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Abstract

The Fragile X-associated disorders (FXDs) and Friedeich ataxia (FRDA) are genetic conditions
resulting from expansion of atrinucleotide repeat in aregion of the affected genethat is
transcribed but not translated. In the case of the FXDs, pathology results from expansion of
CGG+CCG-repeat tract inthe 5" UTR of the FVR1 gene, while pathology in FRDA results from
expansion of a GAA*TTC-repeat in intron 1 of the FX/ gene. Expansion occurs during
gametogenesis or early embryogenesis by a mechanism that is not well understood. Expansion
then produces disease pathology in various ways that are not completely understood either. In the
case of the FXDs, alleles with 55-200 repeats express higher than normal levels of atranscript that
is thought to be toxic, while alleles with >200 repeats are silenced. In addition, aleles with >200
repeats are associated with a cytogenetic abnormality known as a fragile site, which is apparent as
aconstriction or gap in the chromatin that is seen when cells are grown in presence of inhibitors of
thymidylate synthase. FRDA alleles show a deficit of the FXN transcript. This review will address
the role of repeat-mediated chromatin changes in these aspects of FXD and FRDA disease
pathology.
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1. Introduction

Friedreich ataxia (FRDA; OMIM #229300) and the Fragile X-associated disorders (FXDs),
Fragile X syndrome (OMIM #300624), Fragile X-associated tremor and ataxia syndrome
(FXTAS; OMIM #300623) and Fragile X-associated primary ovarian insufficiency
(FXPOI), are members of agroup of human genetic disorders known as the Repeat
Expansion Diseases (REDS). These diseases originate from an unstable short tandem repeat
tract that is prone to expansion on intergenerational transfer. Pathology arises when the
repeat exceeds a critical threshold. In most REDs, there is adirect relationship between
repeat number and disease severity and in those disorders that are not congenital thereis an
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inverse relationship between repeat number and the age of onset (see [1] for amore
comprehensive review of these diseases).

Most REDs arise from expansion of a CAGeCTG-tract that is located in an open reading
frame (ORF) and encodes glutamine (Fig. 1). Pathology in these diseases arises primarily
from toxicity of the resultant polyglutamine tract although contributions from other
mechanisms are also possible (reviewed in [2]). In those disorders where the repeat is
outside of the ORF, pathology can arise in avariety of ways some of which are not yet fully
understood. The FXDs and FRDA belong to the latter group of diseases.

1.1. The Fragile X-associated Disorders (FXDs)

1.2. FRDA

The FXDs arise from expansion of an unstable CGG*CCG-repest tract in the 5" untranslated
region (UTR) of an X-linked gene called Fragile X mental retardation 1 (FMR1)[3-5]. The
FMRI1 gene encodes a protein, FMRP, important for learning and memory. One magjor role
of FMRP isto offset the effect of mGIURS receptor activation in the postsynaptic neuron via
anegative effect on the trandation of a subset of MRNASs[6].

The FXDs are named for afolate-sensitive fragile site (FS), agap or constriction of the
chromatin, coincident with the FMR1 gene [7, 8]. This site only becomes apparent when the
repeat number exceeds 200. Alleles with this number of repeats are referred to as Full
Mutation (FM) alleles. In addition to the eponymous FS, carriers of such aleles have FXS,
the leading heritable cause of intellectua disability and the major known genetic cause of
autism [3, 5]. Depression, anxiety and behavior problems are frequent co-morbid features. A
recent study of 21,411 mother-newborn pairs from the general population suggests that the
prevalence of FXSis~1in 6000 malesand <1 in 12,000 females, with a very broad
confidence interval [9]. Females with the FM are generally less severely affected because of
the protective effect of the second X chromosome.

