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Evidence for additional FREM1 heterogeneity in Manitoba
oculotrichoanal syndrome
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Purpose: Manitoba Oculotrichoanal (MOTA) syndrome is an autosomal recessive disorder present in First Nations
families that is characterized by ocular (cryptophthalmos), facial, and genital anomalies. At the commencement of this
study, its genetic basis was undefined.

Methods: Homozygosity analysis was employed to map the causative locus using DNA samples from four probands of
Cree ancestry. After single nucleotide polymorphism (SNP) genotyping, data were analyzed and exported to PLINK to
identify regions identical by descent (IBD) and common to the probands. Candidate genes within and adjacent to the IBD
interval were sequenced to identify pathogenic variants, with analyses of potential deletions or duplications undertaken
using the B-allele frequency and logz ratio of SNP signal intensity.

Results: Although no shared IBD region >1 Mb was evident on preliminary analysis, adjusting the criteria to permit the
detection of smaller homozygous IBD regions revealed one 330 Kb segment on chromosome 9p22.3 present in all 4
probands. This interval comprising 152 SNPs, lies 16 Kb downstream of FRAS!-related extracellular matrix protein 1
(FREM1), and no copy number variations were detected either in the IBD region or FREM 1. Subsequent sequencing of
both genes in the IBD region, followed by FREM1, did not reveal any mutations.

Conclusions: This study illustrates the utility of studying geographically isolated populations to identify genomic regions
responsible for disease through analysis of small numbers of affected individuals. The location of the IBD region 16 kb
from FREM1 suggests the phenotype in these patients is attributable to a variant outside of FREM1, potentially in a
regulatory element, whose identification may prove tractable to next generation sequencing. In the context of recent
identification of FREMI coding mutations in a proportion of MOTA cases, characterization of such additional variants
offers scope both to enhance understanding of FREM1’s role in cranio-facial biology and may facilitate genetic counselling
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in populations with high prevalences of MOTA to reduce the incidence of this disorder.

Manitoba Oculotrichoanal (MOTA) syndrome is a rare
autosomal recessive disorder, first documented in the Island
Lake region of Northern Manitoba [1]. Individuals of native
Aboriginal descent (Canada’s First Nations peoples)
exhibited ocular anomalies, most notably a fusion of the upper
eyelid to the globe, known as subtotal cryptophthalmos or
hidden eye. Associated phenotypes included facial anomalies
with aberrant hair distribution extending below the brow,
nasal dimpling, as well as ano-genital anomalies [2]. The
existence of a similar disorder in the Inuit [3], who are
ancestrally related to the First Nations, suggested a common
genetic etiology. MOTA syndrome is phenotypically similar
to Fraser Syndrome (FS), with common features including
cryptophthalmos, nasal and genital anomalies [4]; however
MOTA probands are less severely affected and to our
knowledge do not exhibit cognitive impairment, syndactyly,
renal, auricular, or limb defects.
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Both disorders are autosomal recessively inherited [2].
Fraser syndrome cases are attributable to mutations in either
FRASI (Fraser syndrome 1) or FREM2 (FRASI-related
extracellular matrix protein 2) [5-7], with these genes
accounting for approximately 40% of cases. Other FRAS/
FREM gene family members (FREMI and FREM3) form
multi-protein complexes in the extracellular matrix that
interact with GRIPI, (glutamate receptor-interacting protein
1) which serves to anchor FRAS/FREM proteins [8,9], and in
which mutations were recently detected in FS probands [10].
Linkage analysis of Fraser Syndrome to the vicinity of
FREM]1 (chromosome 9p22.3) was reported 5 years ago,
however no disease causing mutations were identified [11].
More recently, homozygous FREM mutations were shown
in a Middle Eastern sibship [12] to be associated with a bifid
nose, anorectal, and renal anomaly phenotype, but which
lacked cryptophthalmos, suggesting that FRAS/FREM
variants may contribute to a diverse spectrum of related
disorders [13].

The Fras/Frem, and Gripl genes have been extensively
studied in murine models, strains, collectively referred to as
“bleb” mutants due to epidermal blistering during embryonic
development [14-17]. These exhibit cryptophthalmos,
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syndactyly and renal defects that correspond with those
phenotypes observed in FS patients. Fras/Frem genes, which
are expressed in a tissue specific manner and encode proteins
that are secreted into the extracellular matrix, regulate the
bioavailability of growth factors during development [18] and
so have key roles in tissue morphogenesis [19,20]. FRAS/
FREM proteins contain chondroitin sulfate proteoglycan
(CSPG) domains, and their tissue specific expression is
thought to maintain epithelial-mesenchymal integrity during
development via a mechanism similar to CSPG4 (or NG2),
directly binding collagens V and VI as well as fibroblast
growth factor (FGF) and epidermal growth factor (EGF)
[21,22].

