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Inclusion of Gene-Gene and Gene-Environment
Interactions Unlikely to Dramatically Improve
Risk Prediction for Complex Diseases

Hugues Aschard,1,2,* Jinbo Chen,3 Marilyn C. Cornelis,4 Lori B. Chibnik,5 Elizabeth W. Karlson,6

and Peter Kraft1,2,7

Genome-wide association studies have identified hundreds of common genetic variants associated with the risk of multifactorial

diseases. However, their impact on discrimination and risk prediction is limited. It has been suggested that the identification of

gene-gene (G-G) and gene-environment (G-E) interactions would improve disease prediction and facilitate prevention. We conducted

a simulation study to explore the potential improvement in discrimination if G-G and G-E interactions exist and are known.

We used three diseases (breast cancer, type 2 diabetes, and rheumatoid arthritis) as motivating examples. We show that the inclusion

ofG-G andG-E interaction effects in risk-predictionmodels is unlikely to dramatically improve the discrimination ability of thesemodels.
Introduction

Genome-wide association studies (GWASs) have dis-

covered hundreds of common genetic variants associated

with multifactorial diseases. These variants can be added

to classical clinical and environmental risk factors for the

improvement of risk-prediction assessment. However, for

most common diseases, the addition of genetic variants

to traditional risk factors has produced onlymodest impro-

vements.1–9 The subsequent genetic-risk profiles generated

are still unlikely to provide sufficient discrimination to

warrant individualized prevention except when the risks

and costs associated with preventive interventions are

low (but not so low that the benefits of intervention

outweigh the costs for every individual).10–12 It has been

suggested that the identification of statistical interaction

between genetic variants (G-G) or interaction between

genetic variants and environmental risk factors (G-E)

would improve the predictive accuracy of risk models

and facilitate prevention.2,12–14

We explored the potential improvement in the dis-

crimination of genetic-risk models for common complex

diseases by using common markers and common expo-

sures after incorporating G-G and G-E interactions. We

considered the scenario in which multiple statistical inter-

actions between common exposures and common risk

markers exist and are known.We also allowed for the possi-

bility that some genetic markers might be involved in G-G

andG-E interactions yet have nomarginal associationwith

disease; hence, they would not have been detected with

the standard one-marker-at-a-time GWAS approach. This

is arguably a best-case scenario because few replicated

interactions between common genetic markers and
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other genetic and environmental factors have been identi-

fied to date;15–18 also, after potential interactions are

allowed for, very few novel markers that have undetectable

marginal effect but that show evidence of association have

been identified.19

Because the effectiveness of genetic-risk models will vary

across diseases with different genetic architectures (defined

by the number of associated loci and the distribution of the

effect magnitude across loci), we considered three different

hypothetical architectures motivated by breast cancer

(BRCA, [MIM 114480]), type 2 diabetes (T2D, [MIM

125853]) and rheumatoid arthritis (RA, [MIM 180300]).

We generated a broad range of hypothetical G-G and G-E

interaction effects for each disease and constrained these

models to be consistent with reported marginal effects

for known genetic, clinical, and environmental risk fac-

tors. We then estimated the increase in discrimination

ability of risk models that include the interactions and

compared it to that of models that do not include the

interactions.
Material and Methods

Simulation Scheme
We simulated hypothetical models in which the disease status

was defined as a function of the marginal effects of known genetic

and nongenetic risk factors (see Appendix A) and a random

number of two-way G-G and G-E interaction effects. The interac-

tions were defined such that the marginal effects of the known

risk factors reflect the previously reported effect regardless of the

number and the magnitude of the interactions that were simu-

lated. We studied models in which statistical interactions exist

only between the known risk factors as well as models in which
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statistical interactions exist between the known risk factors

and unknown risk SNPs that have no marginal effect. In each

scenario, we generated 1,000 replicates of 100,000 women for

whom the genotypes of the known SNPs and environmental

risk were simulated independently, and we generated disease

status by assuming a prevalence of 10% for BRCA, 9% for T2D,

and 2% for RA.

