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Background: Unpredictable clinical behavior of glioblastoma multiforme suggests distinct molecular subtypes.
Results:Metabolic profiles of different glioblastoma lines indicate distinct subtypes correlatedwith gene expression differences.
Conclusion: A subset of metabolites can be used to distinguish between four subtypes of glioblastomas.
Significance:Metabolic profiling of cancers provides a way for subtype determination with possible diagnostic and prognostic
applications.

Glioblastomamultiforme (GBM) is themost common formof
malignant glioma, characterized by unpredictable clinical
behaviors that suggest distinct molecular subtypes. With the
tumor metabolic phenotype being one of the hallmarks of can-
cer, we have set upon to investigate whether GBMs show differ-
ences in their metabolic profiles. 1H NMR analysis was per-
formed on metabolite extracts from a selection of nine
glioblastoma cell lines.Analysiswas performeddirectly on spec-
tral data and on relative concentrations of metabolites obtained
from spectra using a multivariate regression method developed
in thiswork. Both qualitative and quantitative sample clustering
have shown that cell lines can be divided into four groups for
which the most significantly different metabolites have been
determined. Analysis shows that some of the major cancer met-
abolic markers (such as choline, lactate, and glutamine) have
significantly dissimilar concentrations in different GBM
groups. The obtained lists of metabolic markers for subgroups
were correlatedwith gene expressiondata for the samecell lines.
Metabolic analysis generally agrees with gene expression mea-
surements, and in several cases, we have shown in detail how the
metabolic results can be correlated with the analysis of gene
expression. Combined gene expression andmetabolomics anal-
ysis have shown differential expression of transporters of meta-
bolic markers in these cells as well as some of the major meta-
bolic pathways leading to accumulation of metabolites.
Obtained lists of marker metabolites can be leveraged for sub-
type determination in glioblastomas.

Tumor cells have a remarkably differentmetabolism than the
tissues they derive from. Many key oncogenic signaling path-
ways converge to create this change to support growth and
survival of cancer cells (1). The unique metabolic phenotype

associated with cancer is in general characterized by (a) high
glucose uptake; (b) increased glycolytic activity; (c) decreased
mitochondrial activity for energy production; (d) low bioener-
getic expenditure; (e) increased phospholipid turnover, altered
lipid profile, and increase ofde novo lipid synthesis; (f) increased
amino acid transport alongwith elevated protein andDNAsyn-
thesis; (g) increased hypoxia; and (h) increased tolerance to
reactive oxygen species (1, 2). However, these general charac-
teristics differ widely across cancer types and subtypes (1, 2).
Understanding how cancer subtypes derive energy and neces-
sary building blocks, even from a nutrient-depleted environ-
ment, is of fundamental importance for the development of
appropriate therapies and diagnostic approaches (2–4). Cancer
metabolic phenotype has been explored for several years in can-
cer diagnostics performed bymagnetic resonance spectroscopy
as well as PET scanning. With better description of metabolic
differences among tumor subtypes, these methods can be used
for noninvasive subtyping of tumors and thus improved patient
stratification. One of the major applications of noninvasive
diagnosis and follow-up is in brain tumors. Metabolic profiling
of brain normal and tumor samples has been performed for a
number of years with early studies published more than three
decades ago (Ref. 5 and references therein). Recent studies have
further highlighted the possibility of diagnosing major brain
tumor types in a noninvasive manner (6, 7).
Glioblastomamultiforme (GBM)4 is themost common form

of malignant brain cancer in adults with very poor prognosis
and a dire need for improvement in patient stratification and
treatment. Several groups have turned to high dimensional pro-
filing studies to better describe GBMs. Recent work performed
as part of the Cancer Genome Atlas Network has analyzed
genomic abnormalities in GBM samples (8). This analysis has
identified four clinically relevant subtypes of GBMs that were
characterized by abnormalities in PDGFRA, IDH1, EGFR, and
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NF1 among other alterations. Platelet-derived growth factor
receptors (PDGFRs) are catalytic receptors that have intracel-
lular tyrosine kinase activity. They regulate many biological
processes including embryonic development, angiogenesis, cell
proliferation, and differentiation. Isocitrate dehydrogenases
(IDHs) function at a crossroad of cellular metabolism and are
involved in lipid synthesis, cellular defense against oxidative
stress, oxidative respiration, and oxygen-sensing signal trans-
duction. IDHs catalyze the oxidative decarboxylation of isoci-
trate to �-ketoglutarate and the reduction of NAD(P)� to
NAD(P)H. Mutated IDH1 and IDH2 possess a different active
site that appears to promote metabolism of �-ketoglutarate
(product of wild-type IDH1 and IDH2) into the oncometabolite
2-hydroxyglutarate. Epidermal growth factor receptor (EGFR)
is a transmembrane glycoprotein that binds to epidermal
growth factor. Among its many functions, EGFR has been
linked to the mechanism that reduces cell membrane permea-
bility to choline (9, 10). One of the most common oncogenic
events observed in GBMs is the amplification and overexpres-
sion of EGFR kinase that occurs in 40–60% of primary GBMs
(11). Furthermore, a truncated version of this kinase (EGFRvIII)
is expressed in 20–30% of GBM patients and results in consti-
tutive activation of this signaling pathway (12). The neurofibro-
min 1 (NF1) gene is suggested to act as a negative regulator of
the Ras signaling transduction pathway (13). Gain of function
for Ras, among other oncogenes, induces HIF-1 expression by
deregulation of the mammalian target of rapamycin (mTOR)
pathway (1). Abnormalities in all four of the aforementioned
molecular targets can influence brain tumor cell metabolism,
and this can possibly be observed through analysis of metabolic
profiles.
High throughput metabolite profiling (metabolomics) pro-