FMR1 alleles with 55-200 repeats are referred to as premutation (PM) alleles. Estimates of
the frequency of PM alleles also varies widely ranging from ~1in 500 to asmany as 1 in
106 women [9]. PM carriers are at risk of two other disordersthat are quite different from
FXS. Males, in particular, are at risk of FXTAS, alate onset neurodegenerative disorder
associated with gait and balance abnormalities as well as cognitive decline and dementia
[10]. Female PM carriers are at risk of FXPOI, an ovarian dysfunction disorder that is
thought to account for ~11% of familial cases of infertility and ~3.5% of idiopathic cases
[11-13]. In addition to fertility problems, affected women often have early onset menstrual
irregularities and an earlier than normal age at menopause. These women are also at risk of
having a child with aFM alele that arises from the PM allele by repeat expansion either in
the oocyte or very early embryo.

The very different pathologies seen in PM and FM carriers are thought to arise from
differencesin the effect of the repeats on FMRI gene expression asillustrated in Fig. 2. In
the PM range, FMR1 transcription is elevated and the transcript itself is thought to be
deleterious, causing reduced viability of human cells[14], and neurodegeneration in both fly
[15] and mouse models[16]. In contrast, in the FM range FMR1 transcripts, and thus FMRP
levels, are drastically reduced.

FRDA isaprogressive neurodegenerative disorder with an early onset. It is the most
common recessive ataxia with an incidence of 1 in 50,000. Loss of mobility is common
during adolescence and there is a high early mortality due to hypertrophic cardiomyopathy.
In addition to progressive gait and limb ataxia with associated limb muscle weakness, absent
lower limb reflexes, extensor plantar responses, dysarthria, decreased vibratory sense and
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proprioception are commonly seen. Diabetes occursin ~10% of FRDA patients (see [17] for
full discussion of the clinical presentation). Most cases of FRDA result from expansion of a
GAA-TTC-repeat located in the first intron of the Frataxin (FXA) gene [18]. The FXN gene
product, frataxin, is active in the mitochondria where it is thought to play an important role
in the biogenesis of iron-sulfur clusters. FRDA alleles express FXN at ~20-40% the levels
seen in individuals with repeat numbersin the normal range.

It has long been known that the absence of FMRP in FX S results from heterochromatin-
mediated gene silencing [4, 19] although the mechanism responsible is not completely
understood. However, there is also evidence to suggest that altered chromatin isinvolved in
other ways in these diseases. This review will discuss recent work donein our lab and
elsewhere to better understand FX S gene silencing as well as the role of chromatin in repeat
expansion, chromosome fragility and in the pathology of FXS, FXTAS, FXPOI and FRDA.

2. The expansion mechanism

The expansion mechanism is thought to be fundamentally different from the generalized
microsatellite instability seen in certain cancersin that instability affects a single locus,
expansions can be large, involving the addition of hundreds if not thousands of repeats
within asingle generation, and expansions far outnumber contractions. Indeed there is some
evidence to suggest that expansions and contractions occur via different mechanisms [20—
22]. The propensity to expand is thought to be related to the ability of all the disease-
associated repeats to fold into hairpins, slipped-strand structures, triplexes and tetraplexes/
quadruplexes[23].

Most work done to date on the expansion mechanism has involved CAGCTG-repesats
where a complicated and sometimes contradictory picture has emerged (see [24] for arecent
review). Work in transgenic mouse models and human cells has implicated a number of
chromatin remodeling/epigenetic factors in repeat expansion including DNMT1, the DNA
methyltransferase responsible for maintenance methylation [25-27], histone deacetylases
[28], CREB hinding protein, CBP, atranscriptional coactivator with intrinsic histone
acetylase activity [28] and CCCTC-binding factor, CTCF, atranscription factor which can
also act to enforce chromatin boundaries [29]. The sequence context of the repeat has also
been shown to be an important factor [30-32], asis cell type [30, 33-41]. However, adirect
effect of chromatin structure on repeat expansion has not been demonstrated.

Other factors that have been implicated in repeat instability include the mismatch repair
proteins MSH2/3 [42—46] and PM S2 [36]. OGGL1 has also been implicated in somatic
expansion in a mouse model of Huntingon Disease (HD) [142]. However, many of the
details remain confusing, with evidence suggesting that the same repeat can expand by
different mechanisms depending on the gender of the transmitting parent, the sequence
context and the cell type.

