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Scan-Statistic Approach Identifies Clusters of Rare
Disease Variants in LRP2, a Gene Linked and Associated
with Autism Spectrum Disorders, in Three Datasets

Iuliana Ionita-Laza,1,* Vlad Makarov,2 the ARRA Autism Sequencing Consortium,3

and Joseph D. Buxbaum2,4,5,*

Cluster-detection approaches, commonly used in epidemiology and astronomy, can be applied in the context of genetic sequence data

for the identification of genetic regions significantly enriched with rare disease-risk variants (DRVs). Unlike existing association tests for

sequence data, the goal of cluster-detectionmethods is to localize significant diseasemutation clusters within a gene or region of interest.

Here, we focus on a chromosome 2q replicated linkage region that is associated with autism spectrum disorder (ASD) and that has been

sequenced in three independent datasets. We found that variants in one gene, LRP2, residing on 2q are associated with ASD in two data-

sets (the combined variable-threshold-test p value is 1.2 3 10�5). Using a cluster-detection method, we show that in the discovery

and replication datasets, variants associated with ASD cluster preponderantly in 25 kb windows (adjusted p values are p1 ¼ 0.003 and

p2 ¼ 0.002), and the two windows are highly overlapping. Furthermore, for the third dataset, a 25 kb region similar to those in the other

two datasets shows significant evidence of enrichment of rare DRVs. The region implicated by all three studies is involved in ligand

binding, suggesting that subtle alterations in either LRP2 expression or LRP2 primary sequence modulate the uptake of LRP2 ligands.

BMP4 is a ligand of particular interest given its role in forebrain development, and modest changes in BMP4 binding, which binds to

LRP2 near the mutation cluster, might subtly affect development and could lead to autism-associated phenotypes.
Introduction

Advances in next-generation-sequencing technologies1

facilitate large-scale sequencing studies and allow for

a comprehensive investigation of the role that rare variants

might play in complex diseases with the hope that rare

variants can provide further insight into the underlying

biology of these diseases. Ongoing sequencing studies are

already generating unprecedented amounts of genetic

data. The large number of genetic variants, most of which

have low population frequencies, being uncovered in these

datasets creates particular challenges for the statistical

analysis of this new type of data. Already, many association

tests for sequence data have been proposed.2–13 These

methods are concerned with rejecting the null hypothesis

that variants in a gene or region are not associated with

disease.

The focus in this paper is on the localization of rare

disease-risk variants (DRVs) in a larger genetic region via

a cluster-detection method. Unlike existing association

tests that test for disease association with variants in a con-

tained genetic region, the goal here is to find the window

(within the larger region) in which DRVs cluster more

significantly than they do in the rest of the region, i.e.,

outside of the window. Here, we describe a method that

is specifically designed to identify such small regions en-

riched with DRVs and that is quite different from existing

association tests (more details on the differences between

cluster-detection methods and association tests will be
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given later in the Material and Methods section). Cluster-

detectionmethods are commonly used in applied sciences,

such as in epidemiology for the identification of hotspots

of disease cases (i.e., epidemics), as well as in astronomy

for the identification of star clusters and galaxies. One

popular class of methods is based on the use of scan statis-

tics.14 The underlying idea of scan-statistic methodology is

to slide a window of fixed size w along the length of the

region and compute an overall statistic for all windows of

length w. We propose here a likelihood ratio (LR) statistic

that takes into account the underlying spatial distribution

of variants in the population; this LR statistic is similar to

an approach proposed by Kulldorff.15 For each window

Wof size w, we calculate the LR statistic, LRW. The window

W with the highest value for the LRW is the most likely

region to harbor a cluster of DRVs, and an approximate

p value for the window with the largest LRW is calculated

by Monte Carlo simulations.

Clustering of diseasemutations in small regions of a gene

has been reported before for someMendelian diseases and,

more recently, for several complex traits as well. For

example, highly localized mutations in the gene encoding

the cytoskeletal protein filamin A (FLNA [MIM 300017])

lead to a broad range of congenital malformations in

humans.16 Similarly for Duchenne muscular dystrophy

(MIM 310200) and the milder form, Becker muscular

dystrophy (MIM 300376), mutations cluster in actin

binding domain 1 (ABD1) of dystrophin17 (MIM 300377).

Other examples include Rett syndrome18 (MIM 312750),
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hereditary angioneurotic edema19 (MIM106100), VonWil-

lebrand disease type 2A20 (MIM 613554), etc. For complex

traits, not many of such studies have been published to

date. A recent study focusing on somatic cancer mutations

found that disease-causing mutations cluster more often

than random mutations, suggesting that mutation hot-

spots occur at the domain level.21 Similarly, a study on

schizophrenia (MIM 181500) and bipolar disorder (MIM

125480) identified significant clustering of nonsynony-

mousSNPs in twoexons encoding the cysteine-richdomain

and first transmembrane helix of metabotropic (GRM1)

glutamate receptor.22Here,we report for three independent

datasets a clustering of rare DRVs in a small region of LRP2

(MIM600073), a gene residing in a replicated linkage region

for autism spectrum disorder (ASD [MIM 209850]) on chro-

mosome 2q.23–25

Autism and ASD are associated with high heritability.