vides unbiased analysis of metabolic differences.Metabolomics
is particularly important in the search for biomarkers that can
eventually be used for in vivo diagnosis and prognosis with
methods such as magnetic resonance spectroscopy. Currently,
magnetic resonance spectroscopy is the only available method
for in vivomolecular analysis of brain tumors and is gaining an
increasing role in clinical assessment of patients (6). The first
step toward devising a metabolite-based noninvasive glioblas-
toma subtyping method is to identify metabolite-based sub-
types and to determinemajormetabolicmarkers in cancer sub-
types. Cell culture analysis provides an excellent, controlled,
homogeneous setting for initial identification ofmetabolic pro-
files and is a prerequisite to the analysis ofmore complex tumor
tissue or biopsy samples.
NMR analysis of brain tumor cell cultures has been per-

formed for number of years with some of the first detailed stud-
ies appearing in the early 1990s (14). Brain tumor cell cultures
provide a way for creating a sufficient amount of sample
through passaging of cells while avoiding problems caused by
heterogeneity and confounders. In 1995, Florian et al. (7, 15)
used in vitro 1HNMR spectroscopy and chromatographic anal-
yses to compare metabolic properties of three types of human
brain and nervous system tumor cell lines. Obtained spectra
from meningiomas (six lines), neuroblastomas (three lines),
and glioblastomas (five lines) displayed some similarities such
as the presence of signals from leucine-, isoleucine-, valine-,

threonine-, lactate-, acetate-, glutamate-, glycine-, and choline-
containing compounds. Meningioma spectra featured rela-
tively high signals from alanine. Intense signals from creatine
were present in neuroblastoma but not in glioblastoma spectra.
Statistically significant differences were found in the amounts
of alanine, glutamate, creatine, phosphorylcholine, and threo-
nine among the types of tumors examined. Overall, it has been
observed that neuroblastoma, glioma, and meningioma cells
display a low concentration of normal neural metabolites, such
as N-acetylaspartate, �-amino butyrate (GABA), and taurine.
The most discriminatory metabolites for tumor cell types
include total creatine (creatine and phosphocreatine), total
choline (phosphocholine, glycerophosphocholine, and cho-
line), alanine, taurine, and glutamate.
In this work, we have included nine different glioblastoma

cell lines and explored the hypothesis that GBM subtypes can
be determined from metabolic profiles. To this end, we have
analyzed in detail the specific metabolic characteristics of dif-
ferent glioblastoma cell lines and determined significant meta-
bolic differences among metabolically resolved GBM subtypes.
Metabolic profiles were compared with publicly available gene
expression data to determine relationships between metabolic
and gene expression differences among proposed subtypes of
GBMs.

EXPERIMENTAL PROCEDURES

Cell Lines and in Vitro Culture Conditions—Human glioma
cells A172, BS149, Hs683, LN18, LN229, LN319, LN405,
U343MG, andU373 weremaintained in DMEM supplemented
with 10% fetal bovine serum (FBS) and antibiotics (Invitrogen).
The “BS” series was generated at the University of Basel,
whereas the “LN” series was generated by Erwin Van Meir in
Lausanne, Switzerland. All cell lines were a kind gift of Adrian
Merlo (Laboratory ofMolecular Neuro-oncology, University of
Basel, Basel, Switzerland). Prior tometabolite isolation, 1� 106
cells were seeded in quintuplicate in 10-cm culture dishes and
incubated for 48 h at 37 °C and 5% CO2. Cells were then har-
vested by scraping and rinsed with 5 ml of PBS. The mixture
was centrifuged at 4,000 relative centrifugal force for 1 min.
Supernatant was discarded, and the cell pellet was again rinsed
with 5 ml of PBS. Upon centrifugation at 4,000 relative centrif-
ugal force for 1min, cell pelletswere kept on ice for 5min before
being resuspended in 1 ml of ice-cold 50% acetonitrile. Cell
suspensionswere kept on ice for 10min before centrifugation at
16,000 relative centrifugal force for 10min at 4 °C. The aqueous
acetonitrile extract solutions were dried down under a stream
of N2.
Total RNA Isolation and PCR Amplification—Total RNA

isolation and subsequent cDNA synthesis from GBM cell lines
were performed as described previously (16). The primers
listed in Table 1 were designed and synthesized by Integrated
DNA Technologies (Coralville, IA) (Table 1). PCR was con-
ducted using the EconoTaq PLUS (Lucigen, Middleton, WI)
reagents as per the manufacturer’s instructions. Cycles per-
formed for amplification consisted of an initial step of 5 min
at 94 °C followed by the amplification steps of 94 °C for 30 s,
56 °C (EGFR, PDGFRA, andGAPDH) or 60 °C (NF1 and IDH)
for 30 s, and 72 °C for 30 s (PDGFRA, NF1, IDH1, and