In humans, methylated FM alleles are more stable than unmethylated ones [47, 48], afact
consistent with arole for chromatin structure in maintaining repeat stability or arole for
transcription through the repeats. Our laboratory has been using a knock-in mouse model of
the FX PM to try to understand the expansion mechanism [49]. Since mice and humans are
syntenic in the region of the X chromosome in which the FMMRI gene islocated, it may be
that the expansion mechanism that operates in these animalsis similar to that operating at
the FMR1locusin humans.

We have shown that mutationsin ATM and ATR, key enzymes involved in the response to
DNA damage and stalled replication forks, increase repeat expansion [21, 22]. Since ATM
and ATR mutations have different effects on maternal and paternal expansions, our data
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suggest that there are at least two different expansion mechanismsthat can operate at the
Fmr1locusin mice. We have also shown that oxidative damage increases the frequency of
both paternally and maternally transmitted expansions [20]. This would be consistent with
the observations from mouse models of other REDs that expansion islikely related to
aberrant DNA repair. The underlying lesion responsible for repeat expansion may occur less
frequently in heterochromatin either because the lesion occurs as a result of transcription or
because heterochromatin is less vulnerable to things like oxidative damage. Alternatively,
the repair process occurring in transcriptionally active regions may be different from that
operating in transcriptionally silent regions. For example, transcription-coupled repair
(TCR) isarepair process that is confined to the template strand of transcribed genes [50]
that could potentially account for expansion in genes that are transcribed. However,
evidence for arole for TCR in models of the CAGeCTG-diseases has been inconsistent [51,
52] and no data are available for CGGsCCG-repeats. Thus much work remains to be donein
order to understand the mechanism responsible for repeat expansion in these disorders.

3. Chromosome fragility in FXS

The FS characteristic of FX FM allelesis apparent as a gap, constriction or break in the
chromosome that colocalizes with the repeat [7, 8] asillustrated in Fig. 2. In some respects
these sites are reminiscent of prematurely condensed chromatin. The human genome
contains many other FSs. The common FSs (CFSs) are ubiquitous in the population, while
the rare fragile sites are only seen in a subset of individuals. The FX fragile site (FRAXA)
belongsto agroup of at least 7 rare FSs that are induced by folate-stress or treatment with
agents like fluorodeoxyuridine (FdU) that inhibit thymidylate synthase, an enzyme
important for pyrimidine biosynthesis. These sites all consist of long CGGsCCG-repeats.
Other sites like FRA10B, which isinduced by BrdU [53], or FRA16B, which isinduced by
distamycin, consist of A+T-rich repeats [54]. Aphidicolin (APH) isresponsible for the
induction of many CFSs. These FSs span megabases of DNA with no specific sequences
responsible for FS expression having been identified to date (see [55] for more detailed
discussion).

CGG+CCG-repeats exclude nucleosomes /n vitro[56] as does FRA16B in the presence of
distamycin [57]. Nucleosome exclusion /n vivo potentially could account for the abnormal
appearance of chromatin at these locations. However, it would be hard to explain the folate-
sensitive nature of the FX fragile site on this basis. However, a common mechanism for
chromosome fragility is suggested by the properties of the agents that induce fragility.
Folate stress/FdU affects dCTP pools, a situation that may affect replication fork progression
through G-rich regions. APH inhibits DNA polymerase a,, 6, and e [58].
Bromodeoxyruridine is a halogenated thymidine anal og that can be incorporated into DNA
while distamycin binds the minor groove of A+T-rich regions[59]. Thus agents that induce
fragility al have the potential to affect the efficiency of DNA replication in some way.
Heterochromatin is also a common feature of FSs[60]. Chromatin conformation can
potentialy affect DNA replication by altering the timing and efficiency of origins of
replication [61]. It could also affect the efficiency of DNA repair [62].

