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Mitochondria are the bioenergetic cen-

ters of eukaryotic cells that produce ATP

through oxidative phosphorylation. A by-

product of oxidative phosphorylation is

the generation of reactive oxygen species

(ROS). Cancer cells exhibit high basal

levels of oxidative stress due to activation

of oncogenes, loss of tumor suppressors,

and the effects of the tumor microenvi-

ronment [1]. A large body of evidence

suggests important roles for oxygen free

radicals in the mutagenesis that drives

carcinogenesis [2], the expansion of tumor

clones, and the acquisition of malignant

properties [3].

Several studies have reported that a

high frequency of clonal and, therefore,

selected mitochondrial mutations are pres-

ent in a variety of human tumors [4–15].

Mitochondrial DNA (mtDNA) mutations

in cancer cells include intragenic deletions,

missense and chain-termination point

mutations, and alterations of homopoly-

meric sequences that result in frameshift

mutations [16,17]. The biological impact

of a given mutation may vary, depending

on the proportion of mutant mtDNAs

carried by the cell. The assumption from

these studies is that this high frequency of

clonal mutations arises from the ROS

produced in mitochondria by the escape of

oxygen free radicals during oxidative

phosphorylation, and that these mutations

play a role in driving cancer (Figure 1).

Therefore, genomic instability of mito-

chondria was thought to be a hallmark of

cancer.

Cancer arises from a mutator pheno-

type and it has been established that the

random mutation rate of the nuclear DNA

of tumors is quite high [18]. However,

little is known about the random mutation

rates of mitochondria derived from tu-

mors. In this issue of PLoS Genetics, Ericson

and colleagues [19] report their striking

finding that the random mutation fre-

quency of colorectal tumor mtDNA is

significantly lower than that of nuclear

DNA or of mtDNA in the surrounding

normal tissue. These results were obtained

using the random mutation capture assay

that was developed to measure random,

and not clonal, mutations [19]. This group

also shows that the mitochondria from the

colon tumors use aerobic glycolysis rather

than oxidative phosphorylation to gener-

ate energy for the cells. Importantly, this

metabolic shift from oxidative phosphory-

lation to aerobic glycolysis is likely to

produce fewer ROS that damage mtDNA

and lead to mutagenesis, mitochondrial

dysfunction, and cell death.

Seven decades ago, Warburg discovered

that mitochondria in cancer cells metab-

olize glucose by aerobic glycolysis and

suggested that this was a result of impaired

mitochondrial function that contributes to

tumorigenesis [20,21]. Recently, Thomp-

son and colleagues suggested that mito-

chondrial function itself is not impaired in

cancer cells that metabolize glucose by

aerobic glycolysis, and that this type of

anabolic metabolism is critical for the

production of essential cellular building

blocks including dNTPs, amino acids, and

lipids [22] (Figure 1). Growth factor

signaling by activated AKT, Myc, and

other proto-oncogenes results in altered

mitochondrial metabolism [22]. For ex-

ample, a majority of human tumors

harbor mutations in the AKT gene, and

activated AKT enhances glucose uptake,

allowing cells to maintain a higher than

adequate level of ATP [23]. What is

unknown is whether the colon tumors that

were characterized by the Bielas group

[19] harbor activated proto-oncogenes.

Nevertheless, the picture that now emerg-

es is that aerobic glycolysis enhances

growth of cancer cells by anabolic metab-

olism without producing high levels of

ROS that could inactivate the power

supply of the cell.

Other explanations for the low frequen-

cy of random mitochondrial mutations in

colon tumors include highly efficient DNA

repair (for excellent review see [24]) and

the coupling of antioxidant proteins to the

NADPH/NADP balance (Figure 1). Re-

cent studies have demonstrated that

mtDNA is repaired by a variety of

mechanisms, including short- and long-

patch base excision repair, mismatch

repair, and homologous recombination

[24–27]. The sanitation of dNTPs is also

likely to result in fewer mutations. Anti-

oxidant proteins may also play a role in

the low random mutation rate observed in

mitochondria. Proteins such as reduced

glutathione (GSH) or thioredoxin that are

closely coupled to the NADPH/NADP

balance can inactivate ROS [28,29]. The

presence of NADPH and other free radical

scavengers may be more pronounced in

the colorectal tumor environment to

neutralize the impact of oxidative stress

(Figure 1).

What are the implications of the

findings of Ericson et al. [19] for future

cancer therapy strategy or biomarker

discovery? Cancer cells exhibit increased

uptake of glucose, which increases the

bioenergetic competence required of ma-

lignant cells. This metabolic feature has

led to the hypothesis that inhibition of

glycolysis may abolish ATP and important

precursor generation in cancer cells and

thus may preferentially kill the malignant

cells [30,31]. Nuclear genetic and epige-

netic changes have been the cornerstone of

such studies. In addition to these strate-

gies, it is likely that mutated genes that

function to alter mitochondrial metabolic

Citation: Kidane D, Sweasy JB (2012) Tipping the Balance in the Powerhouse of the Cell to ‘‘Protect’’ Colorectal
Cancer. PLoS Genet 8(6): e1002758. doi:10.1371/journal.pgen.1002758

Editor: Susan M. Rosenberg, Baylor College of Medicine, United States of America

Published June 7, 2012

Copyright: � 2012 Kidane and Sweasy. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: This work was supported by NIH P01CA129186 (JBS) and NCI 1 K01 CA15485401A (DK). The funders
had no role in the preparation of the article.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: joann.sweasy@yale.edu

PLoS Genetics | www.plosgenetics.org 1 June 2012 | Volume 8 | Issue 6 | e1002758



competence in tumors, including HIF-1

and MYC, will emerge as new drug targets

and molecular markers of prognosis and

responses to therapy. In addition, target-

ing mtDNA repair proteins could serve as

a potential alternative approach to kill

cancer cells. The work of the Ericson et al.

[19] adds significantly to our understand-

ing of the roles of mitochondria in

supporting the growth of tumors. In

combination with recent findings regard-

ing mitochondrial metabolism in cancer

cells, this groundbreaking finding suggests

that novel drugs that target the power-

house of cancer cells are likely to make a

significant impact on cancer treatment.
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respiration. The dysfunctional TCA cycle generates fewer reactive oxygen species that may or may not induce DNA damage, and this subsequently
leads to fewer mitochondrial DNA mutations. (C) Efficient repair of mtDNA leads to fewer mutations and less mitochondrial dysfunction. (D) In
contrast, normal, low proliferative cells utilize OXPHOS and generate ROS that induce mtDNA damage and increase mutation frequency (shown in
green).
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