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Abstract

Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of
these biologic drugs requires a robust host organism for generating high titers of protein during fermentation.
Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain
engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains
that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR,
microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded
protein through the ER. This combination of single-cell measurements and computational modelling shows that protein
trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to
enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve
productivity.
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Introduction

More than 240 monoclonal antibody products are currently in

clinical trials [1], and protein-based products are expected to

constitute four of the five top selling drugs by 2013 [2]. While

mammalian cells and Escherichia coli are the main production hosts

for biopharmaceutical manufacturing, yeast cells have also proved

to be useful hosts owing to their stability and capability to secrete

complex proteins. Pichia pastoris is a methylotrophic yeast that is a

widely used host for heterologous protein expression [3,4].

Engineering these organisms has also generated strains capable

of secreting monoclonal antibodies with homogeneous human N-

linked glycans in excess of 1 g/L [5,6]. A potential protein therapy

for cancer and rheumatoid arthritis (a-IL-6 monoclonal antibody)

produced in P. pastoris is currently in Phase II clinical trials (http://

www.alderbio.com/11/PIPELINE/). Despite the increasing im-

portance of P. pastoris in biomanufacturing, its productivity per

culture still lags the state-of-the-art mammalian cell lines. The

yield of protein produced by fermentation is one of the most

significant factors in determining both the cost of biotherapy

production [7] and ultimately, can impact global access to

therapies for patients. A key goal of any bioprocess development,

therefore, is to maximize protein production and secretion from

the host cells while maintaining product quality and consistency.

One route to optimize productivity is through rational strain

engineering. Engineering promoters [8,9] or over-expressing

either transcription factors [10] or specific proteins in the secretory

pathway [11,12] in P. pastoris has led to moderate increases in

productivity on a case-by-case basis, but cultivation titers have

been reported to vary dramatically with protein type and

complexity. For example, non-glycosylated, monomeric proteins,

such as human serum albumin (HSA), can be produced in

fermentation with yields up to 10 g/L [13]. Secretion of more

complex proteins in P. Pastoris, including multimeric structures

with post-translational modifications, are challenging, however, to

produce in excess of 1 g/L [5].

Population-based analysis of the genome [14,15,16], transcrip-

tome [17,18,19,20], and proteome [21] has identified certain

genes that may further increase productivity, but a general

understanding of the most influential factors that affect the yield of

secreted proteins from P. pastoris has not yet developed. Non-

genetic factors also introduce substantial variability among cells

that further influences both production and secretion of proteins.

Recent reports of significant intraclonal variation in protein

secretion by both CHO cells [22] and P. pastoris [23] demonstrate

that epigenetic factors can strongly influence the distribution in

productivity within a culture. A systematic characterization of the

dynamics and variation in the production and secretion of proteins

at the single-cell level is needed to assess the diversity among a

population of cells and ultimately, to establish a conceptual

framework for informing strain engineering.

Here, we present a methodical investigation to determine how

the nature and complexity of heterologous proteins impacts the
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efficiency with which they are secreted by P. pastoris at the cellular

level. Using tools we have previously developed to examine the

secretions from single cells, we show directly that the key

bottleneck in protein secretion is the capacity of the secretory

machinery to transport folded protein out of the endoplasmic

reticulum (ER) and beyond. We then describe a simple

computational model for the flux of folded protein through the

ER based on a series of ordinary differential equations that further

supports these experimental observations and provides mechanis-

tic insights to the rate-limiting steps in this process. Furthermore,

the resulting understanding of how the nature of the protein

produced intersects with intrinsic limitations on secretory flux

resolves many of the variations reported for protein secretion in

yeasts.

Results

Strain construction and characterization
A series of yeast strains that each secreted one of three different

proteins of increasing folding complexity was generated. We

selected enhanced green fluorescent protein (eGFP), which is

known to mature rapidly (,30 min) and spontaneously [24], to

enable monitoring of intracellular, folded protein in relation to

secreted, folded protein. For comparison, we also chose to

examine both glycosylated and aglycosylated versions of a human

Fc fragment, a dimeric protein that requires foldases and

chaperones for proper folding [25]. To control for variations in

coarse transcriptional activities, all strains used the same locus

(GAPDH) for insertion of the gene of interest. For each strain, we

also determined the number of copies of the inserted gene by

qPCR and the relative expression of the gene at steady-state

during cultivation by RT-qPCR (Table 1).

We then used microengraving to monitor secretions quantita-

tively from thousands of individual cells within each strain

(Figure 1A). Microengraving is a soft-lithographic technique for

the high-throughput analysis of secreted products from single cells

[26,27], including P. pastoris [23]. The method reveals the

percentage of secreting cells (similar to an enzyme-linked immuno-

spot assay), as well as a measure of the average rate of secretion.

Single-cell analysis of strains secreting proteins under transcrip-

tional control of a constitutive promoter, pGAPDH, following

shake-flask cultivation showed that protein complexity modestly

affected the rate of protein secretion, but not the percentage of

secreting cells within the population (Figure 1B). Under this

promoter, single cells secreted eGFP slightly faster

(1.460.2 ng*mL21*h21 average median rate for the single-copy

strain) than either the glycosylated (0.960.3 ng*mL21*h21) or

aglycosylated Fc fragment (0.760.2 ng*mL21*h21), which were

secreted at similar rates. Single-cell rates of secretion increased

linearly (R2 = 0.83) with gene expression for all strains assayed

(Figure S1), indicating that when proteins are produced using a

constitutive promoter, the cellular capacity for secretion does not

fully saturate, as expected [28].