The probability of disease given genotypes and exposures (pene-

trance) was generated with a constrained log-linear model:20
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Aþ

X
j

bjGj þ
X
l

slEl þ
X
j;k

Ij;kwj;kgj;k

þ
X
l;m

Il;mwl;mgl;m;0

!
:

(Equation 1)

Here, bj and sl are the marginal effects of SNP Gi and exposure

El, respectively; gj,k and gl,m are the interaction effects between

SNPs j and k and between the exposure El and SNP Gm, respec-

tively. Ijk and Ilm represent the presence (when equal to 1) or

absence (when equal to 0) of interaction between Gj and Gk and

between El and Gm, respectively. A is population-average log

penetrance. Gj is the weight for the genetic main effect, Ei is

the weight for the environmental main effect, wj,k, is the

weight of the interaction between SNPs j and k, and wl,m is the

weight of the interaction between exposure El and SNP Gm

(Appendix B). These weights are chosen so that the marginal

effect of SNP j—that is, the difference in the log penetrance

averaged over other genes and exposures between subjects

carrying one versus zero (or two versus one) copies of the minor

allele for SNP j—equals bj and so that the marginal effect of expo-

sure l is sl. In particular, the expected effect of each interaction

term is equal to 0 within strata defined by either of the following

interacting factors:
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This model is identical to themodel generated by the commonly

used parameterization
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(Equation 2)

where Gj* is the count of minor alleles for SNP j and El* is an

indicator variable for whether a subject is exposed (Appendix B).

Moreover, the interaction parameters g*,* in Equations 1 and 2

are equivalent and have the same interpretation. We chose

Equation 1 over Equation 2 because of the equivalence between

the marginal effects and the parameters bj and sl. This allowed

us to easily constrain the simulated models to have locus-specific

marginal effects and exposure marginal effects similar to those

observed empirically. The simulated models cover a wide range
cNRI¼PrðeventjupÞ3PrðupÞ�PrðeventjdownÞ3PrðdownÞ
PðeventÞ þP
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of interaction patterns, including classical supermultiplicative

and submultiplicative effects and more exotic models close to

those described by Evans et al.21

We varied the number of pairwise interactions from one to five

G-G and one to five G-E effects. The interaction effects gj,k and gl,m

were sampled from a normal distribution such that jgj< ln(2) with

95% probability. We chose the range of interaction odds ratios to

be consistent with (1) reported G-E interaction odds ratios, which

are mostly smaller than 2.5;22–27(2) the lack of consistently

replicated large G-G and G-E interactions involving common

variants; and (3) the magnitude of the marginal effects seen in

GWASs. Depending on the scenario we considered, the SNPs noted

with subscripts k and m represent either some of the known risk

SNPs or some hypothetical unidentified risk SNPs that have no

marginal effect.

(We recognize that some of the ‘‘environmental’’ risk factors

that we have chosen—e.g. body mass index (BMI) or family

history of disease—are endogenous factors that might themselves

be under genetic influence or correlated with the risk alleles. Our

simulation model assumes that the risk alleles are not correlated

with the environmental risk factors and that any loci influencing

the ‘‘environmental’’ risk factors have no unmediated influence

on disease risk. This would be the case for many exogenous

exposures that are not correlated with genotypes at the disease

susceptibility loci or for loci whose effect is solely mediated

through the endogenous environment, as might be the case for

FTO, BMI, and T2D. We did not explore situations in which

loci influencing the ‘‘environmental’’ risk factors also have an

unmediated influence on disease given that for most complex

diseases, the overlap between currently known risk loci and loci

associated with ‘‘environmental’’ risk factors is small. We stress

that our simulations focus on the best-case scenario in which

the penetrance model is known; in particular, markers that

have no effect on disease risk conditional on the ‘‘environmental’’

exposure are not included in the penetrance model, and all

relevant endogenous exposures are included in the penetrance

model.).

