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Abstract

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression
levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with
Alzheimer’s disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar
n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528
cisSNPs within =100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596
unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70x10 °-1.67 x102%). Of these, 2,089 were also
significant in the temporal cortex (p=1.85x10"°-1.70x10"'*"). The top cerebellar cisSNPs had 2.4-fold enrichment for
human disease-associated variants (p<<10~°). We identified novel cisSNP/transcript associations for human disease-
associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson’s disease (PD) MMRN1/
rs6532197, Paget’s disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus
erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there
was 2.9-3.3 fold enrichment (p<<10~%) of significant cisSNPs with suggestive AD-risk association (p<<10"3) in the
Alzheimer’s Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors
to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant
enrichment of brain cisSSNPs among disease-associated variants advocates gene expression changes as a mechanism for
many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may
provide complementary information in discovery of human disease variants with functional implications. Our findings have
implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in
the study of human disease genetics.
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Introduction

Expression quantitative trait loci (eQTL) are genomic loci that
influence levels of gene transcripts and can be mapped by genetic
linkage in families or eGWAS in unrelated populations [1]. eQTLs
are distinct from other complex trait loci, because they directly
identify the target gene, since the transcript trait is a reflection of the
mRNA level from a single gene. Furthermore, eQTLs imply
regulation of gene expression as the mechanism of action for the
underlying variants. Recently, few studies identified an enrichment of
e¢QTLs from lymphocytes [2] and lymphoblasts [3] amongst human
complex disease and trait GWAS loci, suggesting that eQ'T'Ls may be
useful in mapping human disease-associated variants.

Most human eQTL mapping studies to date assessed immortal-
ized lymphoblastoid cell lines [4,5,6,7,8,9,10,11,12] and family-
based samples from the CEPH [4,5,6,7,8,13] (Centre d’Etude du
polymorphisme humain) or HapMap [10,11,14,15] repositories.
Multiple other small and large scale eQTL studies investigated other
tissues and populations including lymphocytes [16], monocytes [17],
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T-cells [18], fibroblasts [18], skin [19], subcutaneous and omental
adipose tissue [20,21], bone [22], liver [23] and brain [24,25].

Despite the assumption that brain eQTLs would also influence
human diseases and traits, there are no systematic gene mapping
studies for human diseases that utilize brain gene expression
phenotypes. Furthermore, the brain region most relevant for such
studies and the influence of brain pathology on eQTL mapping
studies are largely unknown. To address these issues, we
performed an eQTL using cerebellar tissue from 197 subjects
with Alzheimer’s disease (AD) neuropathology and 177 with other
pathologies (non—-AD). We validated the results in a different brain
region using temporal cortex samples from 202 ADs and 197 non—
ADs (Supplementary Tables 1 and 2 in Dataset S1), 85% of whom
overlapped with the cerebellar group. We evaluated significant
¢isSNPs from our study for association with human diseases/traits
using a GWAS catalog [26]. We also assessed our significant
eGWAS ¢sSNPs for association with two central nervous system
(CNS) diseases, progressive supranuclear palsy (PSP) [27] and AD
risk [28], using two recent GWAS for these diseases.
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Author Summary

Genetic variants that regulate gene expression levels can
also influence human disease risk. Discovery of genomic
loci that alter brain gene expression levels (brain expres-
sion quantitative trait loci=eQTLs) can be instrumental in
the identification of genetic risk underlying both central
nervous system (CNS) and non-CNS diseases. To system-
atically assess the role of brain eQTLs in human disease
and to evaluate the influence of brain region and
pathology in eQTL mapping, we performed an expression
genome-wide association study (eGWAS) in 773 brain
samples from the cerebellum and temporal cortex of ~200
autopsied subjects with Alzheimer’s disease (AD) and
~200 with other brain pathologies (non-AD). We identi-
fied ~3,000 significant associations between cisSNPs near
~700 genes and their cerebellar transcript levels, which
replicate in ADs and non-ADs. More than 2,000 of these
associations were reproducible in the temporal cortex. The
top cisSNPs are enriched for both CNS and non-CNS
disease-associated variants. We identified novel and con-
firmed previous cisSNP/transcript associations for many
disease loci, suggesting gene expression regulation as
their mechanism of action. These findings demonstrate the
reproducibility of the eQTL approach across different brain
regions and pathologies, and advocate the combined use
of gene expression and disease GWAS for identification
and functional characterization of human disease-associ-
ated variants.

Our results demonstrate the power of the brain eQ'TL approach
in the identification and characterization of many human CNS
and non-CNS disease-associated variants. This study also
highlights the remarkable reproducibility of human eQT'Ls across
different brain regions and pathologies, which has implications for
the design of e GWAS in general. Combined assessment of eQQ'TLs
and disease risk loci can be instrumental in mapping disease genes
with regulatory variants.

Identification of top cisSNPs

Brain eGWAS and Human Disease

Results

Brain eGWAS

Levels of 24,526 transcripts for 18,401 genes were measured in
773 brain samples from the cerebellum and temporal cortex of
~200 ADs and ~200 non—ADs, using WG-DASL assays. Nearly
70% of all probes could be detected in >75% of the samples
tested. All autopsied subjects were genotyped for 313,330 single
nucleotide polymorphisms (SNPs) from Illumina HumanHap300-
Duo Genotyping BeadChips, as part of the Mayo AD GWAS [29].
An eGWAS testing association of transcript levels with ¢sSNPs
was performed using multivariable linear regression correcting for
APOE €4 dosage, age at death, gender and multiple technical
variables. False discovery rate (FDR)-based q values [30] (q) were
used for corrections of multiple testing.

To achieve internal replication, we first analyzed the ADs and
non—ADs separately. In our cerebellar e GWAS, at q<<0.05, there
were 5,271 significant ¢zsSNP/transcript associations (1,156 unique
genes) in the AD, 4,450 (1,022 unique genes) in the non-AD and
10,281 (1,875 unique genes) in the combined datasets. Q-Q plots
suggested a clear excess of significant results (Figure 1, Figure Sla—
S1d). 2,980 cisSNP/transcript associations (2,596 unique ¢isSNPs,
686 unique genes) were significant at q<<0.05 in both ADs and non—
ADs (Table 1, Supplementary Table 3 in Dataset S1, Figure S2).
The direction and magnitude of associations in both groups
demonstrate remarkable similarities (Pearson’s correlation coeffi-
cient = 0.98, p<<0.0001). The box plots depicted for some of these
top associations (Figure S3a—S3c) demonstrate this replication in
ADs and non-ADs. Most associations have an additive or dominant
pattern with respect to the minor allele.

To assess the genetic component contributing to gene expres-
sion variability, we estimated intraclass correlation coefficients
(ICC) [31] in the 15 samples measured in replicate on 5-6
different plates and 2-3 different days. Between-subject variance
accounted for a median of 60% of total probe expression variance
(Supplementary Table 4 in Dataset S1; Figure S4). The 746 probes
for the top 2,980 cerebellar ¢sSNP associations had higher
between-subject variance (median =78%).