Replication fork stalling has been reported for some of the CFSs [60, 63]. We have
previously shown that the FX repeat forms hairpins and tetraplexes that block DNA
synthesis /n vitrovery effectively [64]. These repeats are now known to block DNA
replication /n vivoas well [65]. It may be that reduced dCTP pools resulting from treatment
with agents like FAU slows DNA synthesis on the CGG-rich template. This could create
conditions that facilitate the formation of intrastrand structures that then further impede
DNA synthesis. Since the normal FMRI genereplicates late in S phase and the silenced
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alelereplicates even later [66, 67] this could delay the completion of replication of this
locus well into metaphase.

A stalled replication fork as the basis for chromosome fragility would be consistent with the
observation that camptothecin (CPT), atopoisomerase | (Topo |) inhibitor, reduces fragility
at many CFSs[68]. It aso reduces the levels of proteins typically seen in the presence of
single-stranded DNA (ssDNA). DNA polymerase inhibition by APH could lead to
uncoupling of the polymerase-helicase-Topo | complex. This could result in the generation
of long ssDNA regions that could form secondary structures that block replication [68]. S
phase exit before replication can be restarted could result in the appearance of prematurely
condensed chromatin at the FS.

However, recently it has been suggested that fragility at some CFSis simply afunction of
the late replication of aregion in which there are few origins of replication (ORIs) [69]. It
may be that some CFSs are located in regions that replicate so late and are so ORI poor, that
no replication fork block is necessary in order to produce a FS. Other CFSs may replicate
dightly earlier in the cell cycle and/or be in a more ORI-rich region, and thus require
additional impediments to DNA replication in the form of a sequence or structural blocks to
replication before they become apparent. A stalled replication fork may be even more
important in the case of the much smaller, sequence specific FSslike FX.

Mutationsin ATM and ATR affect chromosome fragility at both CFSs[70, 71] and FX [72].
However, there is some reason to think that the mechanisms responsible may differ. For
example, both ATR and ATM are involved in preventing fragility at the CFSs. In contrast,
we have shown that ATM is actually involved in the generation of the FX fragile sitein the
presence of FdU. However, ATM does seem to be involved in preventing aform of
chromosome fragility that occurs spontaneously in tissue culture [72]. Therole of ATM and
ATR, aong with the involvement of many DNA damage repair proteinsin fragility at CFS
[73-76], and the colocalization of y-H2AX foci, amarker of DSBswith the FSs[72, 76], is
consistent with amodel in which the failure to complete DNA replication in atimely manner
triggers DNA repair, with incomplete or error-prone repair leading to persistent gaps or
breaksin the chromatin.

The formation of FSs can have important medical consequences. In particular, the FX fragile
site may be responsible for the high incidence of Turner Syndrome (X chromosome
monosomy) seen in female fetuses with the FM allele [77]: In all informative instances
examined the lost chromosome corresponds to the one carrying the FM allele. Breakage /n
vivowould require the healing of the broken chromosome perhaps by sister chromatid
fusion. Preferential migration of this fused chromosome to the spindle pole of one of the
daughter cells during anaphase could account for the high frequency loss of the affected
chromosome in these cases.

4. Gene silencing in FXS

Heterochromatin-mediated gene silencing has long been recognized as the cause of FXS[4,
19]. However, the silencing mechanism is not well understood. Work in our lab and
elsewhere is beginning to shed light on this process. The FX alleleis known to be active in
embryonic stem cells and early embryos, with silencing occurring during differentiation
[78]. In differentiated cellsthe 5" end of FXS allelesis heavily methylated at the DNA level
[4, 19]. FXSdleles are also hypoacetylated and enriched for dimethylated histone H3 lysine
9 (H3K9Me2) [79]. During differentiation of FX embryonic stem cells, H3K9 dimethylation
on the FMR1 promoter is detected before DNA methylation [78]. Similarly, in rare FM
carriers who do not show gene silencing, H3K9Me2 is present while DNA methylation is
not [80]. These dataillustrate that deposition of H3K9Me2 on the FMRI geneis arelatively
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early event in the silencing process while DNA methylation occurs later or independently of
this event.