Only 65610% of cells from any culture analyzed for these

strains actively secreted detectable quantities of protein during our

assays (typical limit of detection was between 0.05 and

0.2 ng*mL21*h21). We have previously determined that these

‘‘off’’ cells are neither dead nor geriatric [23]. Moreover, these

cells are not metabolic mutants: measures of internal eGFP by in-

well imaging cytometry revealed .97% of all single cells had

detectable levels of internal protein, and the percentages of

secreting cells were identical when grown for conditional exclusion

of petite colony mutants (data not shown). Confocal microscopy

images showed eGFP-secreting cells had a distinct distribution of

the protein within an intracellular compartment close to the

nucleus, consistent with localization in the ER and Golgi; by

comparison, a strain producing eGFP that was not targeted for

secretion had distributed protein uniformly throughout the

cytoplasm (Figure S2). All cells assayed from a secreting clonal

population, therefore, competently produce folded protein in the

ER, but only a fraction of these cells actively secretes it at any

given time.

Increasing the flux of protein into the secretory pathway using

the strong and tightly regulated methanol-inducible promoter

from the alcohol oxidase 1 gene (pAOX1) of this organism to

promote transcription had a dramatic effect on the single-cell rates

of protein secretion for all three proteins (Figure 1C). Their

median rates of secretion were reduced 2–4 fold relative to their

rates under pGAPDH for strains with low copy numbers of genes.

Interestingly, the secretion rate for aglycosylated Fc was undetect-

able within the sampling period (60 min), suggesting slow rates of

release below our single-cell limits of detection. We further

confirmed that these strains did produce much lower titers of

protein than the corresponding pGAPDH-strains by both SDS-

PAGE and ELISA of culture supernatants (data not shown). This

outcome may result from decreased levels of folded aglycosylated

Fc available for export from the ER relative to the glycosylated Fc,

since interactions with essential folding chaperones are promoted

by glycosylation [29]. Increasing the copy number of genes under

transcriptional control of pAOX1 further decreased rates of

secretion for all proteins, consistent with literature reports of

similar findings [11,30]. The frequencies of secreting single cells

were, however, similar to those observed under pGAPDH

(60610%). Non-secreting cells were neither dead nor incapable

of making and folding proteins—98% of cells producing eGFP

under pAOX1 had internal eGFP. Together, these results indicate

Table 1. Pichia pastoris strains generated for systematic
investigation of the relationship between protein complexity,
gene dosage, relative expression and secretion.

Strain Namea Secreted protein
Gene
copyb number

Relative mRNAc

Expression

pGAPaeGFP1 eGFP 1 2.1

pGAPaeGFP2 eGFP 3 12.7

pGAPaeGFP3 eGFP $4 19.4

pGAPaGFc1 Glycosylated Fc 1 1

pGAPaGFc2 Glycosylated Fc 2 1.4

pGAPaGFc3 Glycosylated Fc $6 11.3

pGAPaAgFc1 Aglycosylated Fc 1 5.1

pGAPaAgFc2 Aglycosylated Fc 2 5.4

pAOXaeGFP1 eGFP 2 16.4

pAOXaeGFP2 eGFP 5 19.8

pAOXaGFc1 Glycosylated Fc 2 10.9

pAOXaGFc2 Glycosylated Fc 5 8.9

pAOXaAgFc1 Aglycosylated Fc 2 5.1

pAOXaAgFc1 Aglycosylated Fc 4 22.2

aStrain names indicate promoter used.
bDetermined by qPCR using an absolute quantification of transcript copy
number.
cDetermined by RT-qPCR using an absolute quantification of transcript copy
number and the expression of actin as a control.
doi:10.1371/journal.pone.0037915.t001

P. pastoris Secretory Capacity Limits Productivity
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that enhanced expression of proteins can negatively impact the

median productivity of individual cells.

Surprisingly, however, expression levels of mRNA for genes

transcribed using pAOX1 were not substantially more than that

observed for high-copy strains of the same genes using pGAPDH

(Table 1). This result may indicate degradation of mRNA

transcript following induction of the unfolded protein response

(UPR) when using pAOX1, or could also indicate that pAOX1 is

not significantly more active than pGAPDH. We note that the

observed relative expression levels are not likely due to poor

culture induction since distributions of single-cell rates of secretion

and cell-corrected protein titers are similar for glycosylated Fc

secretion when cells are cultivated either in shake flask or in fed-

batch fermentation (Figure S3).

Modeling population distributions of secretion
Our experiments showed that the rates of protein secretion by

individual cells exhibited significant heterogeneity when transcrip-

tion was mediated by either pGAPDH or pAOX1. Assuming that

the release of secreted proteins from cells is a Poisson process, we

modeled the steady-state distributions for all strains (Figure 2A)

using a probability density function of the gamma distribution (Eq.

1):

p(x)~
xa{1e

{x
b

baC(a)
ð1Þ

where the probability of secreting protein at a given rate (p(x))

depends on parameters a, the average rate of secretion events, and

b, the average size of those events (proportional to the number of

molecules released) [31]. This analysis for all strains indicated that

variations in secretion depend on both the complexity and

magnitude of gene expression of a protein (Figure 2B). As gene

expression increases for strains using pGAPDH, the frequency of

secretion events decreases, but the size of any given burst

increases. This inverse relationship between a and b suggests that

either the volumes of the vesicles transporting proteins or the total

intrinsic capacity of the cell for protein export must be fixed—that

is, there is a discrete set of components (membranes, proteins, etc.)