At the commencement of this study MOTA syndrome
was molecularly undefined, with no FRAS/FREM family
members known to underlie MOTA. We used homozygosity
mapping, an approach that permits mapping of genes
responsible for autosomal recessive disorders [23-26]. Single
nucleotide polymorphisms (SNPs) were used to identify
regions that are Identical By Descent (IBD) in multiple
affected individuals and so determine the genomic interval
responsible for disease [27,28]. This methodology takes
advantage of the geographically isolated nature of the First
Nations community studied and MOTA’s reported
inheritance pattern, enabling the molecular basis to be
elucidated using a very small number of patient samples.

METHODS

Patients and genomic DNA collection: Affected individuals
were derived from three pedigrees of Cree ancestry living in
a geographically isolated region in Northern Alberta (Figure
1). Since the area is only accessible during the winter by ice
roads, this was anticipated to result in high levels of
consanguinity in the approximately 1,000 inhabitants. Blood
samples were collected from four probands (1.11I-1, 2.V-2,
3.11I-1, and 3.11I-7) and the unaffected parent (mother) that
accompanied each child for oculoplastic surgery at the
regional ophthalmic center, followed by genomic DNA
extraction. Ethical approval was provided by the University
of Alberta Hospital Health Research Ethics Board, and
informed consent was obtained from all participants.

Genotyping and homozygosity mapping: Genotyping was
performed using a 610-Quad SNP array (Illumina Inc., San
Diego, CA) comprising approximately 28,000 Copy Number
Variant (CNV) probes and 592,000 single nucleotide
polymorphisms (SNPs), spaced at a mean distance of 1 SNP
per 2.7 kb across the genome, and processed by deCODE
genetics in Reykjavik, Iceland. Raw data were analyzed using
GenomeStudio  software  (Illumina), non-Mendelian
genotypes removed using the software’s Heritability Report
algorithm, and then exported to PLINK v1.07 for
homozygosity analysis [29]. Homozygous regions were then
analyzed to define IBD intervals common among the
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probands. Initial homozygosity analysis performed using
default PLINK parameters (homozygous region >1 Mb) did
not identify an IBD interval common to all four probands.
Subsequently, criteria were altered to permit detection of
smaller homozygous segments (>300 kb) comprising at least
100 consecutive homozygous SNPs. In addition the
percentage homozygosity of each genome was calculated
using the total length of homozygous regions >300 kb divided
by that of the autosomes (NCBI Build 36) [30].

SNP visualization of genotype and CNV status: Two values
were calculated from the array data to determine if any copy
number variants were present. The first (B-Allele Frequency
[BAF)) is derived from the relative ratio of fluorescent
intensities of the two alleles at each SNP (Cy5 [green] A allele;
Cy3 [red] B allele) with a heterozygous SNP having a BAF
of 0.5, while homozygous SNPs are either 1 or 0. The second
criterion used, is the logarithm of the ratio of the observed to
the expected intensities at each SNP (Log:R ratio [LRR]), with
deviations from zero (log:1) providing evidence of a CNV
(deletion=-1, duplication=0.5, normal=0). Additional
software (CnvPartition 3.1.6; Illumina) was used in parallel
with LRR data to assign a CNV value for each SNP, and so
detect any potential deletions or duplications.

Candidate gene sequencing: The coding and splice junctions
of three genes lying in or adjacent to the genomic region of
interest (FREM1, cerberus 1 (CERI) [31], and zinc finger,
DHHC-type containing 21 (ZDHHC21) [32]) were sequenced
using published primers [12] or those designed with Primer3
(Appendix 1). Genomic DNA from a single affected
individual (1.III-1) was used as template and sequence data
generated (ABI Prism 3100, Applied Biosystems, Foster City,
CA) was analyzed relative to the ENSEMBL reference
sequence (Sequencher 4.6; GeneCodes, Madison, WI).