Metabolite Expression in Glioblastoma Cell Lines

JUNE 8, 2012 • VOLUME 287 • NUMBER 24 JOURNAL OF BIOLOGICAL CHEMISTRY 20165



GAPDH) or 90 s (EGFR); the final step was 72 °C for 5 min.
PCR products were separated on a 1% agarose gel. Fragments
of �100–280 bp (PDGFRA, NF1, IDH1, and GAPDH) and
�1000 bp (EGFR) corresponding to the expected fragment
length were obtained.
NMR Experimentation—The residue obtained after drying

was dissolved in 0.6ml of deuterium oxide (Aldrich, 99.96 atom
% 2H), pipetted into a 5-mm NMR tube for NMR analysis. All
1H NMR measurements were performed on a Bruker Avance
III 400 MHz spectrometer at 298 K. One-dimensional spectra
were obtained using a gradient water presaturation method
with 512 scans (pulse sequence zgesgp). NMR spectra were pro-
cessed using Mnova with exponential apodization (exponent
1); global phase correction; Bernstein-Polynomial baseline cor-
rection; Savitzky-Golay line smoothing; and normalization
using total spectral area as provided inMnova. Spectral regions
from 0 to 9 ppm were included in the normalization and anal-
ysis. Two-dimensional spectra including TOCSY, two-dimen-
sional JRES, and HMQC using standard methods provided in
TopSpin software (Bruker) were performed on one sample of
each explored cell type with 70, 32, and 1,000 scans (number of
transients per free induction decay, i.e. number of free induc-
tion decay acquired for each t1 data point), respectively.Mixing
times for TOCSY experiments were adjusted to 80ms. For pre-
cision and reproducibility, a total of 45 NMR experiments were
carried out in quintuplicate (n � 5) on nine cell lines. Metabo-
lite assignments were performed using two-dimensional mea-
surements as well as one-dimensional 1H spectral data in
comparison with metabolites database data and literature
information.
Data Analysis—Data preprocessing including data organiza-

tion, removal of undesired areas, and binning as well as data pre-
sentation was performed with Matlab vR2010b (MathWorks).
Minor adjustments in peak positions (alignment) between differ-
ent samples were performed using in-house alignment software.5
Principal component analysis (PCA) as well as fuzzy K-means
cluster analysis were done using theMatlab platform as described
previously (18). Feature selection was done with the significance
analysis formicroarrays (SAM)method (19). Peak assignmentwas
performedusingseveralmethodsdeveloped inourgroupandelse-
where andwasbasedonmetabolicNMRdatabases (20–22). Spec-
tra for 41 metabolites used in quantification were obtained from
the Human Metabolome Database or Biological Magnetic Reso-
nanceDatabank and further analyzed visually and comparedwith
the obtained spectra.
Metabolite Quantification—An automated method for

quantification based onmultivariable linear regression of spec-
tra with appropriately aligned metabolite data from databases

was developed and utilized in the study. The assumption
behind this approach is that the spectrum of a mixture is the
same as the combination (sum) of spectra of individual compo-
nents measured under the same conditions. If there are no
chemical interactions among compounds in the mixture, this
assumption generally holds, and the spectra of standards can be
used for assignment and quantification of spectrum of a mix-
ture measured under the same conditions (pH, temperature,
etc.) and with the same NMR pulse sequence. Here relative
metabolite concentrations were estimated using nonlinear
curve fitting with the multivariate least squares approach. The
linear regression result was used as the starting point, and the
model was constrained to concentrations: c � 0. NMR spectra
of the mixtures (samples) are modeled as a sum of spectra for
components (metabolites) in the mixture, i.e.