Identification of top cisSNPs with
suggestive AD risk association

non-ADs:

Identification of top Combined:

Cerebellar eGWAS:
Significant cisSNP/transcript associations (genes):

ADs: 5271 (1,156)
4,450 (1,022)
10,281 (1,875)

Imputed eGWAS
Significant cerebellarand temporal cortex
cisSNP/ftranscriptassociations

Cerebellar: 77,126 (63,652 cisSNPs, 2,338 genes)
Temporal cortex: 68,172 (57,922 cisSNPs, 2,201 genes)

cisSNPswith human
disease/traitassociations \l/

|

SignificanteGWAS cisSNPs with suggestive AD risk

Top cerebellar cisSNPs that are also

(47 cisSNPs, 36 diseases/traits)

human disease/trait GWAS SNPs -

Top 2,980 cerebellar eGWAS cisSNP/transcript
associations significantin both ADs and non-ADs
(2,596 cisSNPs, 686 genes, 746 probes)

|

Temporal Cortex Validation

Top 2,685 cerebellar eGWAS cisSNP/transcript
associations testable in temporal cortex
(2,387 cisSNPs, 625 genes, 677 probes)

associations in the ADGC GWAS.

Cerebellar+ AD risk: 380 cisSNPs
Temporal cortex + AD risk: 432 cisSNPs
Cerebellar+Temporal cortex+AD risk: 356 cisSNPs

|

Top 2,090 cerebellar eGWAS cisSNP/transcript
associations validated in temporal cortex
(1,888 cisSNPs, 471 genes, 502 probes)

Figure 1. Summary of brain eGWAS and human disease associations.

doi:10.1371/journal.pgen.1002707.g001
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Using multivariable linear regression, we next estimated the
percent variation in cerebellar probe expression levels due to the
“best” ctsSNP for each transcript after accounting for technical
and biological covariates. We found that the “best” cisSNP
explained a median of ~3% of the expression variation. For the
top 746 probes, the “best” ¢tsSNPs accounted for a median of 18%
of the expression variance (Table 2, Supplementary Table 5 in
Dataset S1).

The top 2,980 cerebellar eGWAS associations were followed up
in the temporal cortex validation study. We found that 2,685 top
cerebellar ¢cisSNP/transcript associations could be tested in the
temporal cortex (2,387 unique ¢isSNPs, 677 unique probes and
625 unique genes) (Figure 1, Table 3, Supplementary Table 6 in
Dataset S1). A total of 2,089 of these (1,888 unique ¢zsSNPs, 502
unique probes and 471 unique genes) were significant after study-
wide Bonferroni corrections, many of which had effect sizes
showing remarkable similarity to those from the cerebellar
eGWAS (Pearson’s correlation coefficient = 0.94, p<<0.0001).

The top cerebellar eGWAS results were also compared to
published liver [23] and brain [24,25] eGWAS and overlap was
identified for 4-11% of the top transcripts from these published
studies (Text S1) Using HapMap2 genotypes, all transcripts and
association threshold p<<1.0E-4 in our eGWAS, we determined
that 24-32% of the top transcripts from the published eGWAS
overlapped with ours.

We used the cerebellar eGWAS as the discovery analysis and
the temporal cortex eGWAS as the validation; since our goal is to
identify significant ¢isSNP associations while minimizing any
confounding factors due to pathology and given the fact that half
of our subjects had pathologic AD, in which cerebellum is
relatively unaffected whereas temporal cortex is one of the first
affected brain regions. Nonetheless, we have also used temporal
cortex as the discovery set and cerebellum as the validation, with
remarkably similar results (T'ext S1, Supplementary Tables 7 and
8 in Dataset S1).

Enrichment of brain cisSNPs among human disease-
associated SNPs

To examine whether the brain eGWAS approach identified
variants implicated in human diseases/traits, we linked the 2,596
top cerebellar eGWAS ¢isSNPs to the “Catalog of Published
GWAS” [26], which compiles weekly search results from all
published GWAS of =100,000 SNPs where associations of
p=1.0E-05 are reported. We identified 47 ¢isSNPs that were also
assoclated with 36 diseases/traits (Table 4, Supplementary Table 9
in Dataset S1). This represents a 2.4-fold enrichment of significant
cerebellar ¢isSNPs amongst disease/ trait associated SNPs, which is
significant (p<<10~°) based on simulations adjusted for minor allele
frequencies [3] (Text S1).

Among the 36 diseases/traits associating with top cerebellar
cisSNPs  were central nervous system (CNS)-related conditions
including Parkinson’s disease (PD), Moyamoya disease, cognitive
performance and attention-deficit hyperactivity disorder ADHD). We
both identified novel ¢sSSNP/transcript associations and confirmed
some previously reported ones. We found novel associations between
16532197, which confers increased risk of PD [32], and higher brain
levels of MMRNI (cerebellar eGWAS p=pge, =4.86x107'% tem-
poral cortex cGWAS p=prex =4.57x10~%). MMRNI encodes for
multimerin and was found to be in a region of duplication/triplication
with SVCA (encoding o-synuclein), a well-established risk gene in PD
[33]. We found no significant cisSNP/SNCA level associations. These
results suggest that AMMMRNT may deserve further investigations as an
additional PD risk gene.
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Another example of a ¢sSNP which associates with human
disease risk is rs8070723, the minor allele of which is associated
with reduced risk of PD [32] and reduced brain MAPT levels
(Peer=3.36x1077-7.02x107%%; prcxe=9.03x107*8.61x 107",
Rs11012 minor allele, which confers increased risk of PD [34],
showed association with lower brain LRRC3744 levels
(Peer=1.69x107%%; pre.=3.378E"2%). MAPT region variants
were previously identified to associate with brain levels of MAPT
and LRRC37A44 in neurologically normal subjects [27,32], in a
MAPT haplotype H1/H2-dependent manner [27]. Indeed,
rs8070723 is in tight linkage disequilibrium with rs1052553
?=0.95, D’=0.97), the major allele of which marks the
MAPT-H1 haplotype and associates with higher brain MAPT
levels [24].

Many top cerebellar ¢esSNPs also associate with non—CNS
diseases/traits (Supplementary Table 9 in Dataset S1). IRF5
ctsSNP 154728142 is associated with both cerebellar IRFS levels
and risk of systemic lupus erythematosus (SLE) [35]. Previously,
IRF variants were shown to influence IRF splicing and expression
as well as SLE risk [36,37]. Interestingly, rs4728142 is also
associated with ulcerative colitis (UC) [38] where both /RF5 and
TNPO3 are reported as candidate genes. Given its influence on
IRF5, but not TNPO3 expression levels, rs4728142 most likely
marks IRF5, but not TNPO3 as the candidate UC risk gene.