Estimation of Improvement in Risk Prediction
The improvement in discrimination ability was calculated as the

difference in the area under the receiver operating characteristic

curve (AUC), also called the C-statistic, between the model that

includes only the marginal effect of the known risk factors and

the model that includes the main effects of risk factors and the

simulated interaction effects. The improvement in estimation of

absolute risk was assessed by the continuous net reclassification

index (cNRI)28 before and after the addition of the interaction

effects. The cNRI quantifies the proportion of individuals who

have improved absolute-risk estimates (i.e., cases that tend to

have a higher absolute risk and controls that tend to have a smaller

absolute risk), although the cNRI does not consider the magnitude

of the changes in risk estimates. Unlike the net reclassification

index (NRI),29 the cNRI does not require the specification of risk

categories and thus allows for direct comparison across different

diseases. It is defined as follows:
rðnoneventjdownÞ3PrðdownÞ�PrðnoneventjupÞ3PrðupÞ
PðnoneventÞ ;
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Table 1. Expected Discrimination Ability for BRCA, RA, and T2D Based on Reported Estimated Effect of Genetic and Nongenetic Risk
Factors

Disease

AUC (SD) Sensitivity by Specificitya (SD)

Genetic Model Nongenetic Model Combined Model Genetic Model Nongenetic Model Combined Model

BRCA 0.591 (0.008) 0.558 (0.008) 0.616 (0.010) 0.023 (0.005) 0.017 (0.004) 0.033 (0.010)

RAb 0.687 (0.007) 0.571 (0.009) 0.704 (0.008) 0.055 (0.007) 0.014 (0.004) 0.066 (0.009)

T2D 0.623 (0.009) 0.754 (0.007) 0.786 (0.006) 0.030 (0.005) 0.088 (0.007) 0.122 (0.012)

The following abbreviations are used: AUC, area under the receiver operating characteristic curve; SD, standard deviation; BRCA, breast cancer; RA, rheumatoid
arthritis; and T2D, type 2 diabetes.
aFor a specificity threshold of 0.99.
bRA genetic model and combined model include both SNPs and HLA variants.
where Pr(event) and Pr(nonevent) are the probabilities of being

a case or a control, respectively, and Pr(down) and Pr(up) are the

probabilities of having lower or higher risk estimates, respectively,

after the addition of interaction effects in themodel. The cNRI and

AUC are independent of disease prevalence, allowing these

measures to be directly compared across diseases.
Results

Disease Models and Marginal Risk Prediction

For the BRCA risk model, we included 15 common SNPs

with marginal relative risks (RRs) ranging from 1.07 to

1.28 and risk-allele frequencies ranging from 0.15 to

0.85 (Table S1, available online). Four of the five com-

ponents of the Gail model 30 were added; these were age

at menarche, the number of previous breast biopsies, age

at first child, and the number of first-degree relatives

who have developed BRCA (age < 50 was not taken into

account because we considered a situation in which all

women were older than 50). We modeled the joint

frequencies of these risk factors by using their empirical

distribution in the Nurses’ Health Study (NHS) (see

Material and Methods and Table S2). For T2D, we included

31 SNPs and four clinical risk factors. The marginal allelic

RRs of the SNPs ranged from 1.09 to 1.40, and risk-allele

frequencies were between 0.10 and 0.93 (Table S3). The

clinical risk factors were obesity (BMI R 30), smoking

status, physical activity, and family history of T2D. We

used the NHS to model the joint frequency of these factors

(Table S4). With a RR of 5.1 and a frequency of 0.25,

obesity was the strongest risk factor of T2D. The three

others have RRs between 1.11 and 3.03 and frequencies

between 0.16 and 0.56. The RA model included 31 SNPs

with RRs ranging from 1.02 to 1.75 and risk-allele fre-

quencies ranging from 0.08 to 0.90 (Table S5). Other

than the 31 common GWAS-identified SNPs, we in-

cluded eight HLA-DRB alleles. The largest effect was

for DRB*0401, which has a frequency of 0.09 for a RR

of 3.30, whereas the other variants had either a low

frequency or a low RR. For ease of computation, all HLA

risk alleles were merged into a single variant that had an

average RR of 2.33 for a frequency of 0.24. We included

only two nongenetic risk factors, smoking and breast

feeding, which have RRs equal to 1.69 and 0.79, respec-
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tively. The frequencies of these risk factors were also taken

from the NHS (Table S6).