available for shuttling protein from the ER through the Golgi

Figure 1. Single-cell analysis of P. pastoris secreting heterologous proteins. (A) Schematic illustration of process for measuring the
distributions in rates of secretion of heterologous proteins by single cells. Yeast cells cultivated by shake-flask fermentation for ,12–24 h at 25uC
were deposited onto an array of microwells at a density of ,1 cell per well. Microengraving was performed to create a protein microarray comprising
the secreted proteins captured from occupants of each individual well. Imaging cytometry was performed to determine number of cells per well.
Integration of the data yielded distributions in rates of secretion for single cells; the distributions are represented as heatmaps where the gradient in
color (blue to yellow to red) indicates the relative percentage of cells producing at a specific rate. (B) and (C) Heatmap representations of the
distributions of single-cell rates of secretion as a function of gene copy number obtained by microengraving for proteins produced using either (B)
pGAPDH or (C) pAOX1 promoter. Data shown are representative of at least three independent measurements. The threshold for secretion was
determined by the background median fluorescence intensity of each individual protein microarray+2s. Pie charts indicate average percentages of
secreting cells for each strain (red).
doi:10.1371/journal.pone.0037915.g001

P. pastoris Secretory Capacity Limits Productivity
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apparatus to the cell surface. The export of protein out of the ER

appears to be particularly burdened under pAOX1. Fitted

distributions describing single-cell secretion rates for pAOX1

strains indicate both burst frequency and burst size both remain

low, perhaps indicating inefficient recycling of protein export

machinery in the presence of excess protein cargo.

Export of proteins by secretion is rate-limiting
Strains producing eGFP under either pGAPDH or pAOX1

showed that nearly all cells produced folded protein, but only a

subset was secreting it. Further comparison of the relative rates of

secretion of eGFP to intracellular quantities in individual cells

showed two distinct, co-existing subpopulations: one that secretes

eGFP at detectable levels and another that is non-secreting

(Figure 3A and 3B; File S1). Interestingly, both populations have

similar amounts of folded intracellular eGFP, with the secreting

population containing slightly more protein (p,0.001). The

population that actively secreted protein did so at a rate

moderately proportional to the amount of intracellular eGFP

(pGAPDH, r = 0.18; pAOX1, r = 0.06). Induction of UPR by

treating cells with the strong reducing agent dithiothreitol (DTT),

known to specifically affect protein folding within the secretory

pathway [32], led to a six-fold reduction in the median rate of

eGFP secretion (data not shown). Nonetheless, the correlation

between accumulation of folded protein and secretion in the

actively secreting population was maintained (pGAPDH, r = 0.12).

Furthermore, the non-secreting populations of both the untreated

and DTT-treated cultures had similar amounts of intracellular

eGFP, indicating that the UPR itself does not lead to an excess

accumulation of folded protein inside the ER. The proportionality

between intracellular levels of eGFP and rates of secretion—even

under conditions of induced UPR—suggest that the flux of folded

proteins out of the ER, and subsequently through the secretory

pathway, is a rate-limiting process for productive export.

Rates of secretion and degradation determine steady-
state distributions of folded protein in the ER

We next sought to develop a simple mechanistic model from

first principles to understand how distinct subpopulations of cells

with varied rates of secretion could arise. The flux of proteins

through the ER is determined by the rates at which proteins

transfer into the ER, and then out of the ER either by entering the

secretory pathway or by being shuttled to the proteasome via ER-

associated degradation (ERAD) [33]. We generated a mathemat-

ical model (Eqs. 2–4) to describe the steady-state distribution of

folded proteins retained in the ER (Figure 4a):

d½ER�
dt

~kexp{(kERADzksec)½ER� ð2Þ

d½Proteasome�
dt

~kERAD½ER� ð3Þ

Figure 2. Analysis of steady-state distributions of rates of secretion. (A) Distributions of rates of secretion of eGFP for (Top) a clone with a
single copy of eGFP under transcriptional control of pGAPDH, and (Bottom) a clone with two copies of eGFP under transcriptional control of pAOX1.
Red squares indicate binned single-cell secretion events following microengraving with each clone. Blue lines show the best fits using Eq. (1). Values
for a and b are shown. (B) Relationship between a (burst frequency) and b (burst size) for proteins expressed using either pGAPDH (top) or pAOX1
(bottom) as a function of gene copy number and complexity. Clones secreting eGFP (green), clones secreting aglycosylated Fc fragment (blue) and
clones secreting glycosylated Fc fragment (red) are shown for a single gene copy (squares), 2–3 gene copies (triangles) and 4 or more gene copies
(circles). Error bars represent S.E.M. for each clone from at least three separate measurements.
doi:10.1371/journal.pone.0037915.g002

P. pastoris Secretory Capacity Limits Productivity
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d½Secretory pathway�
dt

~ksec½ER� ð4Þ

where [ER] represents the concentration of folded protein present

in the ER and kexp, kERAD, and ksec are the rate constants for

protein flux into the ER, out of the ER to the proteasome, and out

through the secretory pathway, respectively.

We hypothesized that protein transcription and translation were

not significant determinants for the overall rate of secretion. A

typical protein is transcribed and translated within less than

10 minutes per step [34,35], while transit of proteins through the

ER and Golgi typically requires 40 to 120 minutes per step [28]. It

also has been demonstrated that factors extrinsic (downstream) to

expression of a gene dominate the variation in the intracellular

quantity of folded proteins that are highly abundant [36]. Given

these reports, we tested our assumption by creating a strain

concurrently secreting two proteins of different folding complexity

(eGFP and glycosylated Fc) transcribed from different loci within

the same cell (Figure 3C). If the rate-limiting step for secretion

were strongly influenced by the rates of gene transcription or

translation for each product, we would expect no correlation

between the rates of secretion for these two proteins since the

behaviors observed for individual cells would depend on the

stochastic bursts of transcription/translation associated with each

product independently. Instead, we observed that the secretion of

both eGFP and the Fc fragment by single cells was highly

correlated (r = 0.79–0.9) in spite of the expression of these proteins

from different loci [37]. This correlation supports a kinetic model

in which the transit of folded proteins through the ER and Golgi is

the rate-limiting process, while the distribution observed among

cells’ combined rates of secretion for both proteins suggests that

additional extrinsic factors affect the capacity of any given cell to

secrete proteins.

