicates that Mexipedium is

most closely related to the Old World Paphiopedilum [48].

Like the unstable phylogenetic position, Selenipedium also has

a very interesting morphology. This genus has fragrant and

Figure 2. The ML tree of slipper orchids constructed based on the combined cpDNA+nuclear genes. Numbers above branches indicate
the bootstrap values$50% for the MP and ML analyses, respectively. Bayesian posterior probabilities ($0.90) are shown in bold lines. Symbols on the
right indicate the distribution of some important characters of slipper orchids.
doi:10.1371/journal.pone.0038788.g002
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crustose seeds like Vanilla, but has the same chromosome number

(2n = 20) [131], valvate sepal aestivation, and leaf vernation and

texture as Cypripedium (Fig. 2), and even shares some anatomical

features with Cypripedium irapeanum and C. californicum. In addition,

the three-locular ovary and the multi-flower inflorescence with one

flower opening at a time in Selenipedium seem to be primitive

features [51,62,92]. Moreover, Selenipedium is similar to the

conduplicate-leaved genera in having persistent perianth [62].

Mexipedium is a monotypic genus endemic to Oaxaca of Mexico.

Albert and Chase [50] established this genus, to which the species

initially published as Phragmipedium xeropedium was transferred

[132]. Similar to the situation in Selenipedium, the genus Mexipedium

not only shares characters with Phragmipedium (e.g. valvate sepal

aestivation), but also with Paphiopedilum (e.g. unilocular ovary). Due

to the limited markers used, the phylogenetic position of

Mexipedium was not consistent among several previous molecular

phylogenetic studies [43,46,48,64].

Figure 3. Fossil-calibrated molecular chronogram of the family Orchidaceae based on combined matK+rbcL sequences. Red circles
indicate age-constrained nodes, and arrows indicate the crown ages of the five subfamilies of Orchidaceae.
doi:10.1371/journal.pone.0038788.g003
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The phylogenetic relationships among the genera of slipper

orchids are relatively well resolved in the present study, given the

topological consistency among the gene trees generated either

from cpDNA or from the low copy nuclear genes (Fig. 2;

Supplementary Figs. S1, S2, S3, S4). We found that Cypripedium

diverged first, followed by Selenipedium, and finally the three

conduplicate genera, although the sister relationship between

Selenipedium and the conduplicate genera is not very strongly

supported (Fig. 2). That is, the plicate-leaved genera could be more

primitive, while the conduplicate-leaved genera are more

advanced. We also found that the two New World genera

Mexipedium and Phragmipedium are most closely related and form

a clade sister to the Old World Paphiopedilum (Fig. 2; Supplemen-

tary Figs. S1, S2, S3, S4). Moreover, the close relationship between

Figure 4. Chronogram of slipper orchids inferred from the combined six chloroplast genes, and ancestral area reconstruction. The
crown age of slipper orchids was set as a calibration point for time estimation. Two areas were defined: (A) Old World and (B) New World. The
ancestral areas with the highest probabilitiy are shown above (S-DIVA) and below (Lagrange) the branches with pie charts.
doi:10.1371/journal.pone.0038788.g004
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the two neotropical conduplicate genera is corroborated by the

shared loss of the ndhF gene. Based on the combined chloroplast

and nuclear gene phylogeny (Fig. 2), in slipper orchids, the

coriaceous conduplicate leaf has a single origin, but ovary number

is not phylogenetically informative.

Biogeography of the slipper orchids: Implications for the
evolution of Orchidaceae

The biogeographical history of slipper orchids is of great

interest, but still remains controversial. Atwood [62] and Albert

[63] put forward that slipper orchids were once widely distributed

in North America/Asia, and that its current disjunct distribution

was shaped by the separation of continents and the climatic

cooling in the Ice Ages. Cox et al. [64] suggested southern North

America/Mesoamerica as the origin center of slipper orchids

based on the nrDNA ITS analysis. However, the reconstruction of

biogeographical history should be based on a solid phylogeny,

divergence time estimation and ancestral area reconstruction. In

the relatively well-resolved phylogeny of slipper orchids recon-

structed in the present study, Cypripedium, a genus with a wide

distribution in temperate and subtropical North Hemisphere, is

basal to the other genera. Also, the PL estimate suggests

a Palaeocene origin of Selenipedium, while the most recent common

ancestors of conduplicate slipper orchids and of Cypripedium could

be dated back to the Eocene (Table 3, Figs. 3, 4). Although no

available fossils of slipper orchids can be used for time calibration,

the time estimates from combined matK+rbcL using other orchid

fossils as calibration points are generally congruent with those

from the combined six chloroplast genes using a secondary

calibration point. It is well known that the climatic cooling or

oscillation since Eocene/Oligocene [133,134] has led to great

changes in plant distribution patterns. Therefore, although

southern North America/Mesoamerica has three out of the five

genera (Cypripedium, Phragmipedium and Mexipedium) of slipper

orchids, this region is very likely a museum rather than a cradle

for the diversity. In fact, Phragmipedium is mainly distributed in

South America. The ancestral area reconstruction also suggests

that the common ancestor of slipper orchids occurred in the New

World or had a wide distribution in both Old and New Worlds

(Fig. 4).