For each disease, we generated 1,000 replicates of

100,000 women and assigned them a disease status on

the basis of the effects described above. To provide

a benchmark for later simulations, we initially assumed

that there were no G-G or G-E interactions. The smallest

discrimination ability as estimated by our simulation was

observed for the BRCA model: the average AUC for the

model that combined genetic and nongenetic factors was

0.616 (standard deviation [SD] ¼ 0.010). Conversely, T2D

had the highest discrimination ability—it had an AUC of

0.786 (SD ¼ 0.006) for the combined model. The AUC

for RAwas 0.704 (SD¼ 0.008) and was driven by its genetic

component, which was proportionally much higher than

that of the two other models. Overall, the AUCs of the

genetic, nongenetic, and combined models obtained by

simulation (Table 1) were in agreement with the AUCs

reported on real data in the literature (see Appendix B).

Increase in Discrimination if G-G andG-E Interactions

Exist between Known Risk Factors

We added between two and ten G-G and G-E interaction

effects to the simulation models so that the final marginal

effects of known genetic risk variants and clinical

and environmental risk factors were equal to their pre-

viously reported effects (see Material and Methods and

Appendix B). We compared the models that included the

simulated interactions with models that included only

the marginal effects (referred to hereafter as ‘‘marginal

models’’) in terms of their ability to discriminate and

appropriately reclassify cases and controls.

The addition of interaction effects to the risk model

improved the performance of genetic-risk-prediction

models, although the improvement as measured by AUC

and cNRI was modest. (Because we simulated a large

cohort, the improvement in model fit was almost always

statistically significant [the median likelihood-ratio

p value z 10�23] whether measured by the differences in

the log likelihood or changes in AUC or cNRI. Our focus

is on the magnitude of these differences.) The cNRI

increased linearly with the number (Figure 1) and the

magnitude (Figure 2) of the simulated interactions. The

average cNRI over all simulations was similar across all
012



Figure 1. Absolute Increase in AUC and cNRI by the Number of Interactions Simulated
Breast cancer (BRCA), rheumatoid arthritis (RA), and type 2 diabetes (T2D).
three disease models: 0.230 (SD ¼ 0.096), 0.210 (SD ¼
0.092), and 0.200 (SD ¼ 0.096) for BRCA, RA, and T2D,

respectively. The contribution of controls to the cNRI

was slightly higher than the contribution of cases. Approx-

imately 54% of cases had higher risk estimates after inter-

actions were incorporated, whereas 56% of controls had

lower estimates. The highest cNRI was observed when

ten interactions were simulated (0.312 [SD ¼ 0.083],

0.305 [SD ¼ 0.085], and 0.286 [SD ¼ 0.074] for BRCA,

RA, and T2D, respectively); the proportions of cases and

controls that had improved risk estimates in this situation

were 57% and 59%, respectively.

The improvement in discrimination ability as measured

by the AUC differed by risk model (Figures 1 and 2). The

average absolute increase in AUC was 2.82% (SD ¼ 1.74),

1.40% (SD ¼ 1.00), and 0.85% (SD ¼ 0.63) for BRCA, RA,

and T2D, respectively. These differences reflect the

increasing difficulty in producing the same absolute

change in AUC as the baseline AUC increases. The increase

in the difference in mean predicted risk between cases and

controls after the addition of interactions was similar for all

three disease models; however, the variance of predicted

values of cases and controls was higher for models with

a higher baseline AUC, resulting in a lower increase in

the AUC of these models.31

We limited themagnitude of the interaction in the simu-

lations presented in Figures 1, 2, and 4 to relatively small
The Am
effects (0.5 < RRinteraction < 2 with 95% chances) given