More recently, we have shown that silenced alleles are enriched for marks of both
facultative and constitutive heterochromatin [81]. The constitutive heterochromatin marks
histone H3 trimethylated on lysine 9 (H3K9Me3) and H4 trimethylated on lysine 20
(H4K20Me3) are most highly concentrated on the repeat. In contrast, two marks of
facultative heterochromatin H3K9Me2 and H3K27Me3 are evenly distributed across the
locus merging with a zone of facultative heterochromatin that we have identified upstream
of the FMR1 promoter in both normal and patient cells[81].

The concentration of the constitutive heterochromatin marks on the repeat suggests that the
trigger for silencing may be intrinsic to the repeat. Thistrigger could be the repeats
themselves either acting in DNA-mediated fashion or via an effect of the repeat-containing
RNA asillustrated in Fig. 3. Treatment of FXS cells with the DNA methyltransferase
inhibitor 5-azadeoxycytidine leads to gene reactivation [82, 83]. However, this compound is
toxic. Histone deacetylase inhibitors like butyrate and trichostatin A (TSA), that target class
| and class |1 histone deacetylases (HDACS), have only a modest effect on gene reactivation
[82, 83]. However, we have shown that inhibition of the class |1l HDAC, the sirtuin SIRT1,
results in comparable gene reactivation to that seen with azadC [84]. SIRT1 acts by
deacetylating H3K 9 and H4K 16. Deacetylation of H3K9 occurs prior to DNA methylation,
while deacetylation of H4K 16 appears to be one of the last steps in the silencing process.
Since a dominant negative mutation of hM OF, the enzyme responsible for acetylating

H4K 16, prevents SIRT1 inhibitors from reactivating the silenced allele [84], H4K 16
deacetylation rather than DNA methylation per sg is vital for the silencing process. The
ability of SIRT1 inhibitorsto reactivate the FAM/RI gene suggests that this class of drug may
have therapeutic value in treating FXS, since it has the potential to be effective in post-
mitotic cells like neurons, the cells in which the effect of aberrant FAMR1 genesilencing is
felt most acutely.

5. FMR1 hyperexpression in PM carriers

While repeat-mediated gene silencing is responsible for FM symptoms, not only are PM
alleles not silenced, they actually make 2—6 times more FMR1 mRNA than normal alleles
[85, 86]. The increase in transcription shows a linear association with repeat number. Since
work in Drosgphilasuggests that the RNA pathology thought to be responsible for disease
symptoms is a function both of the repeat number and the level of the RNA containing the
repeats [15], the elevated level of MRNA seen likely contributes to the severity of the
disorders seen in PM carriers.

In contrast to the hypoacetylation of FM alleles, PM alleles have 1.5-2 times the normal
levels of acetylated H3 and H4 [87]. The basis of these chromatin changes is unknown.
Should CGG=CCG-repeats turn out to exclude nucleosomes /n vivoasthey do /n vitro[56],
they could perhaps confer an initially more open chromatin structure on the FMR1
promoter. This could predispose PM alleles to increased transcription, perhaps by
facilitating the increased usage of the more 5" transcription start sites that occurs in PM
carriers[88].

It is also possible that the observed chromatin abnormalities are the indirect result of the
effect of CGG-repeat containing RNA on gene expression [89], perhaps by favoring the use
of additional promoters or by affecting the expression of chromatin modifying proteins. The
effect on gene expression could result from CGG-RNA's ability to act as a substrate for the
RNA interference pathway [89] and thus to potentially affect the expression of genes
containing the repeats. CGG-RNA is aso thought to sequester proteins like SAME8, a
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splicing factor [90] and proteins like pur-a and hnRNP A2 [91], that have pleiotropic effects
on gene expression.

Whatever the mechanism, histone acetylase transferase inhibitors like garcinol and anacardic
acid have been shown to reduce FMRI mRNA levelsin patient cells[87]. Garcinol also
reduces neurodegeneration and extends the life-span of flies expressing high levels of CGG-
RNA, as does overexpression of different HDACs [87]. Whether or not this effect is
mediated viaadirect effect on the PM chromatin, it would suggest that the use of HAT
inhibitors may help ameliorate disease symptoms in humans.