Using our mathematical model, we then further examined the

relationship between the rate of protein secretion and the amount

of intracellular protein under a variety of conditions. We simulated

the steady-state secretion from cells by initializing the ODEs above

(Eqs. 2–4) with varying values of kexp, kERAD, and ksec. The ODEs

were then solved to achieve a steady-state condition over time for a

cell starting with no protein in the ER, proteasome, and secretory

pathway (as detailed in the Methods). Once the system obtained

steady-state, the rate of secretion and quantity of protein in the ER

were recorded. To model data for a distribution of cells, this

simulation was repeated 5,000 to 10,000 times, allowing each

iteration to select kinetic parameters from a Gaussian distribution

centered around the initial values used to establish the relative

rates of secretion and degradation (1/ksec and 1/kERAD, respec-

tively).

Figure 3. Characterization of relationships between intracellu-
lar and secreted proteins for single cells of P. pastoris. Density
plots of the relative rates of eGFP secretion by single cells analyzed by
microengraving with respect to the relative amount of intracellular
eGFP determined by fluorescence microscopy for clones containing (A)
one eGFP gene copy under pGAPDH or (B) two eGFP gene copies under
pAOX1. Dashed line indicates the limit of detection for secreted eGFP in
microengraving (background+2s). The median amounts of internal
eGFP for cells above and below this limit of detection are marked (X)
and are significantly different (Mann-Whitney test, p%0.001 for both
pGAPDH and pAOX strains). (C) Density plot of the relative rates of
secretion analyzed by microengraving for the glycosylated Fc fragment
and eGFP produced simultaneously in single cells at two different loci
using pGAPDH. Pearson’s correlation coefficient for secretion of these
two proteins as shown is 0.79.
doi:10.1371/journal.pone.0037915.g003
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Figure 4. Model for steady-state distribution of protein trafficking through the ER in P. pastoris. (A) Schematic model for protein
secretion that includes flux from the ER via both protein export and degradation. (B) Density plot of the relative rates of protein secretion by single
cells compared to the relative amount of intracellular protein calculated with the kinetic model described in equations 2–4 under different relative
median rates: kERAD.ksec (purple, r = 0.826); kERAD = ksec (green, r = 0.014); and kERAD,ksec (pink, r = 20.829) (n = 5,000 for each group; Pearson’s
correlation coefficient for protein production and secretion). (C) Density plot of the relative rates of protein secretion by single cells against the
relative amount of intracellular protein for a representative model data set where median kERAD.ksec (left panel). Pearson’s correlation coefficient for
protein production and secretion in this population is 0.391. Blue shading indicates cells with rates of protein secretion greater than the median
rate+2s (high secretors). These data were replotted as a function of their rate parameters for secretion and degradation; units shown are s21 (right
panel). The median tsec was 80 min and median tERAD was 60 min, with a standard deviation of 10 min for each. (D) Distributions of the relative rates
of protein secretion for model populations of cells producing proteins of low (green), intermediate (red), and high complexity (blue). The median tsec

value was scaled by a multiplicative constant between 1 and 2 in order to reflect the additional time required to process proteins of higher

P. pastoris Secretory Capacity Limits Productivity
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Global changes to the relative rates of protein degradation and

protein secretion in the model dramatically affected the depen-

dence between the amount of intracellular protein and the relative

rate of protein secretion (Figure 4B). When the median rate of

protein degradation through ERAD in the population exceeded

that of protein secretion, there was a positive linear correlation

between the rate of secretion and the amount of intracellular

protein. This outcome was consistent with our experimental data

for the production and secretion of eGFP (Figure 3). Indeed, UPR,

and by extension ERAD, are known to be constitutively active in

P. pastoris [10]. Decreasing the median rate of protein degradation

relative to protein secretion abolished this positive correlation, and

once the median rate of protein secretion exceeded degradation,

the correlation was negative.

The model also suggested, therefore, that the subpopulation of

cells with the highest median rates of secretion within a

distribution would have the highest proportional rate of secretion

compared to degradation. For a modeled distribution of cells

similar to our experimentally measured ones (kERAD.ksec), the

best predicted secretors (median+2s) were those that exceeded a

certain threshold ratio of ksec/kERAD (Figure 4C). These predic-

tions together indicate that the relative rates for flux of protein out

of the ER (via ERAD and via the secretory pathway) can strongly

influence the relationship between intracellular contents and rates

of secretion observed experimentally.

We then modified the model to include a scaling factor for ksec

to account for other biomolecular attributes that can impede the

overall rates of a protein’s progression to secretion (e.g.,

maturation time, post-translational modifications, or multimeriza-

tion). Varying this parameter showed that the median rate of

secretion decreased as the complexity of the proteins increased

(Figure 4D), confirming another experimental observation

(Figure 1B). Furthermore, our simple model for the steady-state

distribution of proteins in the ER also confirmed our experimental

observation that secretion scales linearly with gene expression

among proteins with diverse complexity (Figure 4E and Figure S1).

Discussion

Here, we report a systematic experimental and computational

investigation into how the rate of secretion varies among

individual cells relative to the complexity and expression level of

heterologous recombinant proteins in the yeast P. pastoris.

Modeling distributions of the rates of secretion exhibited by single

cells showed that an inverse relationship exists between the

frequency of secretion events and the quantity of protein in each

event for proteins of varying complexity. This relationship

indicates that there is a fixed capacity for protein secretion that

is independent of the capability of a cell to fold a particular

protein. Variations in secretion observed within a culture result,

therefore, from heterogeneities in the capacities of individual cells

to export proteins by secretion, rather than from their inability to

prepare folded proteins for secretory export.