There have been successes in identifying chromosomal

abnormalities and copy-number variants that contribute
LRW ¼

8<
:

�cpWbrG
�yW�1� cpW

1� brG
�nW�yW�cqWbrG

�yG�yW�1� cqW
1� brG

�nG�nW�ðyG�yWÞ
if cpW > cqW

1 otherwise

;

significantly to risk. These variants are individually rare

but in combination are etiological factors in as much as

15% of ASD. Candidate-gene sequencing studies have

identified many genes associated with high risk, and,

with the advent of whole-exome and whole-genome

sequencing, it is becoming possible to exhaustively explore

the influence of rare variants, both single point and struc-

tural, on the risk of developing ASD.

We apply such a cluster-detection method to three inde-

pendent ASD datasets. We identify LRP2 in an ASD-linked

region on chromosome 2q as being associated with ASD in

two of the datasets. Furthermore, we show that rare risk

variants cluster significantly in affected individuals in

highly overlapping regions for all three datasets.
Material and Methods

The underlying idea of scan-statistic methodology is to slide

a window of fixed size w along the length of the region and

compute a statistic Sw. For example, when testing whether points

on a line are uniformly distributed, Sw could be the maximum

number of points along the line in any window of size w. Wallen-

stein and Neff26 derived the approximate distribution for Sw under

the simplified assumption that points are independent and

uniformly distributed across a region. However, it is well known

that genetic-variant positions can cluster in a nonuniform fashion

on the basis of purely biological reasons, and such a clustering

might not be related to disease. Therefore, any reasonable method

needs to take into account the underlying spatial distribution of

variants in the population. Kulldorff15 described a LR statistic,

and we follow a similar approach here.
The Americ
Scan Statistic for the Identification of Clusters

of Rare DRVs
Let us assume that N unrelated individuals, both affected and

unaffected, have been sequenced in a region or gene of interest

G. Furthermore, let us assume that there are M rare-variant posi-

tions in the region of interest. A rare variant is identified as

a variant with a minor allele frequency (MAF) that is less than

a fixed threshold (e.g., 0.01) in controls. At each position i with

i % M, let ni be the number of individuals that carry a rare variant

and let yi be those that are affected. Therefore, yi is binomial (ni, pi),

where pi is related to the relative risk at position i. We are working

under the assumption that there is a window Wdis such that

pi ¼ pWdis
for i˛Wdis and pi ¼ p0 for i;Wdis. Under the null

hypothesis, pWdis
¼ p0, whereas the alternative hypothesis is that

pWdis
> p0. For a fixed window size, we employ a sliding-window

approach and calculate a LR statistic.

Bernoulli Model

To calculate the LR statistic, we first condition on the window W

and calculate for each window W of fixed size w the following

LR score:
where

yW ¼ P
i˛W

yi and yG ¼ P
i˛G

yi;

nW ¼ P
i˛W

ni and nG ¼ P
i˛G

ni;

cpW ¼ yW
nW

and cqW ¼ yG � yW
nG � nW

;

and brG ¼ yG
nG

:

Note that dpW and dqW are the maximum likelihood estimators

(MLEs) under the alternative hypothesis, whereas crG is the MLE

under the null hypothesis. A pseudocount of 1 is added when

the proportions pW, qW, and rG are estimated.

The LR statistic for window size w is then computed as

Lw ¼ max
jW j ¼w

LRW :

The window W with the highest value for the LRW is the most

likely region to harbor a cluster of DRVs.

Definition of Windows W
The definition of the windows W for consideration is flexible and

depends on the region under investigation, such as its length. The

unbiased, agnostic approach is to consider all contiguous (and

overlapping) windows of a fixed size w. Another possibility is to

define windows on the basis of known biological features, such

as known functional domains. This could be more powerful

than the agnostic approach because it might lead to increased

signal in the windows being tested and also reduced penalty for

multiple-testing correction.

In the agnostic approach, the size of the sliding window, w, is

not known a priori; therefore, we can consider several distinct
an Journal of Human Genetics 90, 1002–1013, June 8, 2012 1003



Table 1. Simulated Data

a

Type-1 Error Rates

w ¼ 2 kb w ¼ 5 kb w ¼ 8 kb VW

0.05 0.049 0.061 0.055 0.055

0.01 0.008 0.012 0.014 0.012

Reported in the table are empirical type-1 error rates corresponding to nominal
a levels of 0.05 and 0.01. The size, w, of the sliding window can take three
possible values between 2 and 8 kb. There are 300 cases and 300 controls.
The variable window (VW) approach corresponds to maximizing over windows
of length between 2 and 8 kb.
window sizes and evaluate the overall significance by permuta-

tion. More precisely, we can define the generalized LR statistic as

the following:

GLR ¼ max
w

max
jW j ¼w

LRW :

We call this the variable window (VW) approach because multiple

window sizes are considered. The maximum window size consid-

ered is, at most, 50% of the total region length.