Our approach to identify human disease-associated SNPs
amongst the 2,596 top cerebellar e GWAS ¢isSNPs may be overly
conservative, given our selection criteria to only include transcripts
that are detectable in >75% of the subjects and only those ¢zsSNPs
that are significant in both independent cohorts (ADs and non—
ADs). Furthermore, given that our eGWAS genotyping platform
consisted of ~300 K SNPs, it is plausible that transcript
associations with SNPs from the “Catalog of Published GWAS”
[26] may be missed if those SNPs did not exist in our platform. To
address these issues, we repeated the cerebellar and temporal
cortex eGWAS, without restrictions for transcript detection rates
and using genotypes imputed to HapMap2 (>2 million SNPs).
Comparison of the eGWAS associations with p<1.0E-4 to the
“Catalog of Published GWAS” identified 392 unique cerebellar
ctsSNPs that also associate with 189 human diseases/traits; and
339 such temporal cortex ¢tsSNPs associating with 167 diseases/
traits (T'ext S1, Supplementary Tables 10 and 11 in Dataset S1).
Amongst the associations identified by this less stringent approach
were those for brain levels of CLU [39,40], CRI [40] and GABZ2
[41] which were identified as risk loci in GWAS of Alzheimer’s
disease.

We also performed comparisons of the eGWAS results from the
ADs and non-ADs separately to determine whether there were
any results unique to these diagnostic groups (Text S1, Supple-
mentary Tables 12, 13, 14, 15 in Dataset S1). Although 13-25% of
the disease/trait associations were with czsSNPs that were unique
to ADs or non—ADs, all but a few of these could also be identified
in the combined analysis of all subjects. There were only 2-7
human diseases/traits with ¢zsSNP associations that were detect-
able just in ADs or non—-ADs, but not the combined group.

Of these unique ¢isSNP, those that associate with cerebellar
levels of C90rf72 in non—ADs are interesting, as these variants were
previously identified in GWAS of amyotrophic lateral sclerosis
(ALS), where C901f72 was one of the candidate genes at the disease
locus [42,43]. This gene was recently identified as the most
common cause of familial ALS, with a repeat expansion leading to
loss of an alternatively spliced transcript [44,45]. These results
further support the utility of the combined eGWAS and disease
GWAS approaches in the potential identification of disease genes
with modified transcript levels as the plausible disease mechanism.
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Identification of brain cisSNPs among PSP GWAS loci

In a recent PSP GWAS [27], four loci near MAPT, STXG,
EIF2AK3, and MOBP conferred significant risk, in addition to
three suggestive loci at I¢41 intergenic locus, BMSI and SLCOIA2.
We assessed these seven strongest PSP risk loci in our e GWAS in
the ADs, non—ADs and combined datasets, as well as the PSP

@ PLoS Genetics | www.plosgenetics.org

Table 2. Variance of cerebellar probe expression levels due to technical, biological, and cisSNP effects.

addR2best- adjR2best-
Probe Symbol Raw_Variance  R2technical addR2covariates adjR2covariates SNP SNP Best-cis-SNP
ILMN_1651745 TMEM25 1.894 0.08 0.004 0.005 0.784 0.852 rs11552421
ILMN_1718932 MTRR 0.864 0.05 0.004 0.005 0.768 0.809 rs3776455
ILMN_1694711 MAD2L1BP 1.169 0.154 0.007 0.008 0.642 0.763 rs1096699
ILMN_1730477 TAS2R43 1.212 0.372 0.001 0.002 0.477 0.76 rs2708389
ILMN_2345908 DDX11 0.798 0.029 0.003 0.003 0.732 0.755 rs4031375
ILMN_1807798 ATP5G2 0.722 0.156 0.009 0.011 0.61 0.722 rs1971762
ILMN_2052079 ZNF544 0.983 0.055 0.003 0.003 0.675 0.714 rs260462
ILMN_2369018 EVI2A 2.208 0.043 0.005 0.005 0.68 0.711 152525574
ILMN_2184966 ZHX2 2.816 0.11 0.012 0.013 0.629 0.706 rs3802266
ILMN_2376667 POFUT2 0.503 0.076 0.032 0.035 0.649 0.703 rs2838859
ILMN_1723984 PILRB 0.671 0.253 0.006 0.008 0.519 0.695 rs6955367
ILMN_2400759 CPVL 0.644 0.062 0.013 0.014 0.631 0.672 rs7313
ILMN_2262288 EEF1G 0.615 0.107 0.025 0.028 0.592 0.663 rs7124057
ILMN_1689177 PPAPDC1A 0.519 0.138 0.006 0.007 0.57 0.661 rs2182513
ILMN_2093720 THG1L 0.621 0.208 0.003 0.004 0512 0.647 rs11738432
ILMN_1691772 ZSCAN29 0.19 0.14 0.011 0.013 0.548 0.638 rs12912744
ILMN_1809147 FAM118A 0.282 0.07 0.002 0.002 0.589 0.634 rs104664
ILMN_2130441 HLA-H 1.386 0.092 0.033 0.037 0.573 0.628 rs2975033
ILMN_2388272 MED24 3.036 0.043 0.007 0.007 0.597 0.624 rs8070454
ILMN_2064132 NANP 0.283 0.194 0.005 0.006 0.502 0.62 rs2387976
ILMN_1683279 PEX6 0.164 0.245 0.006 0.008 0.46 0.609 rs2395943
ILMN_2312606 IRF5 0.662 0.181 0.005 0.006 0.496 0.606 rs10239340
ILMN_2390162 PHF11 0.117 0.165 0.015 0.018 0.501 0.601 rs1046028
ILMN_1710903 MAPT 0.118 0.052 0.01 0.011 0.552 0.584 rs1981997
ILMN_1811048 GPR107 0.519 0.354 0.002 0.004 0.374 0.58 rs2240913
ILMN_2201966 N4BP1 1.97 0.029 0.005 0.006 0.555 0.572 rs11649236
ILMN_1795336 PTER 0.591 0.143 0.012 0.014 0.486 0.567 rs7909832
ILMN_1789419 EXOC3 0.214 0.097 0.012 0.014 0.508 0.563 rs11134054
ILMN_2364072 CLCNKA 1.356 0.044 0.009 0.01 0.535 0.562 rs1763601
ILMN_2075334 HIST1H4C 0.213 0.296 0.007 0.01 0.395 0.561 rs198834
ILMN_2296011 BRWD1 0.821 0.413 0.005 0.009 0.328 0.559 rs6517526
ILMN_2074477 GPR4 1.342 0.058 0.016 0.017 0.526 0.558 rs10405576
ILMN_1697286 SF3A1 0.168 0.359 0.009 0.014 0.356 0.555 rs737950
ILMN_1765332 TIMM10 0.164 0.079 0.005 0.006 0.507 0.551 rs2848630
ILMN_2401641 ALDH3A2 0.22 0.142 0.012 0.014 0.472 0.543 rs2108971
ILMN_2183938 LEMD3 0.335 0.084 0.026 0.029 0.495 0.541 rs10878255
ILMN_2198408 MFF 0.153 0.26 0.002 0.003 0.399 0.54 rs7560053
ILMN_1728199 POLE 0.113 0.175 0.006 0.007 0.446 0.538 rs4883627
ILMN_1655637 UPK1A 1.044 0.131 0.023 0.026 0.467 0.538 rs4806187
ILMN_2209027 RPS26 0.238 0.146 0.002 0.002 0.457 0.535 rs10876864
Results from some of the top probes are depicted. Only one probe is selected per gene for depiction. R2technical = variance due to technical variables only (i.e. plates,
RIN). addR2covariates = added proportion of variance due to biological covariates (i.e. age, sex, ApoE4 dose), adjR2covariates = addR2covariates adjusted for technical
variance, addR2best-SNP = proportion of variance due to the best cisSNP, adjR2best-SNP = addR2best-SNP adjusted for technical variance.
doi:10.1371/journal.pgen.1002707.t002