that few larger interaction effects involving known risk

factors for complex diseases have been detected by large-

scale studies conducted on humans to date. In Figure S1,

we explore the impact of larger interaction effects (relative

risk up to 10) and a larger number of interactions (up to 20,

including interactions with SNPs that have no marginal

effect). The improvement in AUC increased with in-

creasing interaction effect; the magnitude of this increase

again differed by disease. For example, for 4–20 in-

teractions, the average absolute improvement in AUC for

0.2 < RRinteraction < 5 was equal to 13.79% (SD ¼ 4.64),

8.21% (SD ¼ 3.19), and 5.35% (SD ¼ 2.37) for BRCA, RA,

and T2D, respectively.

Increase in Discrimination if Interactions Exist

between Known Risk Factors and SNPs with No

Marginal Effect

We estimated the improvement when interactions

between known risk factors and SNPs that have no

marginal effect might also exist. We reconducted the

same simulations but replaced the known SNPs with SNPs

that we generated to have risk-allele frequencies in the

interval [0.05, 0.95] and no marginal effect on the diseases

studied. These simulations show similar results to the

previous scenario, but the improvement was, on average,

slightly lower when compared with the model that
erican Journal of Human Genetics 90, 962–972, June 8, 2012 965



Figure 2. Absolute Increase in AUC and cNRI by the Maximum Interaction Effect Simulated
Breast cancer (BRCA), rheumatoid arthritis (RA), and type 2 diabetes (T2D).
included interaction between known risk factors only. The

average absolute improvement in AUC was equal to 2.32%

(SD ¼ 1.46), 1.10% (SD ¼ 0.69), and 0.76% (SD ¼ 0.56) for

BRCA, RA, and T2D, respectively; when interactions only

involved known risk SNPs, the average absolute improve-

ment in AUC was 2.82%, 1.40%, and 0.85% for BRCA,

RA, and T2D, respectively.

Number of Interactions versus Size of the Interaction

We further investigated whether model improvement

was more sensitive to the size of the interaction effects

(as measured by the log-interaction RR denoted as g) or

to the number of interactions. We compared two addi-

tional models. In the first, we fixed the number of interac-

tions at ten and limited the size of the interactions (jgj <
ln(1.2) with 95% probability); in the second, we fixed

the number of interactions at two and simulated only

medium-to-strong interactions (ln(1.5) < jgj < ln(2) with

95% probability). The comparison of the increase in AUC

between these two models for each of the diseases when

1,000 series of each model were simulated is presented in

Figure 3. For all models, the magnitude of interaction leads

to a slightly better AUC improvement than does the

number of interactions. As before, the increase in AUC

decreased as the discrimination of the marginal model

increased, and the highest difference was observed for

BRCA. For this model, the absolute increase in AUC was
966 The American Journal of Human Genetics 90, 962–972, June 8, 2
on average 2.32% (SD ¼ 0.93) for two strong interactions

and 0.63% (SD ¼ 0.30) for ten low interactions. For RA,

the increases for two and ten interactions were, respec-

tively, 1.00% (SD ¼ 0.44) and 0.64% (SD ¼ 0.31); for

T2D, the increases were 0.27% (SD ¼ 0.14) and 0.15%

(SD ¼ 0.08), respectively.