The Isthmus of Panama had served as a corridor for flora and

fauna exchange between North America and South America

before 3–3.5 Mya, which may explain the distribution of

Selenipedium and Phragmipedium in South America. For instance,

pollen records and vertebrate fossils from the Caribbean region

indicate that the GAARlandia land bridge had connected North

and South America during Eocene-Oligocene (35-33 Mya) [135].

In addition, Iturralde-Vinent & MacPhee [135] and Pennington &

Dick [136] both suggested the existence of a land bridge between

the two continents in Miocene. Furthermore, the study of the palm

tribe Chamaedoreeae also supports the Middle Eocene and

Miocene migrations of plants between North and South America

[137].

It is very interesting that the Old World Paphiopedilum is sister

to a clade comprising the two New World genera Mexipedium and

Phragmipedium (Fig. 2; Supplementary Figs. S1, S4), suggesting

a vicariant differentiation of the conduplicate genera between the

Old World and New World tropics. The three conduplicate

genera occur in both the Northern and Southern Hemispheres,

also including South America and a part of Southeast Asia from

the Gondwanaland [138,139]. According to many previous

studies on other plant groups, the neotropical and palaeotropical

disjunction could be explained by: (1) Gondwana breakup

[140,141], (2) trans-Pacific long distance dispersal [142,143],

and (3) fragmentation of the boreotropical flora [37,66].

However, the first two hypotheses are not suitable for the

conduplicate slipper orchids, although they can not be com-

pletely ruled out.

First, the crown age of slipper orchids was dated back to

Palaeocene (Table 3; Fig 3), which is much younger than the time

of Gondwana breakup, and slipper orchids do not occur in

Table 3. Estimated divergence times (Mya) derived from BEAST and r8s.

Node matK+rbcL combined six chloroplast genes

BEAST r8s r8s

Median Oldest ages Youngest ages Oldest ages Youngest ages

(95% HPD) NPRS PL NPRS PL NPRS PL NPRS PL

Family Orchidaceae 87 (73–102) 8863 8962 8162 8262 — — — —

Subfam.
Apostasioideae

43 (25–64) 5264 5064 4863 4564 — — — —

Subfam. Vanilloideae 66 (52–81) 7463 7463 6763 6863 — — — —

Subfam.
Cypripedioideae

43 (32–56) 6464 6464 5964 5864 — — — —

Cypr 33 (23–45) 5764 5664 5264 5165 53.5613.7 53.6613.8 48.8612.5 48.9612.5

PaSe — — — — — 60.4615.4 60.4615.4 55.1614.0 55.1614.0

PaMe 33 (23–43) 5064 4964 4664 4564 46.8612.0 46.5611.9 42.7610.9 42.3610.9

PhMe 27 (18–37) 4464 4364 4164 3964 43.1611.1 42.7611.0 39.3610.1 38.9610.0

Paph 18 (11–26) 2864 2764 2664 2564 24.266.4 22.265.9 22.165.9 20.065.4

Phra 15 (8–21) 2664 2564 2464 2364 25.967.0 24.466.7 23.666.4 22.166.1

Subfam. Orchidoideae 63 (51–75) 6563 6763 6063 6263 — — — —

Subfam.
Epidendroideae

55 (42–68) 7363 7463 6763 6863 — — — —

doi:10.1371/journal.pone.0038788.t003
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Australia and Africa. Therefore, the present distribution pattern of

slipper orchids cannot be attributed to the Gondwana breakup.

Second, trans-Pacific long distance dispersal is not supported by

the reciprocal monophyly of the conduplicate slipper orchids from

both sides of the Pacific Ocean, particularly the monophyly of the

New World conduplicate slipper orchids comprising the two

genera Mexipedium and Phragmipedium, and not by the divergence

time estimation. That is, the conduplicate genera have a crown

age of 42.3610.9 Mya (youngest age) to 46.5611.9 Mya (oldest

age, in the Eocene), but the most recent common ancestors of

Paphiopedilum and Phragmipedium are dated back to 22.265.9 Mya

(oldest age) and 24.466.7 (oldest age) Mya, respectively (Table 3,

Fig. 4). The estimated divergence times suggest an early origin for

each of the conduplicate genera but a much later diversification or

the extinction of ancient species within the genera. It is very likely

that vicariant differentiation is responsible for the disjunct

distribution of the conduplicate genera between the Old World

and New World tropics. That is, the ancestor of the conduplicate

slipper orchids could have a continuous distribution in the

boreotropics, and migrated southwards to both sides of the Pacific

Ocean due to the climate cooling in the late Cenozoic [23,134],

and then evolved into separate genera. Although the seeds of

orchids are tiny [144], which may facilitate long distance dispersal,

Moles et al. [145] found that seed size is more associated with

growth form than with dispersal syndrome. In fact, boreotropical

vicariance was also reported in Persea [146] and Parthenocissus [147].