I�v� � �cnLn�v� (Eq. 1)

where cn is the concentration of the component, v is the spectral
frequency point, and Ln(v) is the spectrum of metabolite n at v.
Each compound can result in many peaks within spectra of
mixtures thus having extensive overlapping of peaks. The
deconvolution of spectra of mixtures, such as in metabolomics,
with many strongly overlapping lines, possibly with an
unknown number of lines and atomic groups, each with a dif-
ferent line width, is extremely difficult, and thus, it is important
to determine an optimal solver for this problem. Generally, the
solution is found by minimizing the square root of difference
between themodel and real spectrum �I� I��2 while using cn and
possibly minor frequency change as variables or by solving the
Equation 1 for cn. Several different methods for multivariate
regression analysis provided in Matlab vR2010b were tested
including partial least squares regression, robust fit, Leven-
berg-Marquardt curve fitting, and linear programming. The
best result, i.e. the model with the minimal error determined
as �I � I��2, was obtained with the Levenberg-Marquardt
curve fitting, and this method was used for quantification of
metabolic data used in further analysis. The Levenberg-Mar-
quardt method is specifically designed for solving nonlinear
curve fitting problems in the least squares sense and addi-
tionally allows the inclusion of constraint that concentra-
tions have to be non-negative.
Quantification error is estimated by performing the multi-

variate linear regression analysis as described above but with
one metabolite at the time removed from the analysis. In this
way, we are estimating errors caused by omitting metabolites
from the analysis and the uniqueness of spectral features for
metabolite quantification. From quantitative values for each
metabolite recalculated for each n � 1 metabolite subgroup,
error is calculated as5 J. Hines and M. Cuperlovic-Culf, submitted.

TABLE 1
PCR primers for measurement of gene expression values for marker genes

Gene Forward primer Reverse primer

EGFR 5	-ATGCGACCCTCGGGGACG-3	 5	-GAGTATGTGTGAAGGAGT-3	
PDGFRA 5	-AGCTGATCCGTGCTAAGGAA-3	 5	-ATCGACCAAGTCCAGAATGG-3	
NF1 5	-TTGGTTATAAGCGGCCTCAC-3	 5	-TTTCTGGCAGCAACTGTTTG-3	
IDH1 5	-TGGGCCTGGAAAAGTAGAGA-3	 5	-CAAAGGCCAACCCTTAGACA-3	
GAPDH 5	-CGGGTGATGCTTTTCCTAGA-3	 5	-GACAAGCTTCCCGTTCTCAG-3	
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erri �
1

n � 1 �
k � 1

n

�L�F� i � L�F�M� i,k�
2 (Eq. 2)

where n � 41 is the number of metabolites; L�F� i is the mean
value of concentration for metabolite i across all samples
obtained when the complete set of metabolites is analyzed; and
L�F�M� i,k is the same concentration but when metabolite k is
excluded from the analysis.
Microarray Data Analysis—Microarray datasets used in this

work were previously published and validated for accuracy in
RNA expression measurements (Ref. 16; available from GEO
Databases in MIAMI format ID: GSE 15824). The description
ofmethods used for sample processing, microarray experimen-
tation, and validation is given in the original publication. These
microarray data were analyzed using TMeV2.2 and Pathway
Studio 8.0 (Ariadne Inc.). TMeV is the general data analysis
software that includes many features such as normalization,
clustering, classification, and statistical analysis. Pathway Stu-
dio is the commercial software that determines relationships
among different types of biological molecules as well as bio-
medical terms based on extensive literature searches.

FIGURE 1. NMR spectra of five biological replicates for nine glioblastoma
cell lines studied in this work. The good consistency among replicates is
apparent from spectral traces. Only the spectral region between 0.5 and 9
ppm is shown. Spectral points in the region between 2.1 and 2.2 ppm contain
residual hydrogen-containing solvent and are therefore removed, as well as
the region of 4.5–5 ppm, which is affected by water suppression.

FIGURE 2. Spectra of metabolites used for multivariate linear regression analysis of glioblastoma spectra. Forty-one metabolites used in the analysis
included all metabolites previously determined in NMR measurements of hydrophilic glioblastoma samples as well as samples of other cell lines. One-
dimensional spectra of all 41 metabolites are shown in this figure along with the outline of the average spectrum for glioblastoma cell lines. Complete spectra
of all metabolites were used in multivariate linear regression analysis.
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RESULTS AND DISCUSSION

NMR metabolite analysis was performed on nine GBM cell
lines. Five independent (biological) replicates of cells were
grown under the same optimal conditions. Selecting cell cul-
tures with the same growth conditions ensured that there were
no differences in the metabolic profiles caused by cellular envi-
ronment. The metabolites were extracted from replicates of
each of the nine cell lines using the procedure described under
“Experimental Procedures.”One-dimensional 1HNMR spectra
for 45 metabolic extracts were measured and used in the qual-
itative and quantitative analysis. Additionally, TOCSY, two-di-
mensional JRES, and HMQC spectra were obtained for one
replicate of each cell type, and these two-dimensional data
aided inmetabolite assignment. The one-dimensional 1HNMR
spectra obtained for each cell line and each replicate are shown
in Fig. 1. Spectra of biological replicates show negligible
differences.
One-dimensional and two-dimensional spectra allow detailed

assignment of metabolites. Metabolite assignment was based
on literature data (23) and database information (20, 21) using
both one-dimensional and two-dimensional measurements.
Obtained metabolite assignments as well as spectra for each
metabolite are shown in Fig. 2. These assignments were used
for metabolite quantification described under “Experimental
Procedures.”
Metabolic profiles analysis was performed qualitatively,