Evolutionary conserved regions (ECRs) within the IBD
region: In an effort to identify potential regulatory elements
within the IBD interval, non-coding genomic sequences
conserved in vertebrates were defined using ECR Browser
[33], with appropriate correction for the different genomic
builds (SNP array, Build 36, ECR Brower, Build 37) using the
UCSC LiftOver tool [30]. Criteria consisted of ECRs with a
minimum length of 90 bp and greater than 70% conservation
of the human sequence against chimpanzee, rhesus monkey,
cow, dog, opossum, rat, mouse, chicken, frog, pufferfish, or
zebrafish genomes. ECRs conserved between human and
Xenopus (Table 1) were selected for further analysis and
sequenced with primers designed by Primer 3 (Appendix 2).

RESULTS

Phenotypic analysis: The four MOTA cases displayed a
spectrum of ocular anomalies with considerable variation in
phenotypic severity. There was a greater proportion of
bilateral (n=3) than unilateral involvement (Figure 2), and
cases with partial upper eyelid involvement most frequently
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Figure 1. The three MOTA pedigrees exhibit an inheritance pattern compatible with autosomal recessive disease. Asterisks denote individuals
that provided blood samples.
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affected the medial segment. Additional features included  was evident from extension of hair distribution from the scalp
fusion of the eyelid to the cornea, which ranged in severity  to reach the eyebrow (Figure 2B,C) as well as nasal dimpling
from total fusion (Figure 2D) to focal synechiae (Figure 2E,F),  (Figure 2B,D).

as well as frequent corneal opacification and corneal

vascularisation (Figure 2G,H). Aberrant facial development ~ Molecular analyses: Only a small number of SNPs (67 — 95
[~0.01%]; Appendix 3) were excluded due to non-Mendelian
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TABLE 1. CONSERVED REGIONS IDENTIFIED WITHIN THE 330 kB IBD REGION.

ECR Genomic position
1 14423929-14424022
2 14443290-14443585
3 14520772-14520883
4 14521314-14521641
5 14521719-14522534
6 14522575-14522705
7 14549013-14549211

Length (bp) % identity

94 89%
296 80%
112 1%
328 74%
816 78%
131 2%
199 1%

errors, indicating that the genotyping data were of high
quality. High homozygosity levels were observed in the four
affected individuals (range: 9.3% — 15.8%; Appendix 4),
indicating very substantial degrees of consanguinity that
contrast with the ~6% theoretically calculated for the
offspring of a first cousin marriage [34,35]. Homozygosity
mapping analysis identified only a single segment that is
identical by descent in the four affected individuals. This
330kb interval on 9p22.3 (Chr.9: 14,377,817 - 14,711,766,
flanking SNPs rs2382470 and rs1494359) lies approximately
16 kb 3’ to the last exon of FREM 1 and the SNPs in this IBD
interval display BAF values of 1 or 0 in the probands
(demonstrating homozygosity) while the unaffected parents
are heterozygous (BAF=~0.5) (Figure 3A; upper panels).
Equally, the LRR values cluster around zero for the 152 SNPs
in the IBD region, demonstrating the absence of any CNVs
(Figure 3A; lower panels). In particular, the SNPs
encompassing FREM1 (9: 14,727,151 - 14,900,234) have
normal LRR values and additional automated CNV analysis
(CnvPartition) demonstrated that no CN'Vs were detectable in
either the IBD (data not shown) or FREM] intervals (Figure
3B). Similarly, no CNVs or additional IBD regions were
detected in the intervals encompassing FRASI, FREM?2,
FREM3, or GRIPI (data not shown).

The IBD region contains two genes CER! (a TGF-f
signaling antagonist) [31] and ZDHCC?21 (a regulator of hair
follicle development) [32] and as illustrated (Figure 4) its
border is distinct from that of FREMI. Sequencing was
performed initially for CER/ and ZDHCC21, with no coding
or splice site mutations identified. Notwithstanding the
homozygosity mapping data, the 38 exons of FREMI were
next sequenced and did not identify any causative variants.
Ten homozygous variants were present: seven that result in
synonymous amino acid substitutions, one non-synonymous
SNP (A1212S) present in 28% of controls (dbSNP
rs35870000), and a 5’'UTR variant (Table 2). Notably a variant
(c.5556A>@G) that was recently described as contributing to
MOTA [35], did not segregate in an autosomal recessive
pattern (homozygous 1.111-1; heterozygous 3.111-1 and 3.111-7;
homozygous wildtype 2.V-2). Seven non-coding regions
within the IBD interval were found to be evolutionarily
conserved with >70% identity between humans and

Xenopus. Sequencing these seven regions identified a
homozygous T>C base pair substitution that segregated with
the disease phenotype (all probands: C/C, unaffected parents
T/C; Appendix 5).