Constraining the flux of proteins out of the ER via the secretory

pathway also implies that folded proteins accumulate in the ER,

and further promotes the induction of the UPR (including ERAD)

as the machinery available for exporting protein becomes

saturated. Our simple model for the steady-state quantities of

protein in the ER best agreed with our experimental observations

when flux out of the ER via degradative processes increased. The

excess of protein entering the secretory pathway when using active

promoters like pAOX1, therefore, likely congest protein export

machinery more rapidly than constitutive promoters, and subse-

quently causes high levels of ER stress [12], protein degradation

[38] and reduced translation [39]. These responses may then

further erode the median rate of protein secretion because less

protein remains available for export relative to the quantities

degraded.

Our data here also indicates that secretion is a binary phenotype

for individual cells: eGFP-producing cells co-exist as two distinct

populations of cells with one actively secreting and one essentially

‘‘off’’ population (Figure 3). We previously reported that cells can

switch dynamically between these two states of secretion [23].

Here, we have proposed a simple model to explain the steady-state

distribution of folded proteins trafficking through the ER (Eqs. 2–

4). This model provides mechanistic insight into how cells may

transition between secreting and non-secreting states. Considering

an initial population of secreting cells (purple, Figure 5) similar to

those we observed experimentally (where the median rate of

ERAD is greater than the median rate of secretion), it is expected

that increasing stores of folded protein in the ER leads to the

saturation of the available capacity for secretion and a subsequent

decline in ksec. If kERAD is constant during this secretory decline,

our model suggests that an accumulation of intracellular protein

should occur, as incoming folded proteins are neither efficiently

secreted from the ER nor degraded (light pink, Figure 5). A

concomitant increase in kERAD and/or decrease in kexp is required

to reduce residual folded protein and recover a distribution of cells

with an intracellular protein level that is similar to that in the

secreting populations (dark pink, Figure 5). A consequence of this

upregulated activity, however, is that the median rate of secretion

also decreases. This outcome is comparable with our experimental

results, where the median amount of protein inside the non-

secreting populations of pGAPDH or pAOX1 eGFP-producing

strains is similar to that found in secreting populations (Figure 3).

In fact, non-secreting populations of cells in strains using either

promoter contain statistically lower amounts of intracellular eGFP.

This observation is consistent with a mechanism in which cells

under stress switch to an ‘‘off’’ state of secretion wherein excess

folded protein is depleted from the ER and the flux of incoming

proteins slows prior to restarting secretion.

The observed ‘‘all-or-none’’ secretion phenotype is not consis-

tent with the existence of an analog transition between secreting to

non-secreting states, and implies that the cells use positive

feedback to regulate these transitions [40]. Bistability in biological

systems is now widely recognized [41], and the ability of a cell to

efficiently transition from one state to another can confer a fitness

advantage [42]. Maintaining a dynamic balance between export-

ing proteins to the Golgi and ERAD, which is essential for

secretion [43], is likely a key mechanism for cell survival.

Accumulation of protein within the ER can result in reticulophagy

(ER-specific autophagy) [44] and ultimately, cell death [43]. Cells

that have fully activated an ERAD-pathway shunt may, however,

require time to regain previous levels of secretory function. This

hypothesis is also consistent with our previous observations that at

least several doubling times are necessary for single cells (or their

complexity. (E) Plot of relative gene expression against the median rates of secretion for populations of cells generated using the kinetic model with
varying levels of gene expression and protein complexity. Data were fit by linear regression (R2 = 0.983). kexp was multiplied by the relative mRNA
expression level in each strain (Table 1), and tsec was scaled as noted in (D) for glycosylated Fc (medium complexity) and aglycosylated Fc (high
complexity).
doi:10.1371/journal.pone.0037915.g004
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progeny) to regain productivity [23]. Our simple model based on

mass balance does not explicitly account for the sharp transitions

observed, and it is likely that both a complex network of genes

regulating secretion and epigenetic variations contribute to the

cellular decision-making process when switching between states of

secretion [45]. Understanding this interplay will be essential for a

complete understanding of the dynamic processes linking secreting

and non-secreting phenotypes.

Nonetheless, many of the variations reported in the literature

regarding protein secretion in yeast can be accounted for by

invoking a mechanism wherein an intrinsic capacity for flux

through the ER into the secretory pathway limits the transit of

protein, and subsequently ER stress increases as folded proteins

accumulate in the ER. General activation of the UPR decreases

expression and secretion for small proteins with few disulfide

bonds [10]. This outcome is understandable in light of this study,

since UPR involves upregulation of associated transcription factors

like HAC1 that also trigger increased ERAD through an

upregulation of other proteins [32], including ER degradation-

enhancing mannosidase-like protein (EDEM) [33], a homolog of

which exists in P. pastoris [14]. Indeed, ERAD-associated E3

ubiquitin-protein ligase HRD1 was observed to be upregulated in

P. pastoris overexpressing Hac1 [18].

Activation of the UPR can be beneficial, however, when protein

folding, rather than transit through the secretory pathway,

becomes rate limiting. In addition to inducing increased ERAD,

expression of HAC1 also upregulates certain foldases and

chaperones in P. pastoris, such as protein disulfide isomerase

(PDI) and binding immunoglobulin protein (BiP) [18]. Targeted

upregulation of these factors has enhanced the production of

complex proteins more than general activation of the UPR, since

there is not an accompanying increase in degradation [11,12].

Furthermore, a specific increase in the expression of calnexin,

another ER-resident chaperone, promotes increased secretion of

many proteins, regardless of protein complexity or post-transla-

tional modification [46]. These enhancements reduce the time

required for protein folding of complex proteins, and improve

productivity, since secretion is not yet rate limiting in these cases.