Statistical Significance
For the purposes of inference, we compute the above LRW statistics

for all windowsW that we choose to consider. LetLw ¼ max
W

LRW .

Standard asymptotic-theory results do not apply here (1)

because of the implicit assumption of independence among

different rare variants in the likelihood calculation and (2) because

the parameter Wdis disappears under the null hypothesis and is

only present under the alternative.27 Therefore, we use Monte

Carlo simulations to compute the p value for Lw. We permute

the affection-status labels and then recalculate the maximum LR

statistic across all windows as was done for the original study. A

similar permutation procedure is performed for the VWapproach,

whichmaximizes overmultiple window sizes. Note that the result-

ing p values are adjusted for multiple testing (i.e., for all overlap-

ping windows that are being considered).
Table 2. Simulated Data

Gene
Length
(kb)

Cluster
Length
(kb) % DRVs

Power

w ¼ 2 kb w ¼ 5 kb w ¼ 8 kb VW

10 2.4 20% 0.77 0.59 0.28 0.73

10 4.8 20% 0.37 0.47 0.31 0.49

20 4.8 20% 0.84 0.96 0.85 0.95

20 9.5 20% 0.52 0.70 0.80 0.64

Power is at a ¼ 0.05. There are 300 cases and 300 controls. Gene length refers
to the length of the gene, and cluster length refers to the length of the cluster
of DRVs. Power is averaged over randomly selected genes of fixed length. 20%
of variants in a gene are assumed to be DRVs.
Results

Simulated Data

Type-1 Error and Power

We use simulations to investigate the underlying proper-

ties of the proposed approaches. We simulated one 1 Mb

genomic region under a coalescent model by using the

software package COSI.28 The model used in the simula-

tion was the calibrated model for the European population

and was an option available in the COSI package (the best-

fit model). A total of 10,000 haplotypes were generated.We

then randomly sampled small regions of the size of indi-

vidual genes (between 1.5 and 200 kb).

To evaluate the type-1 error, we derived datasets of 300

cases and 300 controls under the null hypothesis of no

association between any of the variants and disease.

To evaluate the power of the approach, we assume that

a subregion is enriched with rare DRVs. The percentage

of DRVs in a simulated gene is assumed to be 20% for genes

of length 10 kb and 20 kb and 3%–10% for larger

genes (i.e., 50–200 kb). We have also considered smaller

genes of sizes 1.5 kb and 3 kb and assumed that 20%–

50% of variants are DRVs. DRVs are chosen to be variants

that have a frequency less than 0.01 and that reside in

a small subregion of the gene. Assuming D DRVs, then

dichotomous phenotypes are simulated from

logit Pðy ¼ 1Þ ¼ b0 þ
XD
j¼1

bjXj;

where b0 ¼ logitð0:05Þ. We can specify the effect size at

each DRV by setting bj ¼ cjlog10ðMAFjÞj for the jth disease

variant. We take c ¼ 0.549, which results in an odds ratio

(OR) of 9 for variants with MAF ¼ 10�4 and an OR of 5.2
1004 The American Journal of Human Genetics 90, 1002–1013, June
for variants with MAF ¼ 10�3. For a large 200 kb gene,

we take c¼ 0.400, which results in an OR of 4.9 for variants

with MAF ¼ 10�4 and an OR of 3.3 for variants with

MAF ¼ 10�3.

Type-1 Error. In Table 1, we report the empirical type-1

error for the clustering approach described above when it is

applied to data simulated under the null hypothesis of no

association between any of the variants in the region and

disease. Different window sizes are considered between 2

and 8 kb. As shown, the empirical type-1 error agrees

well with the nominal one.

Power. In Table 2, we report power estimates by using

simulated data. Power is averaged over randomly chosen

regions with lengths between 10 and 20 kb. Similar

results are shown in Table A1 for regions of larger size,

i.e., 50–200 kb.

The power of the cluster-detection approach depends

critically on the length of the cluster window. As shown

in Table 2, the power decreases when the size of the cluster

window increases relative to the entire region. This is ex-

pected because the larger the size of the cluster, the weaker

the evidence that DRVs cluster in any particular small

region. The size of the scanning window is also important,

and the power can vary dramatically depending on that.

In particular, the power decreases substantially when the

scanning window is too large. Intuitively, the optimal

size is the cluster’s true size, which is unknown to us.