subset of non-ADs (Table 5, Supplementary Table 16 in Dataset
S1). We found novel, significant rs11568563 minor allele associa-
tions with reduced brain SLCOIA2 levels (pcer= 2.33%x1075;
Prox=4.36x1072-9.14x10™ %), which confers increased PSP risk
[27]. SLCOIAZ2 encodes solute carrier organic anion transporter
family member 1a2 and is a drug transporter into the CNS [46].
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Fine-mapping of the SLCOIA2 region revealed rs11568563 to be
the strongest ¢zsSNP influencing brain levels of this gene (Figure S5).
This SNP was also identified as the top PSP-associating variant at
this locus [27]. All other ¢isSNPs that associate with brain SLCO1A42
levels have weaker effects that appear to be due to their LD with
$11568563, which is a missense coding mutation within SLCO142.
Whether rs11568563 is merely tagging the functional variant(s)

@ PLoS Genetics | www.plosgenetics.org 7

Table 3. Validation of top cerebellar cisSNP/transcript associations in the temporal cortex.

Cerebellar eGWAS Temporal Cortex Validation

ALL_Pgont-

CHR SNP PROBE SYMBOL ALL_P ALL Pgon¢ ALL Q ALL BETA  ALLP study ALL_BETA
5 rs3776455 ILMN_1718932 MTRR 6.37E-133 2.83E-127 7.34E-120 1.20 5.15E-133 1.38E-129 1.23
12 rs10843881 ILMN_2345908 DDX11 1.48E-112 6.57E-107 2.39E-100 —1.06 1.81E-113 4.87E-110 —1.16
12 rs1971762 ILMN_1807798 ATP5G2 1.10E-104 4.87E-99 1.64E-93 1.01 7.83E-107 2.10E-103 1.15
21 rs2838859 ILMN_2376667 POFUT2 2.86E-103 1.27E-97 2.73E-92 —0.86 4.15E-115 1.11E-111 —0.84
8 rs3802266 ILMN_2184966 ZHX2 4.35E-101 1.93E-95 3.06E-90 —1.94 1.11E-104 2.97E-101 —235
19 rs260462 ILMN_2052079 ZNF544 8.26E-101 3.67E-95 4.38E-90 —1.16 7.00E-129 1.88E-125 —1.30
17 rs2525574 ILMN_2369018 EVI2A 1.52E-99 6.73E-94 4.88E-89 1.81 4.56E-89 1.22E-85 1.67
7 rs6955367 ILMN_1723984 PILRB 4.80E-97 2.13E-91 1.23E-86 1.08 1.70E-141 4.56E-138 1.56
7 rs7313 ILMN_2400759 CPVL 5.00E-92 2.22E-86 596E-82 —0.96 5.76E-71 1.55E-67 —1.34
11 rs7124057 ILMN_2262288 EEF1G 2.64E-91 1.17E-85 2.67E-81  —0.90 1.49E-91 4.01E-88 —0.70
10 rs2182513 ILMN_1689177 PPAPDC1A 1.08E-87 4.79E-82 6.93E-78 0.84 8.07E-01 NS 0.01
5 rs11738432 ILMN_2093720 THG1L 8.06E-84 3.58E-78 3.49E-74 —0.86 1.16E-100 3.12E-97 —1.09
15 rs12912744 ILMN_1691772 ZSCAN29 3.47E-83 1.54E-77 1.33E-73 —0.56 6.18E-96 1.66E-92 —0.63
22 rs136564 ILMN_1809147 FAM118A 8.44E-81 3.74E-75 2.57E-71 0.85 7.87E-57 2.11E-53 0.68
17 rs8070454 ILMN_2388272 MED24 3.51E-80 1.56E-74 9.58E-71 —2.03 3.97E-85 1.06E-81 —2.16
20 rs2387976 ILMN_2064132 NANP 9.58E-79 4.25E-73 1.93E-69 —0.54 1.97E-87 5.29E-84 —0.65
7 rs10239340 ILMN_2312606 IRF5 1.52E-76 6.73E-71 231E-67 0.81 3.76E-90 1.01E-86 0.92
6 rs2395943 ILMN_1683279 PEX6 3.63E-76 1.61E-70 5.06E-67 —0.39 1.64E-69 4.40E-66 —0.46
13 rs1046028 ILMN_2390162 PHF11 1.07E-75 4.73E-70 1.36E-66 035 5.38E-83 1.44E-79 0.38
17 rs1981997 ILMN_1710903 MAPT 4.16E-71 1.85E-65 3.88E-62 —0.48 2.42E-44 6.48E-41 —0.51
9 rs2240913 ILMN_1811048 GPR107 2.76E-69 1.23E-63 2.39E-60 0.66 2.11E-80 5.66E-77 0.95
16 rs11649236 ILMN_2201966 N4BP1 5.69E-69 2.53E-63 437E-60 —1.57 1.95E-85 5.25E-82 —1.44
10 rs7909832 ILMN_1795336 PTER 1.70E-68 7.54E-63 1.04E-59 —0.75 1.24E-84 3.32E-81 —1.00
5 rs11134054 ILMN_1789419 EXOC3 4.40E-68 1.95E-62 2.52E-59 —0.57 1.51E-78 4.06E-75 —0.60
19 rs10405576 ILMN_2074477 GPR4 5.76E-68 2.56E-62 3.09E-59 —1.32 5.20E-62 1.39E-58 —1.53
6 rs198834 ILMN_2075334 HIST1H4C 4.76E-67 2.11E-61 2.05E-58 —043 1.25E-51 3.35E-48 —0.52
22 rs737950 ILMN_1697286 SF3A1 2.05E-66 9.11E-61 7.72E-58 0.44 1.01E-71 2.71E-68 0.46
1 rs1763601 ILMN_2364072 CLCNKA 3.49E-66 1.55E-60 1.24E-57 1.22 6.22E-50 1.67E-46 1.02
12 rs10878255 ILMN_2183938 LEMD3 2.61E-65 1.16E-59 791E-57 —0.62 1.73E-69 4.65E-66 —0.78
19 rs4806187 ILMN_1655637 UPK1A 2.82E-65 1.25E-59 8.11E-57 —1.04 3.82E-39 1.02E-35 —0.72
11 rs2848630 ILMN_1765332 TIMM10 3.40E-65 1.51E-59 9.32E-57 —0.53 2.04E-68 5.48E-65 —045
17 rs962800 ILMN_2401641 ALDH3A2 3.31E-64 1.47E-58 8.21E-56 0.46 4.26E-76 1.14E-72 0.44
2 rs7560053 ILMN_2198408 MFF 6.41E-63 2.85E-57 1.38E-54 037 5.20E-71 1.40E-67 0.30
12 rs10876864 ILMN_2209027 RPS26 6.36E-62 2.82E-56 1.06E-53  0.49 3.01E-64 8.07E-61 0.57
12 rs4883627 ILMN_1728199 POLE 8.61E-62 3.82E-56 1.36E-53 033 3.95E-19 1.06E-15 0.22
6 rs2191651 ILMN_1694100 PRIM2 1.55E-61 6.88E-56 2.26E-53 —0.59 5.06E-57 1.36E-53 —0.57
10 rs9527 ILMN_2151056 C100rf32 2.90E-61 1.29E-55 3.90E-53 —0.46 1.27E-65 3.42E-62 —045
Of the 2,980 top cisSNP/transcript associations, 2,685 existed in the temporal cortex replication study. Some of these top associations are shown. Only one cisSNP/
transcript pair is selected for depiction. The chromosome (CHR), SNP, Probe, Gene Symbol (SYMBOL) of these associations are depicted. The uncorrected (P), genome-
wide (Pgonf) and study-wide Bonferroni-corrected (Pgont.stuay) P Values, Beta coefficient of association are shown for the combined (All) analyses in the cerebellar eGWAS
and the temporal cortex replication study. Regression coefficients are based on the SNP minor allele using an additive model.
doi:10.1371/journal.pgen.1002707.t003