Dramatic increases in the amount of protein present in the ER,

either by copy number increase or promoter improvement,

typically lead to decreased production [12,30], as these changes

likely overwhelm the secretory machinery. These outcomes

together are consistent with our model in which secretory capacity

is fixed, and folded proteins accumulate in the ER faster than they

are secreted.

We posit that these results have three implications for improving

the secretion of heterologous proteins. First, targeting components

involved in transport from the ER to the Golgi and out of the cell,

as well as developing new strategies to control ERAD and protein

degradation, should increase fermentation titer. Improving transit

through the Golgi in particular should enhance overall secretory

flux; this process has previously been identified as a rate-limiting

step for protein secretion in mammalian cells [28]. Specific

upregulation of folding machinery and chaperones may also yield

incremental improvements in protein production, especially for

proteins with complex folds and multiple disulfide bonds. Second,

identifying and modulating the regulatory elements governing the

abrupt transitions between secretory states (on/off) may also

confer improved productivity, regardless of protein complexity,

either by reducing the mean residence time in non-secreting states

or by allowing more rapid transitions between states. Third,

engineering promoters controlling expression of heterologous

proteins (without also addressing secretory capacity directly)

should yield only modest gains in fermentation titer because this

‘‘fine-tuning’’ simply matches effective gene expression to the

inherent secretory capacity of a cell [8]. Since the secretory biology

of P. pastoris is similar to that found in other eukaryotic expression

hosts [47], we expect these strategies to improve mechanisms of

transit out of the ER via secretion should also inform approaches

to enhance production of secreted heterologous proteins in other

systems as well.

Materials and Methods

Plasmid construction
cDNA for eGFP and an aglycosylated fragment of the human

Fc-region of an antibody sequence (amino acid residues 237–468)

codon optimized for P. pastoris were designed and purchased from

GeneArt (Regensburg, Germany). Each gene was inserted into a

pGAPZaA plasmid (Invitrogen, Carlsbad, CA), which was

modified by replacing the Zeocin resistance cassette with a

kanamycin resistance cassette. Genes were cloned behind the

GAPDH promoter using the restriction sites SacII and EcoRI.

The resulting plasmids were named pGAPDHKaeGFP and

pGAPDHKaFcAg, respectively. The plasmid pGAPDHKaFcAg

was modified by site-directed mutagenesis (Quick Change II,

Stratagene, Agilent Technologies, Santa Clara, CA) to recreate the

glycosylation site at Asn 297 (QRN mutation) using mutagenesis

primers as follows: forward primer 59- GCCAAGAGAAGAA-

CAATACAACTCTACTTACAGAGTTGTTTCTG -39 and re-

verse primer 59- CAGAAACAACTCTGTAAGTAGAGTTG-

TATTGTTCTTCTCTTGGC -39. The resulting plasmid was

named pGAPKaFcG. The last 123 base pairs of the pGAPDH in

plasmids pGAPDHKaeGFP, pGAPDHKaFcAg, and pGAPDH-

Figure 5. Effects of altering relative rates of secretion and
degradation on modeled distribution of intracellular and
secreted protein. Density plot of the relative rates of protein
secretion by single cells against the relative amount of intracellular
protein for model data sets under three conditions: 1) where median
kERAD$ksec (purple), 2) where median ksec%ksec in Condition 1 (light
pink), and 3) where median ksec%ksec in Condition 1 and median
kERAD.kERAD and/or kexp,kexp in Condition 1 (dark pink). The median
amount of intracellular protein for populations in Conditions 1 and 3
are marked (X). The secretion-inhibited population (light pink) was
generated by increasing tsec to 400 min (standard deviation 40 min)
while keeping all other parameters the same as the initial population
(purple) derived from Figure 4C. The stress-induced population (dark
pink) was generated by reducing kexp or decreasing tERAD to obtain a
similar median level of protein in the ER as the original population.
doi:10.1371/journal.pone.0037915.g005
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KaFcG were removed by digestion with BspHI and BstBI since

deletion of significant portions of the 39 region of the promoter is

known to abolish promoter activity [48]. The pAOX1 gene was

isolated from the pPinkHC plasmid (Invitrogen, Carlsbad, CA)

using forward primer 59-ATTAAACCATGGAGATCTAA-

CATCCAA-39 and reverse primer 59-CACACTATC-

GATCGTTTCGAATAATTA-39, introducing an NcoI and a

ClaI site respectively. The resulting PCR fragment was digested

with NcoI and ClaI and was cloned directly in front of the a-

mating factor in the BspHI and BstBI digested plasmids

pGAPDHKaeGFP, pGAPDHKaFcAg, and pGAPDHKaFcG to

create three new plasmids named pAOX1KaeGFP, pAOX1KaF-

cAg, and pAOX1KaFcG, respectively.

Strain construction
All six vectors described above were linearized in the pGAPDH

gene using AvrII to target each construct to the pGAPDH locus

for integration. Competent P. pastoris cells were prepared and

transformed by electroporation according to the protocol from the

pGAPZaA vector kit (Invitrogen, Carlsbad, CA). Each of the six

linearized vectors was used to transform a wild-type P. pastoris

strain (NRRL 11430) to create strains secreting a single protein of

interest. The linearized pGAPDHKaeGFP was also used to

transform a wild-type P. pastoris strain secreting glycosylated

human Fc under the GAPDH promoter inserted at the TRP2

locus (a gift from GlycoFi, Inc.) to create a dual secreting eGFP/

glycosylated Fc strain. Transformants were plated on YPD (10 g/

L yeast extract, 20 g/L peptone, 20 g/L dextrose) plates

containing 500 mg/mL G418 sulfate (Invitrogen, Carlsbad, CA).

Single transformants were colony purified and used to create

clonal stocks, which were kept frozen at 280uC.