Therefore, we have proposed maximizing over multiple

window sizes (the VW approach), an approach which

compares well to the optimal power, as we show in simula-

tions (Tables 2, A1, and A3).
8, 2012



Table 3. Simulated Data

Gene
Length
(kb)

Cluster
Length
(kb) % DRVs

Jaccard Index of Overlap

w ¼ 2 kb w ¼ 5 kb w ¼ 8 kb VW

10 2.4 20% 0.69 0.41 0.22 0.66

10 4.8 20% 0.35 0.74 0.49 0.60

20 4.8 20% 0.37 0.83 0.57 0.75

20 9.5 20% 0.19 0.47 0.72 0.54

Shown is the overlap between the true cluster region and the estimated cluster
region as measured by the Jaccard index of overlap. There are 300 cases and
300 controls. Gene length refers to the length of the gene, and cluster length
refers to the length of the cluster of DRVs. The index of overlap is averaged over
randomly selected genes of fixed length. 20% of variants in a gene are assumed
to be DRVs.
Power will generally be low for geneswith little variation,

as might be the case with small genes. We have looked at

genes of sizes 1.5 kb and 3 kb and show that power can be

quite low even if a large percentage (50%) of variants are

in fact disease related (Table A3). In such cases, the clus-

teringproblembecomes less interestingbecauseof the small

number of observed variants in such small genes, and

a simple gene-based association test will be more powerful.

Estimation of Cluster Location

Another important measure of performance for the

proposedmethod is the overlap between the true simulated

cluster region (T) and the estimated cluster region (E),

namely the window with the maximum LR score. One

natural measure of overlap between two regions T and E is

the Jaccard index of overlap, defined as the size of the inter-

section divided by the size of the union of the two regions:

JðT ;EÞ ¼ jTXE j
jTWE j :

If the two regions are disjoint, then JðT ;EÞ ¼ 0, and if the

two regions coincide, then JðT ;EÞ ¼ 1.

In Table 3, we report the overlap between the true and

estimated cluster regions for the same scenarios for which

power was reported in Table 2 (also see Tables A2 and A4).

As with power, the highest overlap is achieved when the

scanning-window size is close to the true cluster size. We

also note that, as with power, the VW approach results in

good overlap with the true region (values for the Jaccard

index of overlap are over 0.50 in the simulated scenarios).

Clustering Versus Self-Contained Tests

Such a cluster-detection approach is ideal in situations in

which multiple DRVs cluster in a small window of

a gene. An alternative statistic for each window would be

any of the sequence-based association statistics (e.g.,

burden statistics) already proposed in the literature

comparing affected and unaffected individuals sequenced

in a region of interest. The latter test is called a self-con-

tained test in that, unlike the proposed procedure, it does

not compare the association signal in a window with the

association signal that is outside.

The two types of tests are designed for different goals. In

particular, the null hypotheses for the two tests are
The Americ
different. For the proposed test, the null hypothesis is that

the DRVs are distributed as expected on the basis of the

spatial distribution of variants in the population for that

gene, whereas for the self-contained test, the null hypoth-

esis is that there is no association between any of the vari-

ants in the gene and disease. If the latter is true, i.e., no asso-

ciation, then the former is true too, i.e., no clustering. The

converse, however, is not true. It is possible that variants

associated with disease do not cluster. It is only the

proposed test that can identify significant clustering of

rareDRVs, whereas the self-contained test can only identify

significant association in awindow, but that does not imply

there is significant clustering of rare DRVs in that window.

Another important difference between the two methods

is in the precision of estimation of cluster boundaries. We

have compared the proposed clustering approach with two

self-contained tests by using simulated data. We have

simulated a gene of size 20 kb and assumed that 20% of

all the variants in the gene are DRVs; 66% of DRVs cluster

in a 3.5 kb window, whereas the rest are uniformly distrib-

uted. We then used a scanning window of size w ¼ 4 kb,

and for each such window, we calculated three statistics:

(1) the log(LR) statistic proposed here, (2) the Z score

from the burden test, and (3) the p value from the

collapsing method,2 all of which are restricted to variants

with MAF % 0.01. We show in Figure 1 that the clus-

tering-based approach correctly identifies the true cluster

window of size 3.5 kb, whereas the burden test and the

collapsing test lead to noisier results (more results are

shown in the Supplemental Data). Furthermore, it is not

clear from the results of the burden or collapsing tests

whether there is significant clustering or not; this is natu-

rally so given that such self-contained tests are designed

to test for association and not clustering.

Application to ASD

Discovery Dataset

For the discovery stage, we have used sequence data gener-

ated in Faham et al.29 In that study, the authors sequenced

(by using mismatch-repair detection on tag arrays) approx-

imately 397 ASD patients and 450 controls; they mostly

targeted coding regions of 68 genes within a 20 Mb chro-

mosome 2q linkage peak that has been implicated in

ASD by multiple whole-genome linkage scans.

First, we applied the variable threshold (VT) association

test4 and tested each of the 68 genes in the linked region

on chromosome 2q. By using the VT method and maxi-

mizing over several MAF thresholds between 0.01 and

0.50, two genes, namely LRP2 (p ¼ 7.4 3 10�5) and

CMYA3 (p ¼ 10�5 [MIM 609778]) are region-wide signifi-

cant (Figure 2). The p values for LRP2 and CMYA3 were

calculated with several MAF thresholds (Table A5).