Impact on Public Health and Clinical Utility

Interpreting the AUC and cNRI can be difficult in terms of

public-health impact because they do not consider dif-

ferent benefits and costs associated with true, false-

positive, and negative results.32 Other measures can be

used depending on context.33–35 Here, we consider sensi-

tivity for a fixed specificity threshold, which corresponds

to a single point on the receiver operating characteristic

(ROC) curve. This measure is relevant when a driving

consideration is the control of false-positive test results,

such as in the case of a population-screening program in

which the intervention that follows a positive test for

a rare disease carries substantial risk. The sensitivity

increase due to the inclusion of interactions for different

specificity thresholds is presented in Figure 4. The average

absolute increase in sensitivity (the percentage of cases

above the risk threshold) was below 0.01 for all disease

models at a high level of specificity (R0.99), whereas for

lower specificity thresholds (R0.90), the improvement

was moderate: 0.033 (SD ¼ 0.001), 0.019 (SD ¼ 0.000),
012



Figure 3. Comparison of Increase in AUC
between Models that Include a Low Number of
Strong-Interaction Effects with Models that
Include a Large Number of Low-Interaction
Effects
We compared the absolute increase in AUC
between models that include two strong inter-
actions (dashed line) and models that include
ten low interactions (solid line) for BRCA (blue),
RA (green), and T2D (red). Probability density
functions were estimated from 1,000 simulations
for each scenario.
and 0.014 (SD ¼ 0.000) for BRCA, RA, and T2D, respec-

tively. This suggests that there might be modest sensitivity

gains for intermediate risk thresholds with higher false-

positive proportions (>10%), but the gains for high risk

thresholds with small false-positive proportions (<1%)

might be low.
Discussion

Although multiple biologic interactions among GWAS-

identified risk loci and clinical risk factors are likely to

contribute to the etiology of many common diseases,

this study suggests that the identification of statistical

interactions among these factors might have a modest

impact on risk prediction and discrimination for common

complex diseases. Moreover, the improvement in risk

prediction was estimated in this study in a best-case

scenario in which the true main effect and interaction
Figure 4. Absolute Increase in Sensitivity by Maximum Interaction Effect and Spec
Breast cancer (BRCA), rheumatoid arthritis (RA), and type 2 diabetes (T2D).

The American Journal of
effect are known and are homogeneous

across all individuals (this might not be

the case in practice). The discriminatory

and predictive accuracy of any model

trained in a finite (and perhaps relatively

small) dataset will be diminished as a

result of model-selection uncertainty (e.g.,
incorrectly excluding or including true risk factors or inter-

actions) and variability in parameter estimates. Our quan-

titative results are in agreement with the claim made by

Gail2 that G-G interactions might have a low effect on

discrimination accuracy.

The evidence to date suggests that strong pairwise-

interaction effects (e.g., RR > 2) between known risk SNPs

and classical clinical risk factors are unlikely to be common

for complex diseases. For example, three large studies of

interactions among GWAS-identified BRCA markers and

established risk factors failed to find any compelling

evidence for interaction despite having greater than 90%

power for the detection of interaction RR as low as

1.06,15,18,36 and there are few validated interactions among

established genetic or dietary risk factors for T2D.37 We

chose the distribution of the magnitude of simulated inter-

action effects to be consistent with these equivocal results.

The paucity of replicated statistical G-G and G-E interac-

tions from observational studies in humans contrasts with
ify Threshold
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the rich literature on these interactions in experimental

and free-living model organisms.38,39 A number of factors

might contribute to this contrast, and these include (but

are not limited to) low power for the detection of statistical

interactions as a result of the tagging-SNP approach adop-

ted by GWASs and many candidate-gene studies,40 limited

genetic and environmental diversity in the human studies

to date,41,42 or the actual absence of detectable statistical

interactions in many human populations. Our extended

simulations show that the inclusion of many interactions

(>10) with modest to large effects (interaction odds

ratios >2) might meaningfully increase model discrimina-

tion. It remains an open empirical question whether such

interactions exist.

Large pairwise or higher-order interaction effects in-

volving rare causal variants, rare exposures, or rare allelic

combinations of common risk variants might exist but

were outside of the scope of this study. Pharmacogenetics

is one setting in which large interactions have been

observed.43,44 The odds ratio for adverse drug reactions

for some variants can be relatively large (well over 5),

and, considering that the adverse reaction is typically not

present among those who do not receive the drug, the

gene-drug interaction odds ratio can be thought of as

infinite. However, our focus was on risk screening in the

general population, not on tailoring therapy.