Additionally, the existence of a boreotropical flora is supported by

many other plant biogeographic studies, such as in Burmanniaceae

[18], Chamaedoreeae [137], Rubiaceae [148], and Annonaceae

[149]. The high latitude of the Bering land bridge made it a barrier

for the migration of thermophilic plants but still a corridor for the

exchange of temperate plants like Cypripedium. According to the

divergence times and distributions of different lineages of

Cypripedium, multiple events of vicariance and dispersal between

East Asia and North America could have occurred in the genus

from middle to late Tertiary (Fig. 4).

The phylogenetic and biogeographic history of slipper orchids

revealed in the present study may shed some lights on the

evolution of Orchidaceae, one of the largest families of

angiosperms with ,850 genera and ,25,000 species recorded

[39]. A series of studies have investigated the mechanisms

underlying the high diversity of orchids, such as epiphytism and

pollinator specialization [150], deceptive pollination [151],

mycorrhizal fungi [152], crassulacean acid metabolism [153],

and reduction of evolutionary constraints on the class B floral

homeotic genes [154]. However, the previous studies mainly

focused on the key characters of orchids, and paid little attention

to the impacts of climatic oscillations and geological events, which

are important driving forces of speciation [155–157].

In Cypripedium, the basal clade of slipper orchids (Fig. 2;

Supplementary Figs. S1, S4), the most ancestral species are

distributed in subtropical Mexico (Fig. 2; Supplementary Fig. S1),

although most species of the genus are confined to the temperate

Northern Hemisphere. Interestingly, the basal species of Paphio-

pedilum, a mainly tropical genus, also occur in the subtropics

(southwest China and Vietnam) (Fig. 2; Supplementary Figs. S1,

S4). That is, although the largest two genera of slipper orchids

(Cypripedium and Paphiopedilum) have very different distributions,

both of them seem to have an origin in the subtropics. This may

suggest that their high species diversity and present wide

distribution, either in temperate or in tropical regions, were

developed to adapt to new niches created by climatic oscillations in

the late Cenozoic. Actually, according to anatomical structures,

plicate (Cypripedium) and conduplicate (Paphiopedilum) leaves can

really adapt to different environments [158].

Moreover, previous biogeographical studies of orchids mainly

focused on some endemic genera, e.g. Bromheadia and Holcoglossum

in Southeast Asia [159,160], Antilles in the neotropics [161], and

Caladenia in Australia [162], except a couple of them that dealt

with widely distributed genera, e.g. Vanilla [163] and Polystachya

[164]. In the present study, we sampled all five genera of slipper

orchids, including both endemic and widespread ones, and found

the vicariant differentiation of the conduplicate genera between

the Old World and New World tropics. Obviously, to interpret the

nearly cosmopolitan distribution of Orchidaceae (except poles and

deserts) [39], the future biogeographical study of orchids should

include both regional endemics and their widespread relatives,

which will be also helpful to achieve a widely-accepted classifica-

tion of orchids, particularly at the genus level.

Supporting Information

Figure S1 The ML tree of the slipper orchids con-
structed based on the combined six chloroplast genes.
Numbers above branches indicate bootstrap values $50% for the

MP and ML analyses, respectively. Bayesian posterior probabil-

ities ($0.90) are shown in bold lines.

(TIF)

Figure S2 The ML tree of the slipper orchids con-
structed based on the nuclear ACO gene. Numbers above

branches indicate bootstrap values $50% for the MP and ML

analyses, respectively. Bayesian posterior probabilities ($0.90) are

shown in bold lines. Numbers following the species names are the

clone numbers.

(TIF)

Figure S3 The ML tree of the slipper orchids con-
structed based on the nuclear LFY gene. Numbers above

branches indicate bootstrap values $50% for the MP and ML

analyses, respectively. Bayesian posterior probabilities ($0.90) are

shown in bold lines. Numbers following the species names are the

clone numbers.

(TIF)

Figure S4 The ML tree of the slipper orchids con-
structed based on the combined nuclear genes. Numbers

above branches indicate bootstrap values $50% for the MP and

ML analyses, respectively. Bayesian posterior probabilities ($0.90)

are shown in bold lines.

(TIF)

Table S1 Sources of materials.
(DOC)

Table S2 PCR (P) and sequencing (S) primers used in
this study.
(DOC)

Table S3 GenBank accession numbers of taxa used in
this study.
(DOC)

Table S4 Amplification results of the ndhF gene with
different primer pairs in the present study.
(DOC)
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Gerardo A. Salazar Chávez of Universidad Nacional Autonoma de
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