LRP2 is a long gene (~235 kb), and we have performed

a clustering analysis to investigate whether rare DRVs

cluster preponderantly in a small window of the gene. We

have calculated the LR statistic for all overlapping windows

of lengths between 5 and 30 kb and have identified one
an Journal of Human Genetics 90, 1002–1013, June 8, 2012 1005
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Figure 1. Clustering Versus Self-Con-
tained Tests
Precision of estimation of the cluster
boundaries for a simulated cluster region.
A 20 kb gene is simulated with DRVs clus-
tered in a 3.5 kb window at the start of the
gene. From top to bottom, the graphs
depict a cluster test, a burden test, and
a collapsing test.
25 kbwindow (170,072,764 –170,097,764; hg19) that is en-

riched with rare risk variants (the p value adjusted for all

25 kb windows is 0.003; Figure 3). The p values for other

window sizes are shown in Table 4. The p value adjusted

for testing all windows with lengths between 5 and 30 kb

is 0.01. The variant amplicons in this window, together
Gene-based p Values (VT), Chromosome 2q

Gene Position (Mb)

G
en

e 
p

 V
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 (-
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Figure 2. Empirical p Values for 68 Genes Sequenced in the
Linked Region on Chromosome 2q29

Two genes, namely LRP2 and CMYA3, remain significant after
multiple-testing correction.
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with observed frequency counts in

cases and controls, are shown in Table

A6. Note that for the clustering

analysis, variant amplicons with a

frequency less than 0.10 in controls

were included in the analysis. With

a frequency threshold of 0.01, the

same peak region is identified, and

the p value (adjusted for all windows

with sizes between 5 and 30 kb) is

0.054, whereas for a frequency

threshold of 0.05, the p value is 0.040.

LRP2 is a member of the low density

lipoprotein receptor (LDLR [MIM

606945]) gene family, and, like LDLR,

LRP2 can bind ApoE as well as a large

variety of additional ligands. The

expression of LRP2 in the brain and

the functional importance of some

LRP2 ligands have indicated that

LRP2 plays a role in neuronal develop-
ment and regeneration.30 Recently, a de novo deleterious

mutation in LRP2 was found by whole-exome sequencing

in one ASD case.31 Defects in LRP2 are known to cause Don-

nai-Barrow (aka, facio-oculo-acoustico-renal) syndrome,32

a rare neurological disease. Furthermore, mutations in

LRP2 have been shown to disrupt cortical development in

mice.33 LRP2 is also known to play a role in brain develop-

ment,34 including forebrain development, through its

effects on sonic hedgehog (Shh) signaling.35 Specifically,

LRP2 binds BMP4, leading to its internalization and catabo-

lism, and reduced levels of LRP2 are associatedwith elevated

BMP4 and disruption of normal brain development.35,36

Also, LRP2 has been shown to be an auxiliary receptor

for Sonic hedgehog by regulating the tracking of the SHH/

PTCH1 complex.37 Gene-dosage abnormalities at PTCH1

lead to a syndrome that includes developmental delay

and/or intellectual disability, as well as occasionally autism

along with other features.38, 39, 40 In van der Zwaag et al.41

the authors used knowledge on functional gene networks

to perform a topology-corrected Prioritizer analysis42 and

report the top ten genes out of 109 genes in the 2q linked

region. LRP2 ranks first among these 109 genes with a

p value of 0.007.

The cluster window maps to a region that includes four

tandem epidermal growth factor (EGF) precursor homo-

logy domains, particularly the two most NH-terminal



Clustering in LRP2 (w = 25 kb)

Window Position (Mb)

lo
g(

LR
)

169.98 170.08 170.17

0
1

2
3

4
5

6
7 Faham et al.

Broad
Baylor

Figure 3. Clustering of Rare DRVs in LRP2 for Three Datasets
For each window, the midpoint is plotted on the x axis. The 25 kb
windows with maximum LR score are also shown for the three
datasets. Scanning-window length is w ¼ 25 kb.
domains. This is just downstream of the domain that binds

RAP, and the fact that there is evidence that BMP4 and RAP

share binding sites in LRP235 suggests that alterations in

the interaction of LRP2 with BMP4 caused by various

mechanisms, including changes in protein levels or

primary amino acid sequence, can lead to subtle changes

in forebrain development, an area of great importance in

autism-related phenotypes.

The original Faham et al.29 study concentrated on more

common variants and only reported the association with

variants in CMYA3, although an independent replication

attempt failed at that time. There are only 13 variants

observed in this gene, which makes a clustering analysis

for this gene not meaningful.

Replication Datasets

We have used an independent dataset to replicate the

finding on the risk-variant cluster within LRP2. Hence, we

have applied the cluster-detection approach to a second da-

taset (ARRA-Broad; see Appendix A for more information)

consisting of 430 cases and 379 controls sequenced in the

exonic regions of LRP2. We have identified a 25 kb window

of significant clustering resulting in a p value (adjusted for

all 25 kb windows) of 0.038, and the window with the

maximum LR statistic is 170,068,479–170,093,479. If

only nonsynonymous variants are considered, the adjusted

p value for all 25 kb windows is 0.02 and the p value
Table 4. LRP2 Results

Dataset

p Value

w ¼ 5 kb w ¼ 10 kb w ¼

Discovery 0.019 0.007 0.00

ARRA-Broad 0.134 0.070 0.03

ARRA-Broad-NS 0.151 0.080 0.01

Shown are p values for the LR statistic ðLw ¼ maxjWj¼wLRW Þwhen window sizew i
(ARRA-Broad) are considered. VW corresponds to the variable-window approach o
abbreviation is used: NS, nonsynonymous only.