The paradox of hyperexpression of PM alleles and the hypoexpression of FM alleles remains
unresolved. It does suggest that as the FM threshold represents some sort of turning point
with respect to factors that affect gene expression. Since in the PM range, increasing repeat
number is associated with the increased production of both sense and antisense transcripts, it
is possible that somewhere close to the FM threshold the levels of one or both of these
transcripts reaches a critical mass that allows the process of gene silencing to predominate.

6. FRDA as a chromatinopathy

At the time that the FXN gene was first identified in 1996, most work on gene silencing was
focused on CpG-rich promoter regions that were hypermethylated. Since the FRDA repeat is
located in an intron, contains no CpG-residues that could be methylated and FXN mRNA
levels are still significant in patient cells, an alternative explanation for the FRDA
transcription deficit was initially sought. Thisled to modelsin which the GAA«TTC-repeat,
by virtue of its ability to produce secondary structures like triplexes, formed an impediment
to transcription elongation [92-95]. Other models invoking altered splicing have aso been
proposed [96].

However, more recent work in our lab and elsewhere has shown that the region flanking the
repeat in patient cells is hypermethylated [97] and associated with histone marks
characteristic of transcriptionally silenced genes[98, 99]. We showed that both normal and
patient alleles show hypermethylation of CpG residues upstream of the repeat. Methylation
on normal alleles could be due to the spreading from Alu elements present in the vicinity
including the Alu element from which the repeat has been suggested to have arisen. While
hypermethylation is seen on normal alleles, patient alleles are more extensively methylated
[97] and arelationship between the extent of methylation and disease severity has been
demonstrated [100]. In addition, we showed that some residues that are rarely methylated on
normal aleles are completely methylated in patient cells [97]. This suggests that some
residues in the region upstream of the repeat are protected from methylation in normal cells
perhaps because binding of proteins to that region blocks access of the CpG residues within
the binding site to DNA methyltransferases. One of these regions binds afactor that is
important for maximal promoter activity in reporter constructs [97]. Since DNA methylation
does not extend into the promoter, it probably does not affect transcription initiation viaan
effect on promoter chromatin. However, our data suggests that DNA methylation may have
an effect on transcription initiation viaits ability to block binding of afactor important for
optimal promoter activity. In addition, since intragenic methylation affects transcription
elongation [101], methylation may contribute in additional ways to the FXNV mRNA deficit
in FRDA.

While there have been no reports of DNA methylation spreading into the promoter, there
have been conflicting reports as to whether the repressive histone marks do. Some of the
discrepancy may result from the use of different cell types, cellswith different repeat
numbers and the analysis of different DNA regions and chromatin marks. However, the
elevated levels of H3K9Me2 in the brains of humans with FRDA [102] suggests that repeat-
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mediated changes may well extend into the promoter region in biologically relevant cells,
thereby having the potential to affect transcription initiation in away that could impact
disease severity.

HDAC inhibitors have been shown to be effective at normalizing FXN expression in patient
cells and in mouse models [103-105] and some of these compounds are now in clinical trials
to test their efficacy in the treatment of FRDA. The effect of HDAC inhibitors would be
consistent with the idea that the observed epigenetic changes seen on FRDA alleles are
responsible for the reduced transcription. However, this work has been challenged by the
observation that the compound BIX-01294 which inhibits dimethylation of H3K9, has no
effect on the levels of transcript produced [106]. In this view, the chromatin modifications
seen on patient alleles are not responsible for the transcriptional repression. They are either
irrelevant or reflect a downstream consequence of the reduced transcription resulting from a
block to transcription elongation formed by the repeats. However, it is possible to reconcile
the HDAC inhibitor data and the BIX-01294 data with an epigenetic dysregul ation model
for FRDA, if it assumed that H3K 9 dimethylation precedes or is independent of later events
important for gene silencing, analogous to what we have observed in FXS[84].