regulating levels of SLCOIA2 or coding changes also influence
expressed transcript levels require further investigations. Addition-
ally, MAPT/rs242557 minor allele increased PSP risk [27] and brain
MAPT levels (peer=9.78x1077-8.8x107"7, prec=1.1x107%),
MAPT/rs8070723 minor allele associated with lower brain MAPT
levels in our eGWAS, decreased PSP risk [27], similar to a PD
GWAS [32]. We also found nominally significant increases in brain
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MOBP levels (pee,=2.13x107%1.71x10"7; prex=1.55x10"%
1.57x10~% with rs1768208, which increases PSP risk [27].

The recent PSP GWAS by Hoglinger et al. [27] included eQTL
analysis for the significant loci using brain expression levels from
387 subjects without clinical neurologic diseases. In addition to
associations between MAPT locus ¢ctsSNPs with brain MAPT and
LRRC3744 levels, they also detected signals for the nearby
ARLI17A4 and PLEKHM]1 genes, neither of which were detectable
in our eGWAS. They also identified ¢zsSNP associations with brain
MOBP levels but even stronger influence on the nearby SLC25438
levels. We did not identify significant ¢cesSNP/SLC25458 brain
expression associations. Although some of the significant probes
for MOBP and MAPT harbor variants within their probe sequence,
which may potentially confound associations with expression
levels, these genes had other significant probes without any
sequence variants (Text S1).

Most non—AD subjects in our study had pathologic diagnosis of
PSP (nge, =98, nrex =107, Supplementary Table 2 in Dataset
S1). We assessed the 2,980 top cerebellar ¢isSSNP/transcript
associations in this subset, and found that most results were
consistent with the ADs (Supplementary Tables 17 and 18 in
Dataset S1I).

Enrichment of brain cisSNPs in the AD GWAS from ADGC

To investigate whether any of the significant brain ¢isSNPs may
influence risk of AD, we compared our eGWAS results to the AD
risk associations from the large AD GWAS conducted by ADGC
[28]. We obtained results of meta-analyses for the ADGC Stage
142 cohort (11,840 LOAD wvs. 10,931 controls) [28] and
investigated those SNPs with suggestive AD risk association in
this dataset (pmew<10~7). To ensure uniform comparison between
our eGWAS and the ADGC GWAS, we assessed results from >2
million SNPs for each study using SNPs genome-wide imputed to
HapMap phase 2 (release 22). There were 77,126 cerebellar
(63,652 unique SNPs, 2,338 unique genes) and 68,172 temporal
cortex (57,922 unique SNPs and 2,201 unique genes) ctsSNP/
transcript associations significant at q<<0.05 representing a clear
excess (Figure S6). There were 380 ¢isSNPs that were significant
for the cerebellar transcript associations and also had suggestive
AD risk associations (2.9-fold enrichment), 432 such temporal
cortex ¢tsSNPs (3.3-fold enrichment) and 356 ¢zsSNPs significant in
both the cerebellum and temporal cortex (2.7-fold enrichment,
p<<10"° for all three analyses) (Figure 1, Supplementary Tables 19
and 20 in Dataset S1).

MAPT and LRRC37A44 ¢isSNPs, implicated in PSP [27] and PD
[32] GWAS and which significantly influenced brain levels of
these genes also had suggestive AD risk associations
(Prmeta =8.82x107*-1.53x107%). CisSNP alleles associating with
lower brain MAPT levels were associated with lower AD risk,
similar to PD [32] and PSP [27] GWAS, which may suggest a
common mechanism for these neurodegenerative diseases. ABCA7,
identified recently as a novel LOAD risk locus [28,47], had
significant cerebellar ¢isSNPs. Further investigations of the other
genes with evidence of brain transcript and AD risk association is
warranted to understand their role in AD (Text S1).

To ensure that we did not miss any associations due to the
stringent eGWAS criteria that we applied, we repeated the
analyses using no restrictions for transcript detection rates and
eGWAS p value threshold of p<1.0E-4. We also investigated
¢tsSNPs identified in AD and non—AD brains, both separately, and
jointly, given that some ¢isSNP associations may be unique to one
group. We compared these eGWAS results to the ADGC GWAS
as described above (Supplementary Tables 21, 22, 23, 24, 25, 26 in
Dataset S1). Using cerebellar and temporal cortex eGWAS from
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all subjects, 561 and 488 unique transcripts with ¢zsSNPs that yield
suggestive AD risk associations were identified, respectively. There
were 259-312 such transcripts identified in each AD or non-AD
eGWAS, with >50% overlap between the two diagnostic groups’
results, although many of these results could be identified in the
eGWAS of combined samples. About 7-10% of the transcripts
could only be identified in just ADs or non—ADs, but not the
combined eGWAS. Amongst such unique transcripts were CLU
and BIN1, which reside at the LOAD GWAS loci [39,40,48] and
associate with ¢isSNPs in the cerebellum of non—ADs. Detailed
analyses of the CLU locus czsSNP/transcript associations are -

press [49].

Discussion

In a large eQTL study on 773 brain samples from ~400
autopsied subjects, we demonstrate significant contribution of
genetic factors to human brain gene expression, reliably detected
across different brain regions and pathologies. There is significant
enrichment of brain ¢sSNPs amongst disease-associated variants,
advocating gene expression changes as a mechanism for the first
time for certain genes implicated in human diseases, including PSP
(SLCO1A42), PD (MMRNI), Paget’s disease (OPTN) while replicat-
ing others (e.g. PD/MAPT, SLE/UC/IRF5). MAPT cisSNPs
associating with PSP, PD and AD risk highlight potential common
mechanisms for these neurodegenerative diseases.