DISCUSSION

This study’s key finding is the identification of a 330 kb region
on chromosome 9p22.3 that is associated with MOTA
syndrome. This illustrates the value of studying
consanguineous populations such as the First Nations with
homozygosity analysis. These findings localize the causative
variant to an interval adjacent to FREM, which represents an
excellent candidate on the basis of the recapitulation of the
human phenotypes in Frem ! mutant mice [36,37], and related
phenotypes induced by mutation of other FRAS/FREM gene
family members. This study was predicated on the assumption
that the level of homozygosity in a geographically isolated
population, living on a remote reserve, would be increased.
The range of autosomal homozygosity observed (9.3% -
15.8%), which in some cases exceeds that observed in other
consanguineous populations or in the offspring of first cousin
marriages [34], validates the approach used and contrasts with
the far lower rates observed in a general population (1.9% -
4.6%) [38]. These data, derived from a very small number of
affected individuals, illustrate the applicability of
homozygosity mapping in the First Nations and suggest that
it may permit other causes of this population’s
disproportionately large disease burden to be identified.

While this manuscript was in preparation, two papers
were published that substantially advanced understanding of
FREMTI’s role in these disorders [13,35]. The first, reported
several FREMI mutations in MOTA cases of either First
Nations or European ancestry [35] including: an inframe
deletion of exons 8-23, one nonsense, two missense, and a
synonymous alteration (c.5556A>G). Notably, neither of the
two variants identified in First Nations patients (deletion of
exons 8 — 23 or ¢.5556A>G [G1853@G]) is the cause in our
cases, in view of the absence of CNVs in the 330 kb region
(Figure 3) and the fact that c.5556A>G’s does not segregate
with disease (data not shown). Since a second causative allele
was not identified in some individuals of Oji-Cree ancestry
reported in Slavotinek et al. [35], the possibility therefore
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Figure 2. MOTA phenotypic spectrum in Albertan First Nations pedigrees. The oculo-facial phenotypes observed are diverse, ranging from
isolated ocular anomalies to broader characteristics including dimpled noses (white arrows) and aberrant hair wedges where hair extends
across the forehead to reach the eyebrow (black arrows). As evident from the montage, the ocular malformations can be bilateral (A, B) or
unilateral (C, D), and vary in terms of the degree of lid involvement from isolated fusion (D) to abortive cryptophthalmos (E). Associated
features include corneopalpebral synechiae (E, F), corneal opacification (G), and vascularization (H).
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Figure 3. Montage illustrating representative genotype and copy number data across the IBD interval and FREM 1. A: Genotype status (upper
panels) and copy number data (lower panels) are provided for the first 55 SNPs in the IBD region (Chr9: 14,377,817-14,484,388). The BAF
plots demonstrate homozygosity in the probands (BAF=1 or 0) and heterozygosity in the unaffected parents (BAF=0.5). The LRR plots also
suggest no CNVs are present (LRR ~0). B: The lack of CNVs in FREM1 (14,727,151-14,900,234) is evident from LRR plots. CnvPartition
did not detect any CNVs in this region as all 96 SNPs in this region were assigned a normal CNV value of 2.
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Figure 4. Illustration of the homozygous regions and the IBD interval in the four probands. The regions of homozygosity, which range from
330 kb to 10.4 Mb, include a 330 kb IBD interval common to all probands (red line). This interval contains ZDHHC2] and CERI, and is 16
kb 3" of FREM1’s last exon. Homozygosity mapping defined one IBD interval suggesting that mutation responsible for MOTA lies within
the narrow 330 kb region.

TABLE 2. SEQUENCE VARIANTS IDENTIFIED.

Gene Exon Variant Amino acid residue dbSNP reference
number
ZDHHC21 exon 6 c.318 T>C C106C rs17215796
FREM1 exon 3 c.-135C>G N/A

exon 5 c.456 A>G Q152Q rs10961757
exon 21 c.3634 G>T A1212S rs35870000
exon 26 c.4785 C>T A1595A rs10733289
exon 26 c.4791 T>C D1597D rs1032474
exon 27 ¢.5004 C>A 116681 rs17219005
exon 31 c.5556 A>G G1853G Not described
exon 34 ¢.5859 T>C V1953V rs4741426

Note: no sequence variants were identified in CER/ and the A1212S alteration in FREM1 is present in 28% of controls (Coriell

Collection).

exists that a still to be identified allele is common to both the
Oji-Cree and First Nations populations. The second
publication describes heterozygous FREM1 deletions and 3
missense  variants  that associate = with  metopic
craniosynostosis as well as documenting the contribution of
FREMI in patterning the murine cranial skeleton [13].
Accordingly our study demonstrates additional genetic
heterogeneity among the First Nations, who would have been
anticipated to have a single cause for the phenotype.