directly on the spectra, as well as quantitatively, on quantified
metabolic concentrations. Sample spectra and quantified
metabolite concentrations were analyzed with unsupervised
clustering methods to determine the similarities and differ-
ences between sample types in an unbiased fashion.
In the first level of analysis, the complete spectra were nor-

malized using the total peak area normalizationmethod. Exper-
imental conditions were equalized (in terms of pH and temper-
ature), resulting in spectrawith complete chemical shift overlap
that was verified using our spectral alignment tool (17). Thus,
binning was not necessary, and the analysis was performed on
complete spectra, ensuring that all measured spectral features
were considered. The qualitative analysis of themajor variances
in the spectra was performed directly by using PCA (Fig. 3) as
well as by clustering samples with the hierarchical clustering
(HCL) (Fig. 4A) and fuzzy K-means methods (FKM) (Fig. 4B).

Fig. 3 shows the plot of principal components PC1, PC2, and
PC3 for the five replicates of the nine cell lines studied. Group-
ing of replicates for each cell type is clear. In addition, there
appears to be assembling of some cell types. Additional results
of true clustering analysis are shown in Fig. 4. Fig. 4A presents
sample clusters obtained using the HCL method. HCL allows
feature grouping automatically from data without user input of
cluster numbers. According to the HCL results, samples from
the nine cell types can be grouped into four clusters. Finally,
spectra were clustered using the FKM method, which was
introduced to NMR metabolomics in Ref. 18. FKM calculates
memberships or belongings of each feature (in this case sample)
to each of the user-defined numbers of clusters. In thismethod,
each feature belongs to some extent (defined by the member-
ship value) to each group where a membership value near 1

indicates strong belonging and close to 0 indicates weak
belonging or no belonging. Fig. 4B shows membership values
for each sample for four clusters obtained using the FKM
method. FKMmemberships were calculated using the “fuzzifi-
cation” factor m � 1.8 (where m � 1 defines crisp clustering),
which provided the good balance between crisp and fuzzy clus-
tering (24).
Cell replicates were co-clustered for all three methods.

Although this can be expected, it still highlights the technical

FIGURE 3. Principal components analysis of spectral data for nine GBM
cell lines. Metabolites were independently extracted and measured for five
biological replicates corresponding to nine cell line types. The grouping of
several cell types is apparent. Comparison between PCA results of spectral
and quantified metabolic data is shown in supplemental Figs. 1 and 2.

FIGURE 4. FKM and HCL clustering of spectral data. A, HCL result for cell
samples. B, FKM determined membership values for each measurement,
where red represents the membership value of 1, and dark blue corresponds
to membership of 0. Higher membership value indicates stronger belonging
to a cluster. FKM was calculated with m � 1.8. Comparison between FKM
clustering of spectral and quantified metabolic data is shown in supplemen-
tal Fig. 3.
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consistency of the experimental manipulations and, even more
importantly, biological control of themetabolismperformed by
cells of the same type under similar conditions. Different cell
lines appeared to cluster within subtypes of GBMs with four
distinct groups: group 1, LN229 and LN319; group 2, HS683
and LN405; group 3, U343, A172, and LN18; and group 4, U373
and BS149. The same results were obtained with all three unsu-
pervised methods. FKM, and to some extent PCA, showed that
LN405 co-clustersmostly withHS683 but has some similarities
with U343, A172 and LN18 group as well. Other samples
appeared to be strongly associated with only one cluster.
To determine specific metabolites that are distinct between

these groups, we have performed metabolite quantification
from spectral data. For this, we have utilized the multivariate
linear regression fittingmethod, which tries to createmodels of
data frommetabolite (standard) spectra collected in databases.
Metabolite spectra were manually aligned with the measure-
ments to reduce errors caused by minor changes in peak posi-
tions. Relative metabolite concentrations were obtained as
optimal multipliers for normalized spectra obtained in the fit-
ting. Forty-onemetabolites in total were used in the fitting. The
list of analyzed metabolites and their spectra is shown in Fig. 2.
Relative concentrations of each metabolite for each cell line as
well as error estimates are shown in supplemental Table 1. HCL
clustering of quantitative metabolic data following normaliza-
tion is shown in Fig. 5. Comparison between PCA and FKM
analysis for spectral and quantified data is shown in the supple-

mental figures. Unsupervised analysis ofmetabolic data leads to
the same sample groups as did analysis of spectral data.
The sample clustering obtained from quantified metabolite

data was exactly the same as obtained with qualitative, spectral
data. This shows that significant variances for sample group-
ings are preserved in the metabolite quantification procedure.
Although there are some clear metabolic differences between
the four groups visible from analysis of all metabolites (Fig. 5),
we have performed an additional step of feature selection to
determine metabolites with the most significant concentration
changes. A selection of the metabolites with the most signifi-
cantly different concentrations among these four groups of
samples was performed using the SAMmethod included in the
TMeV gene expression analysis software package. Although
both SAMandTMeVwere originally developed for the analysis
of gene expression data, these tools are universal data analysis
methods that can be used for both qualitative, i.e. spectral, or
quantitative, i.e. peak, metabolomics data. Selectedmetabolites
are shown in Fig. 6. Table 2 presents the lists of overconcen-
trated metabolites for each group of samples.
Our list of significant metabolites (Table 2) includes some of

the metabolites that are known to be significantly different in
cancers relative to normal cells such as cholines, creatinines,
and lactic acid. It is interesting to notice, however, that there are
significant differences even in these major metabolites as well
as many other metabolites between the four GBM subtypes.
Group 1 samples have significantly higher concentrations of