The reported results have several important implications for the
genetics of human brain gene expression: First, despite technical
challenges of gene expression measurements in post-mortem brain
tissue [50], ~70% of the transcriptome can be reliably detected in
>75% of the subjects across two brain regions and different
disease pathologies. Second, although there is significant contri-
bution from technical covariates, genetic factors account for a
substantial proportion of the variance in brain gene expression
levels. We estimate that genetic factors explain an average 3%
(range: 0-85%) of the variance in human cerebellar gene
expression overall, and 18% (range: 8-85%) of the variance for
the top cis-regulated transcripts. These estimates show remarkable
similarity to those from other eQTL studies, such as a large,
family-based lymphocyte eQTL, where ¢is eQTLs had an overall
median effect size of 1.8% and significant eQTLs accounted
for 24.6% of the variance in expression [16]. Similarly, significant
¢isSNPs  explained 2-90% of expression variance in a liver
eGWAS [23].

Third, there is remarkable replication of significant ¢isSNP
associations across different brain regions and underlying tissue
pathologies. Indeed, the 2,980 top cerebellar ¢cisSNP/transcript
associations represent 58% and 68%of all significant associations
in the ADs and non-ADs. Since >50% of the non-ADs were
comprised of subjects with PSP, we also conducted a separate
analysis of this pathologically distinct group of non-ADs and again
determined that many of the top ¢sSSNPs were also significant in
the PSPs despite the small sample size (n = 98). Importantly, most
of the ¢zsSNPs had highly similar effect sizes in the ADs, non—ADs
and PSP subset of non—ADs. Furthermore, 78% of the top
cerebellar cis-associations were also significant in the temporal
cortex. Cerebellum is a relatively unaffected region in AD,
whereas temporal cortex is typically one of the first areas to harbor
neuropathology [51]. It is not inherently evident whether the
unaffected or affected tissue regions would be most suitable for
eQTL studies. Whereas unaffected regions would have the
advantage of minimizing confounding on expression measure-
ments from pathology (such as inflammation and cell death),
affected regions may be more relevant for disease-associated
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eQTL mapping. The substantial overlap in significant cisSNP
associations between different brain regions and disease types in
our study implies that sample size may be the most critical element
of successful eQTL mapping. In other words, analysis of
expression data collected in different tissue regions and diseases,
provided there is careful statistical control, could greatly enhance
power to detect eQTLs. Nevertheless, there may be important
eQTLs that are specific to brain region and disease.

It is not obvious whether the ¢isSNP that display similar effects
in different brain regions and different disease types would have
relevance to human disease. The top 2,596 cerebellar ¢isSNPs that
are significant in both ADs and non-ADs, and many of which are
also significant in the temporal cortex are also enriched for
variants implicated in human disease, including CNS disease, such
as PD and PSP. Thus, the fourth implication of our study is that it
may be possible to map disease-associated variants using eQTL
studies conducted in unaffected tissue or unaffected subjects. In
addition to providing a general characterization of the genetics of
brain gene expression, this study successfully replicated many
previously published ¢sSNP associations, such as rs8070723/
MAPT level, rs11012/ LRRC37A44 level associations, both of which
were implicated in PD. We found novel brain expression level
associations for transcripts implicated in disease, including
rs11568563 association with SLCOIAZ2, recently identified in a
PSP GWAS. The disease-associating ¢czsSNP associations identified
in this study were not restricted to CNS diseases, but also included
non-CNS diseases, such as SLE, where we replicated the
previously published rs4728142/ IRF5 level associations.

These findings imply that many disease-associated czsSNPs can
influence gene expression idependently of tissue/region/pathol-
ogy, and be mapped reliably in tissue which is unaffected, not
disease-related or from unaffected subjects. Indeed, our findings
are consistent with a study of lymphoblastoid cell lines from
subjects affected and unaffected with asthma, where Dixon et al.
[12] found no differences between asthmatics and non-asthmatics.
Furthermore, they detected significant transcript level associations
with SNPs that also associate with asthma. Emilsson et al. [20]
performed eQTL mapping in both blood and adipose tissue and
determined that >50% of significant adipose tissue cisSNPs were
also significant in blood. This is similar to the overlap we detected
for cerebellum and temporal cortex, though two brain regions are
more likely to have similar eQTL profiles than two different
tissues.

Although many ¢zsSNP effects can be detected in many different
tissue types and disease conditions as shown here and by others
[12,20], there conceivably exist expression variants which exert
their effects in a tissue or disease-specific manner. For example in
the eQTL comparing blood and adipose tissue, Emilsson et al.
[20] also found that more transcripts from adipose tissue had
significant correlations with obesity-related traits. In reality, both
scenarios may be at play, such that some expression variants have
more ubiquitous effects, whereas others may need tissue/cell/
region/disease specific factors to exert their influence on gene
expression. Indeed, many of the CNS disease related cisSNP
associations in our brain eGWAS could not be identified in our
comparison to a liver eGWAS [23] or an existing database for a
LCL eGWAS [12], suggesting that disease-relevant tissue may be
necessary to detect effects of certain ¢isSNPs, and highlighting the
value of this brain eGWAS for CNS traits/conditions.

Despite the enrichment of our samples with tissue from AD
subjects and our use of both cerebellar and temporal cortex tissue,
we did not identify strong transcript associations for some of the
top genes recently implicated in AD risk in large LOAD GWAS
studies [28,39,40,47,48]. This could be because the AD risk

@ PLoS Genetics | www.plosgenetics.org

1

Brain eGWAS and Human Disease

variants in these genes exert their effects via mechanisms other
than influencing transcript levels, namely changes in protein
conformation. If so, even the negative results from an eGWAS
could be informative in guiding the future deep-sequencing efforts
which should focus on coding rather than non-coding, functional
regions. Alternative explanations include technical shortcomings,
such as inability to measure all transcript species, measurements of
global rather than cell-specific gene expression, not including all
tested disease-associated variants in our genotyping platform. We
also need to consider that the top genes nearest the strongest
variants from the LOAD GWAS may not be actual disease genes.
These loci require further investigations to account for this
possibility. Additionally, our criteria for selection of the top
ctsSNPs, requiring significance in both ADs and non—ADs, might
be too stringent, thereby leading to some false negative results.
Finally, it may be possible to identify additional disease-related
expression variants by focusing on those that have differential
influence in disease vs. non-disease tissue, although this was not a
focus of analysis in this study. Given that our non—-AD tissue also
consisted of subjects with other neurodegenerative diseases, there
may be more similarities with the AD tissue, making it more
difficult to detect variants with differential disease-related expres-
sion-associations in our current study. Nevertheless, we did find
associations with ¢esSNPs for ABCA7, a novel AD risk locus gene
[28,47] and MAPT [52,53], [24,54] implicated in AD.