Strain cultivation
P. pastoris strains were streaked from frozen clonal stocks onto

solid YPD media. Colonies were allowed to develop at 25uC for

several days. A single colony was then used to inoculate 10 mL

liquid media and the culture was then grown at 25uC with shaking

at 290 rpm. Strains utilizing pGAPDH were grown in YPD

medium for 18 h (OD600 = ,3–6) before harvesting for further

characterization. To evoke UPR, strains were grown in YPD

medium for 18 h (OD600 = ,3–6) before resuspension and further

outgrowth in YPD containing 10 mM DTT (IBI Scientific) for

3 h. Strains utilizing pAOX1 were grown in BMGY (Buffered

Glycerol Complex Medium: 100 mM potassium phosphate,

pH 6.0, containing 13.4 g/L yeast nitrogen base (YNB) without

amino acids, 10 g/L yeast extract, 20 g/L peptone and 10 g/L

glycerol) medium for 24 h (OD600.10) before induction. Cells

were then induced by resuspension in BMMY (Buffered Methanol

Complex Medium: 100 mM potassium phosphate, pH 6.0,

containing 13.4 g/L YNB without amino acids, 10 g/L yeast

extract, 20 g/L peptone and 10 g/L methanol) and grown for

another 18 h before harvesting for further characterization.

Strain characterization for gene copy number
Genomic DNA was prepared from each strain using the

YeaStar Genomic DNA Kit (Zymo Research, Irvine, CA) and

genomic integration of the gene of interest was confirmed by PCR.

Gene copy number was determined using a real-time PCR-based

method as described previously [49]. Briefly, primers were

designed using the PrimeTime qPCR assay design tool (IDT,

Coralville, IA). Primers for copy number determination of eGFP-

containing strains were as follows: forward primer 59-GACAAC-

CACTACCTGAGCAC-39 and reverse primer 59-CAGGAC-

CATGTGATCGCG-39. Primers for copy number determination

of Fc-containing strains (either glycosylated or aglycosylated) were

as follows: forward primer 59-TGACTGTTTTGCATCAA-

GATTGG-39 and reverse primer 59-

TGTGGTTCTCTTGGTTGACC-39. Real-time quantitative

PCR amplification was performed using a Roche LightCycler

480II instrument with software release 1.5.0 SP4 (Roche

Diagnostics, Indianapolis, IN). Real-time PCR mixtures were

prepared using the QuantiFast SYBR Green PCR kit (Qiagen,

Valencia, CA) with 10 ng genomic DNA from each strain and

250 nM of each primer per assay in a total reaction volume of

25 mL. Using the thermal profile recommended in the kit,

reactions were performed in LightCycler 480 96-well reaction

plates in triplicate with a standard curve for each gene recorded in

every plate. The amplification period was followed by a melting

curve analysis with a temperature gradient of 0.1uC/s from 65u to

97uC to exclude amplification of non-specific products. The

standard curve for each gene covered a copy quantity range from

1.86105 to 7.56108 copies per reaction. Calculation of copy

number used the published genome size of 9.4 Mbp [14] resulting

in ,91,000 copies of the genome present in 1 ng haploid P. pastoris

genomic DNA. Mean Ct values were plotted against their initial

copy quantity and standard curves were generated by exponential

regression of the plotted points. Absolute copy number for the

gene of interest each strain was calculated using the mean Ct value

and the corresponding gene’s standard curve.

Strain characterization for relative gene expression
Relative gene expression was determined using a reverse

transcription PCR-based method as described previously [10]

Briefly, total RNA was prepared from each strain using the

YeaStar RNA Kit (Zymo Research, Irvine, CA). Genomic DNA

was eliminated and 500 ng of RNA from each sample was reverse

transcribed using the QuantiTect Reverse Transcription Kit

(Qiagen, Valencia, CA). Template cDNA (corresponding to

25 ng RNA) was amplified using the QuantiFast SYBR Green

PCR kit (Qiagen, Valencia, CA) with 250 nM of each primer per

assay in a total reaction volume of 25 mL. The absence of genomic

DNA contamination in each sample was tested by including RNA

samples that had not been reverse transcribed. qPCR was

performed as described above for gene copy number determina-

tion with the given primers. The relative amounts of mRNA were

calculated using the Ct values and an absolute quantification of

copy number from a standard curve for each gene using the actin

gene as a control. Primers for actin amplification by qPCR were

described previously [10].

Strain characterization using microengraving
Microwell arrays containing 84,672 wells (each

50650650 mm3) were fabricated as reported previously using

photolithography and replica molding [50]. Microwell arrays were

used for microengraving with P. pastoris cells as previously reported

[23]. Briefly, PDMS arrays were sterilized, treated, and loaded

with harvested P. pastoris cells as cultured above. Glass slides were

prepared as described [50] using 25 mg/mL goat anti-human

Ig(H+L) antibody (Zymed, Invitrogen, Carlsbad, CA) as the

primary antibody for Fc capture or 25 mg/mL ABfinity rabbit

anti-GFP monoclonal antibody (Molecular Probes, Eugene, OR)

as the primary antibody for eGFP capture. The array of

microwells filled with P. pastoris cells was then used with the pre-

treated glass slide to generate a protein microarray as described

[23] during a 1 h incubation at 25uC. Following the incubation,

the entire sandwich comprising the PDMS microwell array and

the glass slide containing the protein microarray was submerged in

sterile PBS and separated to minimize cell loss.
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Following microengraving, the glass slides were washed and

treated as described with a solution of either goat anti-human IgG

secondary antibody (Cy5 conjugate, Jackson ImmunoResearch,

West Grove, PA) at 0.5 mg/mL in PBS/Tween (0.05%) for Fc

detection or rat anti-GFP secondary antibody (Alexa Fluor 647

conjugate, BioLegend, San Diego, CA) at 1 mg/mL in PBS/

Tween (0.05%) for eGFP detection. Slides used to capture both

eGFP and Fc from the dual secreting strain were treated with goat

anti-human IgG secondary antibody (Alexa Fluor 555 conjugate)