Large interactions involving rare exposures or rare alleles

might help identify individualswho are at particularly high

risk, but because they are rare and the prior probability for

particular interactionswill often be low, reliably identifying

them will be difficult. The impact of a strategy that focuses

on high-risk individuals might offer substantial benefits

for those individuals. However, because most cases arise

among the many at lower risk rather than among the few

who are at high risk, the potential impact on the total

burden of disease in the population might be limited.45

There are many measures that can be used for sum-

marizing the clinical and public-health utility of risk-

prediction models.33,46 We used the AUC. Other measures

such as risk-reclassification tables or the NRI can be used;29

however, a recent study by Mihaescu et al. has shown that

these reclassification measures increase as the AUC in-

creases.47 Most reclassification measurements depend on

risk thresholds that place individuals into risk categories;

different thresholds yield different measures and can

change the relative ranking of risk-prediction models.

Consequently, we used the cNRI, which is a threshold-

free reclassification tool. The cNRI simply measures the

proportion of individuals who have better risk estimates

(cases whose predicted risk increases after the inclusion of

interactions and controls whose predicted risk decreases)

without quantifying the magnitude of the change in risk

estimates. Finally, we also considered the increase in sensi-

tivity for high-specificity thresholds, a more interpretable

measure for public-health recommendation. The inclusion

of G-G and G-E interactions did not dramatically improve

any of these measures.
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The identification of G-G and G-E interactions remains

of major interest because it can provide important clues

regarding the biological mechanism of many common

complex diseases.48–50 However, indentifying replicable

statistical interactions between common genetic and non-

genetic risk factors is a very challenging task. Such interac-

tions might only modestly improve risk models designed

for use in the general population (such the Gail score

or the Framingham risk score). Whether such modest

improvements are clinically important will depend on

context. Our results suggest that the improvement of

risk-prediction models (as measured by the change in

average sensitivity) with the use of risk factors withmodest

effects primarily depends on the number of risk factors

included in the model; including nonlinear terms gener-

ally provides little improvement. This suggests that identi-

fying new risk loci and new environmental risk factors

might lead to greater improvements in risk modeling

than incorporating interactions among known risk factors.

We note, however, that G-G and G-E interactions can be

leveraged for the identification of new risk loci and new

modifiable environmental risk factors.19,50–54 Finally, we

stress that although G-G and G-E interactions might

have modest impacts on risk prediction, an understanding

of the interplay between genes and the environment can

provide insights into disease etiology; this understanding,

in turn, can lead to improved treatment and prevention

strategies.
Appendix A

The BRCA risk model included SNPs that GWASs have

found to be associated with BRCA at highly stringent levels

of statistical significance in populations of European

ancestry and that were confirmed in at least one indepen-

dent set of cases and controls (Table S1). On the basis of the

catalog of published GWASs,55 we identified 12 SNPs that

match these criteria at the time we were conducting this

study. We also considered three additional SNPs that

match similar criteria but that have been identified in

post-GWAS analysis involving multiple independent

populations. We added these 15 SNPs to the model that

we simulated by using their previously reported estimated

marginal effects. We simulated these SNPs by using the

frequencies obtained from the HapMap CEU56 (Utah resi-

dents with northern and Western European ancestry

from the CEPH collection) samples and the reported per-

allele RRs from discovery studies. We combined these

SNPs with the four components of the Gail score for

women older than 50; these components were age at

menarche, age at first child, number of first-degree relatives

with BRCA, and the number of previous breast biopsies

(Table S2). The odd ratios of these risk factors were ex-

tracted from Gail et al.30 The frequencies were taken

from 1,142 control samples from a BRCA case-control

study nested within the NHS.57
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Table A1. Coding for Terms G, E, andw from Equation 1 and Terms
G* and E* from Equation 2

Stratum G* E* G E w Frequency

Noncarrier,
unexposed

0 0 �q �p qp (1 � q)(1 � p)

Carrier,
unexposed

1 0 (1 � q) �p � (1 � q)p q(1 � p)