It is important to emphasize that although the identification of
transcript level associations provides another layer of confidence
for disease-associating variants and genes, it is entirely possible that
a variant in an LD region encompassing multiple genes, could be
marking a functional disease variant in one gene and an expression
variant in another gene. Thus, although highly useful in
conjunction with disease association studies, eGWAS should be
seen as a guide rather than ultimate evidence in disease-mapping
efforts. Similarly, absence of eGWAS associations for a disease-
associated variant should not be seen as contradictory evidence,
but rather raise the possibility of alternative functional mecha-
nisms for that variant.

Despite the wealth of information our study provides, we
acknowledge several shortcomings. First, our non—ADs were not
normal controls but often had other brain pathologies. It will be
necessary to seek replication of these findings or novel czsSNP/
transcript associations in normal brain tissue, as well. Second, we
only focused on single SNP associations. The preliminary
observations from our eGWAS findings suggest that multiple
independent variants may affect brain expression levels of some
genes, whereas others might be under the influence of a single
strong variant. Finally, like any association study, it is not clear
whether the ¢isSSNPs identified in our eGWAS are themselves the
functional SNPs or simply in LD with un-genotyped regulatory
variants. Future studies focusing on analysis of haplotypes,
SNPxSNP interactions, novel variant discovery and functional
in-vitro studies testing effects of multiple variants are required to
dissect the genetic variation underlying brain gene expression
levels.

In summary, this cerebellar eGWAS study and the temporal
cortex validations provide insight about the genetics of brain gene
expression, a framework to guide future studies with respect to
tissue/region/disease choice in eQTL studies, examples about the
utility of this approach in gene mapping, replication of some
known transcript associations and evidence for novel transcript
associations in human disease. Combined eGWAS-disease GWAS
approach may provide complementary information in mapping
human disease and enable identification of functional variants that
may not be possible by either approach alone.
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The complete set of results from the brain eGWAS can be
accessed at the National Institute on Aging Genetics of
Alzheimer’s Disease Data Storage (NIAGADS) website at
http://alois.med.upenn.edu/niagads/. Questions about the data-
set can be addressed to the corresponding author of this
manuscript (taner.nilufer@mayo.edu).

Methods

Subjects

All subjects were participants in the published Mayo LOAD
GWAS [29] as part of the autopsy-based series (AUT_60-80). All
subjects had neuropathologic evaluation by DWD. All ADs had
definite diagnosis according to the NINCDS-ADRDA criteria [55]
and had Braak scores of =4.0. All non-ADs had Braak scores of
=2.5, and many had brain pathology unrelated to AD (Supple-
mentary Tables 1 and 2 in Dataset S1). Three-hundred forty subjects
had measurements in both cerebellum and temporal cortex. This
study was approved by the appropriate institutional review board.

Expression genome-wide association study (eGWAS)
Total
RNA was extracted from frozen brain samples using the Ambion
RNAqueous kit according to the manufacturer’s instructions. The
quantity and quality of the RNA samples were determined by the
Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano Chip.
Transcript levels were measured using the Whole Genome DASL
assay (Illumina, San Diego, CA). Probe annotations were done
based on NCBI Ref Seq, Build 36.2. The RNA samples were
randomized across the chips and plates using a stratified approach
to ensure balance with respect to diagnosis, age, gender, RINs and
APOE genotype. Replicate samples were utilized for QC and also
for intra-class coefficient (ICC) estimations. Raw probe level mRNA
expression data were exported from GenomeStudio software
(Illumina Inc.) for preprocessing with background correction,
variance stabilizing transformation, quantile normalization and
probe filtering using the lumi package of BioConductor [56,57]
(Text S1). A probe with detectable signal in >75% of the samples
was regarded as informative and used in subsequent analyses,
although we also did supplementary analyses without imposing any
restrictions based on probe detection levels. The number of
informative probes differed slightly between the AD, non—-AD and
combined groups (Figure S7).

Genome-wide genotyping. Genotypes were generated using
Ilumina’s HumanHap300-Duo Genotyping BeadChips and
analyzed with an Illumina BeadLab Station (Illumina, San Diego,
CA) at the Mayo Clinic Genotyping Shared Resource according to
the manufacturer’s protocols. The LOAD GWAS QC methods
were previously published [29] (Text S1).

Statistical methods for eGWAS. Linear regression analysis to
test for cesSNP/transcript associations were done in PLINK [58].
Preprocessed probe transcript levels were utilized as endopheno-
types. Each probe was assessed separately, even though one gene
may have multiple probes. CisSNPs localized to =100 kb flanking
region of the gene targeted by the probe of interest, mapped
according to NCBI Build 36, were assessed for transcript level
assoclations, using an additive model, with the minor allele dosage
(0, 1, 2) as the independent variable, and APOE €4 dosage (0, 1, 2),
age at death, gender, PCR plate, RIN, (RIN-RINmean)® as
covariates. The cerebellum and temporal cortex expression levels
were analyzed separately. The ADs and non-ADs were analyzed
both separately and jointly. The joint analyses included diagnosis as
an additional covariate (AD = 1, non-AD = 0). We also ran analyses
including the top 10 eigenvectors from EIGENSTRAT, and

RNA extraction and gene expression measurements.
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compared eGWAS results to those excluding the eigenvectors
(Text S1, Figure S8, Supplementary Table 27 in Dataset S1) [59].
Q values used for multiple testing corrections are based on false-
discovery rates [30] and were corrected for genomic inflation of
significance (Text S1). In addition, permutations (Pperm-wy) and
Bonferroni adjustment were used for comparison of correction
strategies. Permutation p values were obtained by shuffling the
endophenotype, while maintaining the covariate structure, 10,000
times and applying the Westfall and Young [60] resampling-style
stepdown approach to account for correlations between probes.

Variance of gene expression

To assess the genetic contribution to the variance in human
cerebellar gene expression, we first determined between-subject
variance, as a percentage of the total variance in probe expression,
using ICC [31] for 15 samples measured in replicate on 5-6
different plates and 2-3 different days.

Using multivariable linear regression models, we then calculated
the proportion of variance in cerebellar gene expression levels that
were explained by technical effects (PCR plate, RIN, (RIN-
RINmean)?), biological covariates (APOE &4 dosage, age at death,
gender) and the “best” ¢czsSNP for each probe. These analyses were
carried out on the combined dataset consisting of cerebellar
expression measurements from 374 subjects and 15,283 probes
with at least one czsSNP (Text S1).

Replication of top cerebellar eGWAS hits in the temporal
cortex

We identified 2,980 ¢isSNP/transcript associations (2,596
unique SNPs, 746 unique probes and 686 unique genes) that
achieved genome-wide significance within both the ADs and non—
ADs analyses with q values<<0.05. All 2,980 ¢sSNP/transcript
associations achieved genome-wide significance with q<<0.05 and
PBonr<0.05 in the combined ADs+non-ADs analysis. We sought
validation of these hits in the temporal cortex of 399 subjects who
had WG-DASL whole transcriptome measurements and whole-
genome genotypes. RNA extractions, QC, WG-DASL measure-
ments, transcript level detections and association analyses were
performed for these temporal cortex samples, in the same manner
as that for the cerebellar samples. After appropriate QC, 2,685 of
the 2,980 top cerebellar ¢isSNP/transcript associations remained
detectable among the temporal cortex results (2,387 unique SNPs,
677 unique probes and 625 unique genes).