and rat anti-GFP secondary antibody (Alexa Fluor 647 conjugate)

at 1 mg/mL each. Slides were imaged using a microarray scanner

(GenePix 4200AL, Molecular Devices, Sunnyvale, CA) using a

635 nm or 532 nm laser and factory installed emission filters. The

laser power and PMT gain were set to maximize the linear range

of detection in each experiment. The fluorescence intensity for

each individual spot on the engraved protein microarray was

converted to a quantity of protein using a standard curve. The

standard curve was obtained by constructing a protein array using

known quantities of Fc or eGFP (50, 25, 5, 1, 0.5 and 0.1 ng/mL)

diluted in appropriate media (either YPD or BMMY) and spotted

on a glass slide as treated above. The slide was incubated for 1 h,

then developed and imaged as described above in parallel with

microengraved protein arrays generated on the same day.

Background-corrected fluorescence values were plotted against

concentration to determine the linear range of the microengraving

assay.

In-well imaging cytometry
Phase contrast and fluorescence images of the cell-loaded

PDMS microarray were acquired using AxioVision software

(v4.7.2, Carl Zeiss MicroImaging, Thornwood, NY) and an

automated inverted microscope (AxioObserver Z1, Carl Zeiss,

MicroImaging, Thornwood, NY) equipped with a Hamamatsu

EM-CCD camera.

Data processing and statistical analysis
Phase contrast and fluorescence images of the cell-loaded

PDMS microarray were analyzed for identification of the number

of cells in each well using custom software. Images of the printed

microarrays were analyzed using GenePix Pro 6.0 (Molecular

Devices, Sunnyvale, CA). The background intensity for each array

was determined from the median of all values measured in regions

between individual spots of the array. Spots in the array were

identified as positive when the signal-to-noise ratio was greater

than 2–that is, when the spot intensity was greater than the sum of

the background intensity for the array plus two standard deviations

of the values used to calculate the background intensity.

Multidimensional data were correlated using a custom script. All

subsequent data filtering and analysis was performed using

Microsoft Excel, MatLab, or GraphPad (statistical analysis).

Heatmap representations of population distributions were gener-

ated using GenePattern [51].

Gamma distribution fitting of population distributions of
secretion

Population distribution histograms were fitted to the gamma

distribution (Eq. 1) using a constrained optimization function

written in MATLAB. The parameters a, b, and l, a scaling factor

for the histogram data, were constrained (1022,a,102;

1022,b,102; 1025,l,102) and then optimized to maximize

the R2 value of the fit between the scaled histogram data and the

gamma distribution determined by a and b.

Secretory pathway modeling
The secretion performance of individual cells was modeled

using a system of mass-balance ordinary differential equations

(ODEs, Eqs. 2–4), which were solved using an ODE solver in

MATLAB. Cells were assumed to start with no protein product in

any of the three compartments defined above, those being the ER,

proteasome, or secretory pathway. To account for the epigenetic

diversity within a population of cells, tsec (1/ksec) and tERAD (1/

kERAD) were sampled from a Gaussian distribution, with a

standard deviation between approximately 7 to 17 percent of

the mean. The median value of tsec was initially chosen as 80 min,

based on data from protein secretion in mammalian cells [28], and

the median values of tsec and tERAD were varied from 60 to

140 min. The initial value for kexp was chosen as 1 molecule/s,

which corresponds to a rate of ,1.4 ng*mL21*h21 for GFP in our

microwells. The ODEs were solved over 20,000 s to ensure the

system reached steady-state—that is, when [ER] only changed by

0.002% between the penultimate and ultimate steps of the ODE

solver, at which point the secretion rate and amount of protein in

the ER were recorded. This process was repeated 5,000 to 10,000

times to generate representative model populations of cells.

Supporting Information

Figure S1 Plot of relative gene expression for strains
listed in Table 1 using pGAPDH against the median
single-cell rate of protein secretion for each strain as
determined by microengraving. Each median value is an

average of at least three replicate microengraving measurements

per strain. Data were fit by linear regression (R2 = 0.83).

(TIF)

Figure S2 Composite fluorescent micrographs acquired
by confocal microscopy of P. pastoris strains containing
a single-gene copy of eGFP (A) with an upstream a-
mating factor signal sequence (for trafficking through
the secretory pathway) or (B) without a signal sequence
(for intracellular expression). Cells were isolated in
microwells (dark edges). Magnification was 636.

(TIF)

Figure S3 (A, B) Distributions of single-cell rates of glycosylated

Fc fragment secretion during either shake-flask cultivation or fed-

batch fermentation (3L). Distributions are shown for the point of

best induction during either cultivation and median rates of

secretion are similar for each using either the (A) pGAPDH or (B)

pAOX1 promoter. (C, D) Scatter plot of time-dependent cell

growth (blue diamonds) and product titer (corrected by wet cell

mass, red squares) for reactors producing glycosylated Fc fragment

using either the (C) pGAPDH or (D) pAOX1 promoter. Black

dashed line shows the point of induction for the cultivation.

(TIF)

File S1 Single-cell data from representative experiments with

each eGFP strain listed in Table 1. Included are the median

fluorescent intensities for secreted GFP measured by microengrav-

ing, compensated median fluorescent intensities for intracellular

GFP measured by in-well cytometry, and the calculated rate of

secretion for eGFP-secreting single cells based on calibration

curves collected with each experiment. The data are divided into

two groups: single cells exhibiting secretion of GFP (MFI.

background+2SD) and single cells with secretion below the limit of

detection. The cut-off values for each representative dataset are

indicated.

(XLSX)
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