The Americ
adjusted for all overlappingwindows with lengths between

5 and 30 kb is 0.01 (Table 4). The variants in this window,

together with functional annotations and observed

frequency counts in cases and controls, are shown in Table

A7. Note that this window overlaps substantially with the

window detected in the discovery dataset (i.e.,

170,072,764–170,097,764; the Jaccard index of overlap is

0.71). In Figure 3, we plot for each window W of size 25

kb the corresponding logðLRWÞ values for the two datasets.

There is substantial overlap between the windows of

maximumLR score in the two datasets, although the signal

is, as expected, stronger in the discovery dataset than in the

replication dataset. Also, because of the smaller number of

variants in the discovery dataset, the peak for the discovery

dataset is also broader in that case.

If we perform an overall test of association at the gene

level, variants in LRP2 are significantly associated with

ASD (VT-test p value of 0.011). The combined VT-test

p value based on the two datasets is 1.23 10�5. Restriction

to only nonsynonymous variants did not result in signifi-

cant results (probably as a result of the ensuing exclusion

of common variants, some of which are associated with

ASD as we show below). Also, there is no evidence of asso-

ciation in this dataset with variants in CMYA3.

Common Variant Analysis in LRP2. We have also tested

for associationbetween the commonvariants inLRP2 (MAF

R 0.05) and ASD by using the software package PLINK. Of

32variantswithMAFR0.05, tenof themhave pvalues (Co-

chran-Armitage test) less than 0.05 (although they are not

all independent signals), and all of them are in the same

direction (Table A8). Compared with the unassociated vari-

ants, these associated variants are substantially closer to the

enriched window above; all of the ten associated variants

are within 10 kb of the 25 kb window identified above. In

addition, we have performed a gene-based test in PLINK

for the common variants, and the p value is 0.03.

Second Replication Dataset. Wehave used a second repli-

cation dataset (ARRA-Baylor; see Appendix A for more

information) consisting of 502 cases and 489 controls.

When the scanning window size w is 25 kb (as above), we

find that the window of maximum LR score is

170,063,380–170,088,380, which again highly overlaps

with the cluster windows in the previous two datasets

(Figure 3). The p values for enrichment in this window

compared with that in the rest of the gene are 0.015 (for
20 kb w ¼ 25 kb w ¼ 30 kb VW

5 0.003 0.002 0.010

5 0.038 0.200 0.099

1 0.002 0.008 0.010

s between 5 and 30 kb, and variants with MAF f% 0.1 (Discovery) and f% 0.01
f maximizing over multiple window sizes between 5 and 30 kb. The following

an Journal of Human Genetics 90, 1002–1013, June 8, 2012 1007



all variants) and 0.010 (for nonsynonymous variants only).

Although these p values are specific to that window and do

not survive correction for multiple testing for all overlap-

ping 25 kb windows (as was the case for the previous two

datasets), the evidence of significant clustering in the

same region adds to the evidence from the first two data-

sets. Results remain significant (p < 0.05) if other window

sizes (between 5 and 30 kb) are considered as well.

Randomized Sampling. To showmore evidence that the

observed cluster windows in the three datasets are likely to

represent bona fide regions enriched with rare DRVs, we

have performed simple randomization experiments. In

one example, cases and controls were randomly mixed

and the cluster-detection method was then applied to the

resulting datasets. As shown in Figure A1, the results are

consistent with the null model of no clustering. In partic-

ular, the windows in which the maximum LR score is

achieved for the threedatasets are all disjoint. Similar results

holdwhen cases and controls are completely interchanged.

Discussion

By using a scan-statistic approach, we have identified clus-

ters of rare DRVs in LRP2, which resides in a replicated ASD

linkage region within chromosomal region 2q31.1 and

which we have also shown to be associated with ASD on

the basis of two independent datasets. Our applications

to three independent ASD datasets revealed three highly

overlapping 25 kb LRP2 regions that are more significantly

enriched with rare DRVs than is the rest of the gene.

Such a cluster-detection approach is ideal in cases where

multiple rare DRVs cluster in a small region of a gene.