FIGURE 5. HCL clustering of quantitative metabolite data obtained using Levenberg-Marquardt multivariate linear regression method with spectral
measurements for 41 metabolites from metabolomics databases with metabolite values normalized (divided by standard deviation and mean-
centered). Sample types are grouped similarly, based on these quantitative metabolic data, as they were with spectral data in Figs. 3 and 4.
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choline and its derivatives than all the other sample groups.
This is highly significant as choline is already widely used as
marker for in vivo brain tumor diagnosis and, although it is
present in all tumors, it mightmake amore sensitivemarker for
Group 1 tumors. Interestingly, GBM cell lines included in this
group, LN229 and LN319, also cluster based upon their molec-
ular footprints as they strongly express PDGFRA at the tran-
script levels (PDGFRA�), but have low levels of EGFR tran-
script (EGFR�), as shown in Fig. 7. Choline is part of several
pathways, most importantly metabolism of glycerophospholip-
ids and other lipids. The analysis of the glycerophospholipid
pathway shows overexpression of several important enzymes
related to choline processing as well as genes involved in cho-

line import into cells. Fig. 8A shows molecular transport genes
that are, according to a literature search provided by the Path-
way Studio software, related to choline and its derivatives.
Clearly, several genes previously associated with the transport
of choline are overexpressed in Group 1 cells. SCL44A (inter-
mediate-affinity choline transporter-like protein), in particular,
has been indicated as amajor choline transporter in breast can-
cers with a connection to the Hsp90 chaperone protein (25). At
the same time, EGFR, which is underexpressed in Group 1 can-
cers based on microarray as well as RT-PCR data (Fig. 7), has
been associated with reduction of monolayer permeability to
choline (9). A relationship between SCL44A and EGFR and
choline metabolic profile has also been shown recently in
metabolomics analysis of breast cancer cell lines (10). Further-
more, it should be kept in mind that EGFRmutation was iden-
tified as one of the major genetic differences between genomi-
cally determined GBM subtypes (8).
Group 1 also shows significant overconcentration of inositol.

Inositol has been suggested as an age-independent marker in

FIGURE 6. HCL clustering of metabolites selected as most differentially concentrated between the four groups. The feature selection was performed
from quantitative metabolite data using SAM analysis. Prior to SAM analysis, metabolite values were normalized (divided by standard deviation and mean-
centered). SAM 
 value was 0.2 with zero median number of false significant metabolites. Outlined are sample and metabolite groups, which show the
metabolites that are most significant for separation of samples for each group from all the other groups.

TABLE 2
Most significantly overconcentrated metabolites for each group of
GBMs when compared with the other three groups

Group of samples Metabolites

1 (LN229, LN319) Taurine Glutamine
UDP Glutamate
Choline Citric acid
Phosphocholine Aspartate
Glycerophosphocholine Asparagine
Glycine Methionine
myo-Inositol

2 (HS683, LN405) Valine Glutamate
Leucine Citric acid
Isoleucine Aspartate
Alanine Asparagine
Lactic acid Methionine

3 (A172, U343, LN18) GABA Methionine
Proline Citric acid
Glutamine Aspartate
Glutamate Asparagine

4 (U373, BS149) Succinic acid Glycerol 3-phosphate
Serine Glucose
Adenine cis-Aconitic acid
Taurine GABA
Lysine Proline
Tyrosine

FIGURE 7. Molecular footprints of the nine GBM cell lines assessed in the
current study. Selected transcripts of interest, EGFR, PDGFRA, NF1, and IDH1,
were amplified in the GBM cell models by RT-PCR.
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prostate cancers (26). In mammalian tissues and cells, inositol
exists primarily in its free formor bound covalently to phospho-
lipid as phosphatidylinositol. myo-Inositol is elevated in glio-
mas relative to normal brain tissue and is involved in osmoreg-
ulation and volume regulation (6). Inositol incorporation into
phosphatidylinositol is part of glycerophospholipid metabo-
lism and is catalyzed by inositol transferase (17). At the same
time, inositol is transferred to the cytoplasm by several trans-
porters such as sodium/myo-inositol cotransporter (SLC5A3)
and solute carrier family 2 (SLC2A13). Differences in inositol
levels between the four GBM subgroups can result from differ-
ent levels of metabolite incorporation into larger molecules
(making it more challenging to detect via NMR) or from differ-
ences in transport. Genes involved in transport (SLC5A3 and
SLC2A13) and metabolism (inositol transferase) of inositol are
shown in Fig. 8B with color corresponding to relative gene
expression in group 1 relative to groups 2, 3, and 4 (subplot B1);
group 2 relative to groups 1, 3, and 4 (subplot B2); group 3
relative to groups 1, 2, and 4 (subplot B2), and group 4 relative to
groups 1, 2, and 3 (subplot B4). According to gene expression
data shown in Fig. 8, subplot B1, overconcentration of inositol