Further support for an epigenetic model comes from work in our laboratory that showed that
the level of theinitiating form of RNA Polymerase Il (Pol 1) isreduced in patient cellsin
the vicinity of the major transcription start site [99]. Furthermore, trimethylation of H3K4,
which is thought to occur cotranscriptionally on exon 1 in a manner dependent on the
amount of initiating Pol 11, is aso lower in patient cells[99, 107]. In addition, H3K36Me3
[99, 106] and H3K 79Me2 [107], marks of transcription elongation, are also reduced 5” of
the repeat in patient cells. Taken together the preponderance of evidence supports the idea
that repeat expansion in FRDA, like repeat expansion in FXS, leads to the formation of
heterochromatin that affects transcription initiation and elongation.

the molecular basis for these repeat-induced chromatin

Aswith FXS and myotonic dystrophy type 1 (DM1), a CTG*CAG-repeat expansion disease
that is aso associated with heterochromatin formation [108], the heterochromatin marksin
FRDA are highest in the vicinity of the repeat. This suggests that in all three disorders the
trigger for heterochromatin formation isintrinsic to the repeat. The fact that all other
identified long CGG*CCG-repeats in the human genome are also heterochromatinized [109—
115], lends support to that idea. The tendency of these different repeats to become
heterochromatinized could be related to their common ability to form unusual DNA and
RNA structures, such as hairpins, that may affect a variety of biological processes [64, 94,
116-122].

The repeats in the chromosome may act as silencers by binding sequence-specific or
structure-specific proteins that then recruit components of the silencing machinery [123] as
illustrated in Fig. 3A. Work in yeast has shown that replication pause sites are enriched for
silencing factors [124]. Since work from our laboratory and €l sewhere has shown that the
FX, DM1 and FRDA repeats form blocks to DNA synthesis [64, 65, 125], it may be that this
predisposes the repeats to silencing. Alternatively double strand breaks (DSBs) occurring in
the repeat may |lead to the recruitment of the deacetylase SIRT1, EZH2, a component of the
repressive Polycomb group (PcG) complexes, and DNA methyltransferases as demonstrated
for the G+C-rich promoter of the cadherin gene[126] (Fig. 3B). Our work demonstrating
that the FMR1 gene co-localizes with y-H2AX foci, amark of DSBs, in patient cells[72],
suggests that such a mechanism is possible. DSB formation could be related to the ability of
these repeats to block DNA synthesis [64, 65, 125] and the resultant efforts to complete
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replication. Alternatively DSBs could arise from DNA damage or attempts to repair that
damage. In thisregard, it is worth noting that the hairpins formed by the DM 1 repeat
increases the sensitivity of the locus to oxidative damage [127].

It could also be that the repeats in the chromosome are targeted by PcGs directed to the
locus by long non-coding RNA (IncRNA) as depicted in Fig. 3C. ThisIncRNA may act in
¢is asin the case of the Kengl gene cluster and the IncRNA, Kenglotl [128], or in frans, as
in the case of the Hox gene clusters and the IncRNA, HOTAIR [129]. Long antisense
transcripts have been described for all three disease loci [81, 130-132]. The IncRNA may
act as ascaffold for the assembly of proteins necessary for heterochromatin formation as
illustrated or as a guide for the recruitment of silencing complexes[133]. Since most PRC
targets are G+C-rich, the CGG*CCG-repeats may be particularly prone to silencing by these
complexes.

Finally, silencing may occur viaan RNA interference-based mechanism as has been
suggested for the centromeric repeatsin fission yeast [134] (illustrated in Fig. 3D). The
source of double-stranded RNA (dsRNA) for this pathway could be the long hairpins formed
by RNA containing these repeats [89, 122, 135] that, in the case of the FX and DM 1 repeats,
have been shown to be substrates for Dicer [89, 135]. Alternatively, the source of dsRNA
could be duplexes formed by the sense and antisense transcript produced from these loci [81,
130-132]. If asense-antisense hybrid were involved, it would be necessary to invoke some
special property of the region of the hybrid containing the repeat to account for the fact that
the repressive histone marks appear to nucleate on the repeat. Perhaps the fact that the
FRDA repeat is less G+C-rich than the FX and DM 1 repeats, and thus less likely to form
stable secondary structures, accounts for the fact that silencing is less complete on FRDA
alelesthan on FX or DM1 aleles.