When the gene under consideration is large, as is the case

with LRP2, replication of association signals at the gene

level can be challenging, and identification of such overlap-

ping cluster regions can be important evidence of replicable

signal. Furthermore, identifying such a cluster of genetic

risk factors, when it exists, is important because it might

provide insights into the underlying biological mechanism

for the disease. The cluster region identified in our studies is

involved in ligand binding. Onemechanism that is consis-

tent with the results is that subtle alterations in either LRP2

expression or LRP2 primary sequence modulate the uptake

of LRP2 ligands. BMP4 is a ligandof particular interest given
Table A1. Simulated Data for Large Genes

Gene Length (kb) Cluster Length (kb) % DRVs

Powe

w ¼ 5

50 2.9 5% 0.92

50 6.0 10% 1.00

200 22 3% 0.66

200 25 5% 0.85

Power is at a ¼ 0.05. There are 300 cases and 300 controls. Gene length refers to
DRVs. Power is averaged over randomly selected genes of fixed length. 3% – 10%
used: DRV, disease risk variant; w, window size; and VW, variable-window approa
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its role in forebrain development. Disruption of LRP2 has

been shown to lead to excess levels of BMP4 and disrupted

development of the prosencephalon. Evenmodest changes

in BMP4 binding might subtly affect development and

could lead to autism-associated phenotypes.

Some of the problems that affect association tests in

general are also relevant for the cluster method discussed

here. Like the burden tests of association, the proposed

method assumes that the effects of variants are all in the

same direction. In some cases, it is possible that a mixture

of risk and protective variants is present in a region, espe-

cially if the region under consideration is large. Although it

is probably less likely for this scenario to happen in a small

cluster regionthatmight correspondtoa functionaldomain,

when this happens, the power for identifying a cluster will

decrease. Population stratification is also a potential concern

for the proposedmethod.However, because the enrichment

of rare disease variants in a window is contrasted with that

outside of the window, the stratification would generate

a clustering effect only if a small portion of the larger region

were to be affected by population stratification.

The proposed cluster-detection method is designed

specifically to identify small windows (within a larger

region) that have significantly more rare DRVs than the

rest of the region. As such, it is very different from existing

association tests that test for associationbetweenvariants in

a contained genetic region and disease and which cannot,

by definition, implicate clustering of rare disease variants

in any part of the region under consideration. Therefore,

the proposed method complements existing region-based

association tests and can be useful in identifying the parts

of a gene or region that are involved in disease etiology.

Appendix A: Data Generation and Processing

for the AASC Data

The replication datasets have been sequenced as part of the

ARRA Autism Sequencing Collaboration. Whole-exome

sequencing of the samples was carried out at the Broad

Institute and at the Baylor College of Medicine via stan-

dard approaches.

Sequence-data processing and variant calling were per-

formed with similar workflows at both sites. Data were pro-

cessed with Picard43 (see Web Resources) and BWA44 for
r

kb w ¼ 10 kb w ¼ 20 kb w ¼ 30 kb VW

0.68 0.35 � 0.95

0.97 0.80 � 0.99

� 0.68 0.63 0.63

� 0.99 0.95 0.90

the length of the gene, and cluster length refers to the length of the cluster of
of variants in a gene are assumed to be DRVs. The following abbreviations are
ch.
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Table A2. Simulated Data for Large Genes

Gene Length (kb) Cluster Length (kb) % DRVs

Jaccard Index of Overlap

w ¼ 5 kb w ¼ 10 kb w ¼ 20 kb w ¼ 30 kb VW

50 2.9 5% 0.57 0.23 0.09 � 0.49

50 6.0 10% 0.69 0.55 0.28 � 0.68

200 22 3% 0.18 � 0.59 0.58 0.55

200 25 5% 0.17 � 0.72 0.63 0.72

Shown is the overlap between the true cluster region and the estimated cluster region as measured by the Jaccard index of overlap. There are 300 cases and 300
controls. Gene length refers to the length of the gene, and cluster length refers to the length of the cluster of DRVs. The index of overlap is averaged over randomly
selected genes of fixed length. 3% – 10% of variants in a gene are assumed to be DRVs. The following abbreviations are used: DRV, disease risk variant; w, window
size; and VW, variable-window approach.

Table A3. Simulated Data for Small Genes

Gene Length (kb) Cluster Length (kb) % DRVs

Power

w ¼ 0.2 kb w ¼ 0.5 kb w ¼ 0.8 kb w ¼ 1.0 kb w ¼ 1.5 kb VW

3.0 0.7 20% � 0.22 � 0.42 0.25 0.46

3.0 1.7 50% � 0.08 � 0.32 0.26 0.26

1.5 0.3 20% 0.28 0.30 0.20 � � 0.14

1.5 0.8 50% 0.14 0.15 0.32 � � 0.15

Power is at a ¼ 0.05. There are 300 cases and 300 controls. Gene length refers to the length of the gene, and cluster length refers to the length of the cluster of
DRVs. Power is averaged over randomly selected genes of fixed length. 20% – 50% of variants in a gene are assumed to be DRVs. The following abbreviations are
used: DRV, disease risk variant; w, window size; and VW, variable-window approach.