Comparison of cerebellar eGWAS results with other
published complex disease and trait GWAS

To determine whether the cerebellar e GWAS captured variants
implicated in complex diseases/traits, we compared the top 2,980
cerebellar e GWAS ¢isSNPs with the top disease/trait associated
SNPs in the “Catalog of Published GWAS” [26], curated by the
National Human Genome Research Institute (www.genome.gov/
gwastudies). This catalog compiles weekly search results from all
published GWAS of =100,000 SNPs where associations of
p=1.0E-05 are reported. The catalog accessed on 04/23/2011
had 5,272 entries. We restricted our search to those entries where
the “SNPs” column had only one SNP with an rs number. Thus,
haplotypes and variants without rs numbers were excluded. There
were 5,101 entries after this exclusion, comprised of 4,248 unique
SNPs and 433 unique diseases. One SNP may associate with >1
disease/trait and each disease/trait may have =1 associating SNP.
This list was linked to the 2,980 top cerebellar ¢zsSNPs by common
rs numbers.
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To assess whether the number of observed ¢isSNPs that have
both significant cerebellar eGWAS and disease/trait associations
represent a significant enrichment, we performed simulations
while adjusting for ¢zsSSNP minor allele frequencies, as previously
reported [3]. We performed 1 million simulations and adjusted for
the minor allele frequencies of all the tested ¢sSNPs in 10 bins
from 0-0.05 to 0.45-0.50. Using the total number of ¢isSNPs that
are both transcript and disease/trait associating for each
simulation, we obtained an empirical p value and an estimate of
fold-enrichment.

Cerebellar eGWAS results were also compared to other
published eGWAS results from a human liver [23] and two
human brain [24,25] studies. The methods and results are
depicted in Text S1.

Alzheimer’s Disease Genetics Consortium (ADGC) meta-
analyses

To determine whether any of the ¢zsSNPs significant at q<<0.05
influenced risk of AD, we obtained meta-analyses results from the
ADGC [28]. The cohorts that are assessed by ADGC, as well as
the methodological details of the meta-analyses are described in
detail in a recent publication [28]. Briefly, the meta-analyses of the
ADGC dataset results reported here (Supplementary Tables 17
and 18 in Dataset S1) are generated from the combined analyses of
stage 1 and stage 2 cohorts (Text S1), with detailed descriptions
provided elsewhere [28]. Stage 1 cohorts are comprised of 8,309
LOAD cases and 7,366 cognitively normal elder controls. Stage 2
has 3,531 LOAD vs. 3,565 control subjects. Each cohort was
tested for AD risk association using a logistic regression approach,
assuming an additive model and adjusting for age, sex, APOE &4
dosage and principal components from EIGENSTRAT [59]. The
meta-analyses results were generated using the inverse variance
method implemented in the software package METAL [61].

Supporting Information

Dataset S1 'This file includes Supplementary Tables 1-27. The
individual supplementary table legends are included in the first tab
of this file.

(XLS)

Figure S1 Q-O-Plots: Q-Q plots of observed (y-axis) versus
expected (X-axis) —log(p) values of association for all cisSNP/
transcript associations in the combined cerebellar 374 samples
obtained before (a,b) and after (c,d) inflation-adjustments. Q-Q
plots for all data points (a, c), as well as those that are in the lower,
left hand corner (b,d) are shown. The data in b and d account
reflect the association results, where there should be no deviations
from the expected (i.e. null hypothesis of no association).

(PDF)

Figure 82 Venn diagram of significant cerebellar csSNP/
transcript associations: Q) values<<0.05 in the ADs, non—-ADs
and combined (All) analyses. Notably, 2,980 cis-SNP/transcript
associations are significant both in the ADs and non—-ADs.

(PDF)

Figure S3 Box Plots of some top ¢ctsSNP/transcript associations
in the non-AD (a), AD (b) and combined groups (c): The SNP
genotypes are shown on the X-axis with the genotype counts in
parentheses. Variance stabilizing transformed (VST) expression
levels are on the Y-axis. The bottom and top of a box represent the
lower and upper quartiles, respectively. The band near the middle
of the box is the median. The ends of the whiskers depict the most
extreme observations still within 1.5 inter quartile range of the
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corresponding quartile. Any data not included between the
whiskers are plotted as dots.

(PDF)

Figure S84 Histogram of intra-class coefficients (ICC) for the
cerebellar probe expressions. Using 15 replicate samples, 1CC,
which is the between-subject variance, as a percentage of the total
variance in probe expression, was estimated for 17,121 probes.

(JPG)

Figure 85 Data plots of SNPs tested for association with
expression levels of SLCOIA2 in the Temporal Cortex and
Cerebellum. Forty-six SNPs were tested for association of
SLCOIA2 levels in the Cerebellum (Blue lines) and Temporal
Cortex (Pink lines). P-values were transformed using —log;o and
are plotted against the position of each SNP along the
chromosome (Kbp). Genes found within the locus boundaries
are shown from the UCSC genome browser (http://genome.ucsc.
edu/). The LD across the locus is represented by a plot generated
with Haploview, using data from the Mayo GWAS. The top eSNP
in this study, rs11568563, 1s highlighted on the p-value plot by red
squares and a red box around the SNP in the list of rs numbers.
This is also the top PSP-associating SNP at this locus in Hoglinger
et al. (Nat Genet, 2011) [27].

(PDF)

Figure S6 -Q-Plots for cerebellar and temporal cortex
cisSNP/transcript associations with the HapMap phase 2 imputed
genotypes: Q-Q plots of observed (y-axis) versus expected (X-axis)
—log(p) values of association for all ¢cisSSNP/transcript associations
in the combined dataset obtained before (a) and after (b) genomic
inflation-adjustments, as discussed in the text. Also shown are the
Q-Q plots for the temporal cortex associations in the combined
dataset obtained obtained before (c) and after (d) inflation-
adjustments.

(PDI)

Figure 87 Venn diagram of detectable cerebellar probes. Venn
diagram of cerebellar probes detectable in =75% of subjects in the
AD (AD), non-AD (CON) and combined (All) analyses. Notably,
13,349 probes were detectable in all 374 subjects.

(PDI)

Figure 88 Scatterplots of —logl0 p values for eGWAS
associations with and without inclusion of eigenvectors. Trans-
formed P-values of a) Cerebellar and b) Temporal Cortex eGWAS
ctsSNP/transcript associations from models including (y-axis) and
excluding (x-axis) the top 10 eigenvectors are plotted. A linear line
demonstrating the null hypothesis of no deviation of the results
between the two datasets is also shown. The results are displayed
for those SNPs with a Hardy-Weinberg P-value>1.0E-07 and a
probe detection threshold >75%.

JPG)

Text S1 Supplementary Results, Methods and References.
(DOC)
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