8. Concluding remarks

Altered chromatin is afeature of many aspects of the FXDs and FRDA. Much work remains
to understand the mechanism responsible for the repeat-mediated chromatin changes, to
elucidate the role that these changes play in the repeat expansion that generates pathol ogical
alleles and how it relates to the chromosome fragility characteristic of FXS alleles.

However, alarge body of evidence clearly demonstrates that repeat-mediated changesin
chromatin have del eterious consegquences for gene expression that are responsible for or
contribute to disease pathology. Since the coding sequences in both the FXDs and FRDA are
unchanged in most affected individuals, identifying all of the eventsinvolved in the
deposition of altered chromatin and understanding any common processes involved may
facilitate the development of therapeutic approaches to treat these disorders.
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Fig. 1. Diagrammatic representation of the Repeat Expansion Diseases showing the location of
the disease-causing repeat on a generic gene

(see[1] for amore comprehensive description of these diseases). The diseases shown here
arise from pathology that is known to be due either to the presence of the repeat in the open
reading frame where it generates a polyglutamine tract in the protein that istoxic or in the
non-coding portion of the gene where it can affect gene expression in avariety of ways.
Three REDs are not shown, Spinocerebellar ataxiatype 8 (SCA8), SCA12 and HD-like 2
(HDL2). The pathological effect in SCA8 is thought to be the result of a combination of
having the repeats in the coding sequence of one transcript and in the non-coding region of a
transcript synthesized in the antisense direction [136]. SCA12 results from a CAGCTG-
repeat inthe 5 region of the PP2R2B gene. However, there is no evidence that expansion
results in polyglutamine production and the mechanism responsible for disease pathology is
unknown [137]. In the case of HDL 2, the disease is caused by a CTG*CAG expansion
mutation in avariably spliced exon of junctophilin-3 in the CTG orientation [138]. This
seems to exclude polyglutamine tract as the cause of disease pathology in this disorder as
well. However, the source of the pathology remains unclear.
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Fig. 2. lllustration of the relationship between CGG+CCG-repeat number, the levels of FMR1
mRNA and FMRP, and disease pathology in the FXDs
FX premutation alleles produce elevated levels of FMRI mRNA [86]. However, FMRP
levels can be lower than that seen in unaffected alleles due to difficultiesin translating
transcripts with long CGG-repeat tracts [139, 140]. Carriers of full mutation alleles make
little or no protein. They also show a characteristic cytogenetic abnormality, afolate-
sensitive fragile site (FS) indicated by the arrow, that is coincident with the repeat. In this

case the FS was visualized by hybridization to aBAC (RP11-489K 19) probe that spans the
FMR1l1ocus. In the example shown, one sister chromatid has lost the telomeric end of one
sister chromatid including any DNA homol ogous to the probe. A constriction or gap, typical

of afragile site, is seen on the other sister chromatid colocalizing with the FMR1 probe

(pink signal).
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Fig. 3. Four modelsfor repeat-induced gene silencing in FRDA and FXS

(A) The repeatsin the chromosome may act as silencers by binding sequence-specific or
structure-specific proteins that then recruit components of the silencing machinery. (B)
DNA damage within the repeat may result in the recruitment of the deacetylase SIRT1,
EZH2, a component of the repressive Polycomb group (PcG) complexes, and DNA
methyltransferases. (C) The repeatsin the chromosome may be targeted by PcGs directed to
the locus by long non-coding RNA (IncRNA) [141] acting in cis or trans. (D) Silencing may
occur viaan RNA Interference based mechanism [134] with the long hairpins formed by
RNA containing these repeats or duplexes formed by the sense and antisense transcript
produced from both of these loci as the source of dsSRNA. DMTs: DNA methyltransferases.;
IncRNA: long non-coding RNA; PcGs: Polycomb Group Complexes; RITS: RNA-induced
transcriptional silencing complex.
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