Table A4. Simulated Data for Small Genes

Gene Length (kb) Cluster Length (kb) % DRVs

Jaccard Index of Overlap

w ¼ 0.2 kb w ¼ 0.5 kb w ¼ 0.8 kb w ¼ 1.0 kb w ¼ 1.5 kb VW

3.0 0.7 20% � 0.41 � 0.46 0.32 0.48

3.0 1.7 50% � 0.25 � 0.44 0.61 0.55

1.5 0.3 20% 0.31 0.29 0.20 � � 0.32

1.5 0.8 50% 0.20 0.47 0.49 � � 0.37

Shown is the overlap between the true cluster region and the estimated cluster region as measured by the Jaccard index of overlap. There are 300 cases and 300
controls. Gene length refers to the length of the gene, and cluster length refers to the length of the cluster of DRVs. The index of overlap is averaged over randomly
selected genes of fixed length. 20% – 50% of variants in a gene are assumed to be DRVs. The following abbreviations are used: DRV, disease risk variant;w, window
size; and VW, variable-window approach.

Table A5. Discovery Dataset

Gene

p Value

MAF 0.01 MAF 0.10 VT

LRP2 1.2 3 10�2 4.4 3 10�4 7.4 3 10�5

CMYA3 3.8 3 10�1 8.0 3 10�2 1.0 3 10�5

LRP2 and CMYA3 p values calculated with minor allele frequency (MAF) %
{0.01, 0.10} and with the variable threshold (VT) approach maximizing over
multiple MAF thresholds.

Table A6. LRP2 Variants in the 25 kb Window of Maximum LRW

from the Discovery Dataset

Position Amplicon Length Gene fA fU

170,072,764 259 LRP2 0.005 0.000

170,076,965 198 LRP2 0.006 0.000

170,081,821 219 LRP2 0.001 0.000

170,082,933 257 LRP2 0.009 0.007

170,088,225 199 LRP2 0.093 0.115

170,089,922 258 LRP2 0.020 0.006

170,094,602 274 LRP2 0.003 0.005

170,097,689 258 LRP2 0.026 0.011
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Table A7. LRP2 Variants in the 25 kb Window of Maximum LRW from the ARRA Broad Study

Position ID fA fU refAA varAA Function

170,068,479 � 0.0011 0 Gln Gln silent

170,068,502 rs146149181 0.0023 0 Thr Ser missense

170,068,598 rs138269726 0.0046 0 Asp Asn missense

170,068,628 rs142266106 0 0.0013 Ala Thr missense

170,068,709 � 0.0011 0 Glu Lys missense

170,068,710 rs144449508 0.0034 0.0013 Ala Ala silent

170,068,713 rs34834388 0.039 0.025 Ala Ala silent

170,070,172 rs4667596 0.017 0.022 Arg Lys missense

170,070,225 � 0.0011 0 Lys Lys silent

170,070,275 � 0.0011 0 Glu Gln missense

170,070,348 rs11886219 0.051 0.050 Arg Arg silent

170,070,365 rs41268689 0.0011 0 Val Met missense

170,072,797 � 0.0011 0 Gln Arg missense

170,077,014 � 0 0.0013 Thr Thr silent

170,082,013 rs2075246 0.43 0.38 � � �

170,082,936 rs138070797 0.0069 0.0013 Asn Ser missense

170,088,351 rs2302694 0.104 0.106 Ser Ser silent

170,089,934 rs145384264 0.020 0.011 Ser Ser silent

170,090,040 � 0.0011 0 Arg His missense

170,090,041 � 0.0011 0 Arg Cys missense

170,090,105 � 0 0.0013 � � �

170,090,139 rs78750385 0.0069 0.0065 � � �

170,092,386 � 0 0.0013 Asn Lys missense

170,092,395 rs2229267 0.26 0.21 Cys Cys silent

170,092,439 rs151079411 0.0023 0.0013 Leu Leu silent

170,092,467 rs141068435 0 0.0013 Cys Cys silent

170,092,504 � 0.0011 0 Arg His missense

170,092,613 rs74457112 0.0011 0 � � �

Table A8. p Values from the Cochran-Armitage Trend Test for the Common LRP2 Variants Significantlya Associated with ASD

Chr Position fA fU p Trend OR

2 170,103,351 0.49 0.41 0.0007 1.40

2 170,099,895 0.49 0.42 0.0037 1.33

2 170,099,473 0.48 0.41 0.0040 1.33

2 170,099,899 0.48 0.41 0.0044 1.33

2 170,099,446 0.48 0.41 0.0045 1.33

2 170,103,336 0.48 0.41 0.0045 1.33

2 170,092,395 0.26 0.21 0.0084 1.33

2 170,096,018 0.33 0.27 0.011 1.31

2 170,115,588 0.49 0.43 0.014 1.27

2 170,066,022 0.20 0.17 0.045 1.29

The following abbreviations are used: Chr, chromosome; and OR, odds ratio.
ap < 0.05.
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Figure A1. Clustering of Rare DRVs in LRP2 for Three Datasets
(A) Cases versus controls.
(B) Random mix of cases and controls.
(C) Controls versus cases.
Scanning window length is w ¼ 25 kb. The 25 kb windows with maximum LR score are also shown for the three datasets.
mapping reads to hg19. Variants were called with the use

of several approaches (including the Genome Analysis

Toolkit45 and Atlas-SNP46), and only those variants that

passed standard quality-control filters were analyzed.
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