in group 1 is due to increased metabolite transport and
decreased incorporation into largerNMR“invisible”molecules.
In the other three groups, inositol is underconcentrated, and
this is due to: decreased transport (group 2); rapid incorpora-
tion into a largemolecule (group 3); or faster incorporation into
a larger molecule as well as reduced transport (group 4).
Glutamine and glutamate are overconcentrated in several

groups with glutamine overconcentrated in groups 1 and 3
and glutamate overconcentrated in groups 1, 2, and 3.
Increased glutamine concentration in cancers has been
reviewed by Dang (27). It was proposed that glutamine is trans-
ported into the cell through glutamine/amino acid transporter
and converted to glutamate by glutaminase. Glutamate is
catabolized to �-ketoglutarate for further oxidation in the tri-
carboxylic acid cycle. In Fig. 9, we show the genes connected in
the literature with aspartate, glutamine, glutamate, and citrate
as thesemetabolites show similar behavior across the groups of
samples and are metabolically connected. Fig. 9 shows some of
themajor transporters for thesemetabolites across cellular and
mitochondrial membranes. In group 1, aspartate, glutamine,
glutamate, and citrate are overconcentrated. Expression levels

FIGURE 8. Direct connection network between gene expression and metabolites that are overconcentrated in group 1. A, genes directly involved in the
transport of choline (particularly SCL44A1) are overexpressed in group 1 cells. In the figure, genes that are overexpressed in Group 1 relative to the other groups
are shown in red, and the ones that are underexpressed in group 1 are shown in blue. B, relation between inositol and its transporter genes (SLC5A3 and
SLC2A13) as well as enzyme involved in its digestion (inositol transferase). In subplots B1–B4, coloring is used to describe gene expression difference across four
cell line types. Subplot B1 shows expression of genes in group 1 relative to groups 2, 3 and 4; subplot B2 shows expression of genes in group 2 relative to groups
1, 3, and 4; subplot B3 shows expression of genes in group 3 relative to groups 1, 2, and 4; and subplot B4 shows expression of genes in group 4 relative to groups
1, 2, and 3. Inositol is overconcentrated in group 1, and this can be related to the overexpression of its transporters as well as underexpression of the digestion
enzyme. CALCA, calcitonin-related polypeptide alpha; CNTF, ciliary neurotrophic factor; NISCH, nischarin; NTS, neurotensin; APP, amyloid beta (A4) precursor
protein; CDP-DG, cytidine diphosphate-diacylglycerol.
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of transporter genes in group 1 relative to all the other samples
suggest that overconcentration of these metabolites results
from the enhanced input of glutamine into the cell (by
SLC38A1 and SLC7A8) as well as glutamate and aspartate (by
SLC1A type transporters) and enhanced transport of citrate out
of the mitochondria, which could lead to enhanced production
of citrate due to the kinetics of reversible reactions in the TCA
cycle. In group 2, the concentration of glutamine is reduced
and, according to gene expression investigation, this can be
ascribed to reduced transport as well as increased input into
mitochondria (with OGDH gene overexpressed). This group
also shows reduced levels of aspartate and glutamate trans-
porters. However, their mitochondrial production is
enhanced by higher expression of OGDH and SLC25A13. In
group 3, all four metabolites are once again overconcen-
trated, and both major glutamine transporters are clearly
overexpressed, but so are mitochondrial transporters, thus
leading to higher throughput and higher concentrations of
glutamate and aspartate. In group 4, all four metabolites are

underconcentrated, and this can be connected to the fact
that both major transporters for glutamine are underex-
pressed. Finally, as shown in Fig. 7, group 4 cell lines, U373
and BS149, also have the common characteristic of strongly
expressing PDGFRA and EGFR at the transcript levels
(PDGFRA� and EGFR�), further supporting this cluster.
A final example of the connection betweenmetabolic results

and gene expression measurements is the analysis of glycerol
3-phosphate (G3P) metabolism and related genes. G3P is an
intermediate in triacylglycerol and glycerophospholipidmetab-
olism, both of which are known to be altered in cancers. In our
comparison of GBMs, G3P is overconcentrated in Group 4 cell
lines. Fig. 10 shows part of the triacylglycerol and glycerophos-
pholipid metabolic pathways where G3P is synthesized and
degraded. Once again, there are changes in relative gene
expression levels in the four groups of samples. In groups 1 and
2, all enzymes in these branches of pathways are underex-
pressed, leading to lower G3P levels. In group 3, triacylglycerol
pathway production of G3P is reduced (gene underexpression).