The most parsimonious explanation for our findings is
that a sequence variant within the 330 kb IBD interval, which
is located 16 kb 3’ of FREM]I’s last known exon, causes

MOTA. This is most likely to represent a regulatory element;
however the possibility that an additional exon remains to be
defined, cannot be excluded. Support for the concept of a
regulatory variant is provided by the Frem”? murine strain,
which lacks a coding Frem ] mutation and is believed to have
a variant in a control region that causes cryptophthalmos-like
phenotypes [37]. FremI’s role during development suggests
that its temporal-spatial expression is tightly controlled, in
keeping with the regulatory elements and tissue specific
enhancers defined for a range of other developmental
regulatory genes [39]. There are several examples of such
mutated sequences in both ocular and systemic diseases, with
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regulatory mutations 3’ to PAX6 causing aniridia and
demonstrated to be functionally relevant by murine
transgenesis rescue experiments [40,41]. In an attempt to
define such elements, seven regions conserved across
vertebrates were sequenced, identifying a homozygous T>C
base pair substitution (ECR-7) that segregated with the
phenotype. Bioinformatics analysis for regulatory elements
using the VISTA Enhancer Browser online database [42]
yielded no tissue specific enhancers for this region (data not
shown). The most likely explanation is that this variant is in
linkage disequilibrium with the true mutation, and it should
be noted that sequence conservation is not necessarily a
criteria of all regulatory elements [43]. Future research
directions to support the relevancy of the identified 330 kb
IBD region could include assaying FREM1 expression from
mRNA isolated from skin fibroblasts of MOTA probands,
relative to a housekeeping gene and control samples. In
parallel, next generation sequencing of the 330 kb IBD
interval is increasingly feasible. It is interesting to note that
the transcription factor delta-Np63 has been shown to control
expression of members of the Fras/Frem gene family and
displays enhancer activity in the murine nose, eyelids,
genitals, and digits [44,45], the tissue domains affected in FS,
BNAR, and MOTA.

In summary, this study extends FREM1 heterogeneity in
MOTA syndrome of First Nations ancestry. Homozygosity
mapping defined one 330 kb IBD region on chromosome
9p22.3 comprising 152 SNPs in 4 probands. Sequencing the
genes in or adjacent to this interval (FREMI, CERI, and
ZDHHC2I) revealed no disease-causing mutations.
Accordingly, we infer that a variant within this region is
responsible for MOTA syndrome, and suggest that future
studies are indicated to define the causative mutation and by
facilitating genetic counselling, reduce the high prevalence of
MOTA syndrome in these isolated populations.
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Appendix 1. Primers used to amplify CERI and ZDHHC(C21.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 2. Primers used to amplify ECRs.

To access the data, click or select the words “Appendix
2.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 3. Erroneous SNPs identified.

GenomeStudio’s heritability report algorithm was used
to identify potentially discrepant parent-child relationships
and reveal non-Mendelian genotyping errors. Erroneous
SNPs were removed before homozygosity analysis with
PLINK. More than 99.9% of SNPs are inherited in a

Mendelian manner from unaffected mothers to probands
verifying correct parent child relationship. To access the data,
click or select the words “Appendix 3.” This will initiate the
download of a compressed (pdf) archive that contains the file.

Appendix 4. Percentage genome homozygosity.

Percentage homozygosity was derived from the ratio of

the total length of all autosomal homozygous regions, divided
by the length of all autosomes (2,867 Mb). To access the data,

click or select the words “Appendix 4.” This will initiate the
download of a compressed (pdf) archive that contains the file.

Appendix 5. A homozygous point mutation within ECR-7 segregates with

MOTA.

Electropherograms of a point mutation found to segregate
with the disease are shown for the four probands and the
unaffected parents in ECR-7, a region identified by ECR
Browser to be conserved from human, chimpanzee, rhesus
macaque, cow, opossum, rat, mouse, chicken and frog, but not

in puffer fish or zebrafish. Probands are homozygous C/C
while unaffected parents are C/T. The genomic reference used
to compare sequence is T/T in this position. To access the data,
click or select the words “Appendix 5.” This will initiate the
download of a compressed (pdf) archive that contains the file.
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