FIGURE 9. Direct connection network between gene expression and metabolites that are overconcentrated in some of the groups. Included are
L-glutamine (overconcentrated in groups 1 and 3), L-glutamate (overconcentrated in groups 1, 2, and 3), L-aspartate (overconcentrated in groups 1, 2, and 3),
and citrate (overconcentrated in groups 1, 2, and 3) with metabolite overconcentration highlighted in red. Genes are colored based on their expression in one
group relative to all the others, i.e. panel 1 is expression in 1 relative to 2, 3, and 4; panel 2 is expression in 2 relative to 1, 3, and 4; panel 3 is expression in 3 relative
to 1, 2, and 4, and panel 4 is expression in 4 relative to 1, 2, and 3. According to the changes in metabolite concentration and gene expression, we are
hypothesizing major transporters for each metabolite listed, and this is outlined with red arrows on the graph. PC, phosphorylcholine.
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However, glycerophospholipidmetabolism is enhanced in G3P
production as well as digestion, thus leading to reduction of
G3P concentration as well as glycerol. Finally, in group 4, tria-
cylglycerol and glycerophospholipid pathway production of
G3P are enhanced. However, G3P digestion is reduced (by
underexpression of glycerophosphate transacylase), and there-
fore, its concentration is increased.
Several genes known to affect cell metabolism show signifi-

cantly different expression levels between the four groups of
nine cell lines. Gene set enrichment analysis (28, 29) of genes
that are significantly overexpressed in each group relative to the
other groups pointed out several metabolic processes that
could be significantly affected by overexpressed genes. For
example, genes overexpressed in group 1 include fatty acid syn-
thase as well as several other genes from the fatty acid biosyn-
thesis pathway. Group 2 overexpressed genes are significantly
prevalent members of the amino acid metabolism pathway
(Ser/Gly/Thr/Cys metabolism), and indeed, the majority of

overconcentrated metabolites identified in this group are
branched chain amino acids. Furthermore, there are clear
expression level differences in PDGFRA, IDH1, EGFR, andNF1
(8) in our fourmetabolic groups of samples (Fig. 7). Out of these
four genes, two are directly related to metabolite concentra-
tions (EGFR and IDH1), and all four have been shown to affect
several major genes involved in control of metabolism (such as
HIF1A,mTOR, HRAS, and GLRX1).

CONCLUSION

We have performed unsupervised and supervised analysis
of 1H NMR measurements of nine GBM cell lines. Analysis
was performed directly on spectral data and also on quanti-
fied metabolic data determined from the spectra. The pre-
sented analysis clearly shows that GBM cell lines have differ-
ent metabolic profiles and that it is possible to determine
groups of cell types based on NMR metabolomics. Spectral
analysis established four groups of cancer types. For meta-

FIGURE 10. Partial representation of triacylglycerol and glycerophospholipid metabolism related to synthesis and digestion of glycerol 3-phosphate.
Glycerol 3-phosphate is overconcentrated in group 4 (highlighted in red). The gene colors represent relative expression levels in: panel 1, 2, group 1 relative to
groups 2, 3, and 4 and group 2 relative to groups 1, 3, and 4 (same relative expression); panel 3, group 3 relative to groups 1, 2, and 4; and panel 4, group 4 relative
to groups 1, 2, and 3, where red shows overexpression and blue shows underexpression. The branch of the triacylglycerol pathway is circled. The presented
genes are: a, monoglyceridase; b, 2-lysophosphatidylcholine acylhydrolase; c, glycerate kinase; d, glycerophosphate transacylase. Glycerol 3-phosphate is
overconcentrated in group 4 cells, and this can be related to up-regulation of 2-lysophosphatidylcholine acylhydrolase and glycerate kinase, both involved in
glycerol 3-phosphate synthesis, and down-regulation of glycerophosphate transacylase, which is involved in its digestion. LPA, lysophosphatidic acid.
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bolically determined GBM subtypes, we have resolved the
major metabolic differences. Metabolic markers for each
group of samples were correlated with publicly available
gene expression data for these cell lines. Metabolic analysis
generally agrees with gene expression measurements, and it
was possible to explain metabolomics results based on gene
expression data. It is clear from this work that to make con-
clusions from gene expression analysis, it is necessary to look
at networks and pathways rather than individual genes.
Metabolomics thus provides an excellent way to focus on
gene expression analysis and to highlight major changes in
pathways that are regulating key cellular processes. Our
results agree with recent studies in GBMs showing that dif-
ferent subtypes exist for these tumors and that they likely
respond differently to treatments. This is in agreement with
recent publications that have shown that glioblastomas have
distinct subtypes based on both gene expression and genom-
ics (8), and we have shown correlation between our meta-
bolic subtypes and major genes obtained as markers for
genomic subtypes. Metabolites identified can be used as
noninvasive markers of these subtypes. Future work will
focus on the analysis of tumor tissue samples and will inves-
tigate whether these GBM subtypes can be established there
as well.
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