Noncarrier,
exposed

0 1 �q (1 � p) �q(1 � p) (1 � p)q

Carrier,
exposed

1 1 (1 � q) (1 � p) (1 � q)(1 � p) qp

Parameters q and p are the minor allele frequency of the SNP G and the
frequency of the exposure E, respectively.
The T2D risk model included loci that have been found

to be associated with T2D at highly stringent levels of

statistical significance; these loci were identified or

replicated by the Diabetes Genetics Replication and

Meta-Analysis (DIAGRAM) consortium, a widespread

collaboration that studies populations of European

descent (the most recent report includes 42,542 case

subjects with T2D and 98,912 control subjects). We used

the most significant SNPs of each loci from the DIAGRAM

consortium and the corresponding reported estimated

effects, and we used frequencies extracted from the

HapMap CEU56 (Table S3) samples. We considered four es-

tablished clinical risk factors: obesity (BMI R 25),

smoking status, physical activity, and family history of

T2D (Table S4). Given that no established risk score exists

for T2D, estimated effects of these risk factors were ex-

tracted from the NHS. Their joint frequencies were taken

from control samples in a case-control study of T2D in

the NHS.58

The RA risk model included established risk factors of

seropositive RA. Selected genetic variants include eight

HLA-DRB1 alleles, SNPs newly identified in GWASs, and

SNPs from candidate genes that have been confirmed in

GWASs to be at a genome-wide significance level. The esti-

mated effects were derived from the largest GWASs and a

recent meta-analysis of all published studies59 (Table S5).

We simulated these SNPs by using the HapMap CEU56

frequencies, and we simulated the DRB loci by using

frequencies extracted from a sample of NHS controls.60
Table A2. Equivalence between Penetrance Models from Equations 1

Penetrance

Stratum According to Equation 1

Noncarrier, unexposed A � bq � sp þ gqp

Carrier, unexposed A þ b(1 � q) � sp � g(1 � q)p

Noncarrier, exposed A � bq þ s(1 � p) � gq(1 � p)

Carrier, exposed A þ b(1 � q) þ s(1 � p) þ g(1 � q)(1

Parameters q and p are the minor allele frequency of the SNP G and the frequen

The Am
We considered two established clinical risk factors—breast

feeding and smoking status (Table S6). The frequencies of

these risk factors were extracted from the NHS case-control

study of RA,61 whereas the estimated effects were extracted

from the discovery studies.62,63
Appendix B

To evaluate the relevance of the simulated models, we

estimated, as an example, the discrimination ability of

the marginal model used for BRCA in a real dataset. For

this aim, we used 1,139 BRCA cases and 1,140 controls

from the NHS study.64 All women considered were post-

menopausal and older than 50. The 15 SNPs of interest

were either genotyped as part of the Cancer Genetic

Markers of Susceptibility Study (CGEMS)65 with the

Illumina 550K or imputed with the software MACH66

and the HapMap (rel22) CEU data.56 The four Gail compo-

nents were extracted from the detailed NHS follow-up

questionnaires that have been mailed biennially to the

full NHS cohort for updating exposure information and

any major medical events.

The genetic model including the 15 SNPs yielded

an AUC of 0.597 (standard error of the mean [SEM] ¼
0.012), the nongenetic model including the four Gail

component yielded an AUC of 0.583 (SEM ¼ 012), and

the combined Gail and SNP model shows an increase in

prediction ability and yielded an AUC of 0.629 (SEM ¼
0.012). These results are in agreement with a previous

study that showed similar results for the Gail model and

slightly lower results for the Gail and SNP models when

using a lower number of SNPs (AUC ¼ 0.618 when Gail

and ten SNPs were used in Wacholder et al.;4 AUC ¼
0.594 when Gail and seven SNPs were used in Mealiffe

et al.3). In comparison, our simulated model with the

same estimates yielded an average AUC of 0.558 (SD ¼
0.008), 0.591 (SD ¼ 0.008), and 0.616 (SD ¼ 0.010)

for the Gail model, the genetic model, and the com-

bined model, respectively, when no interaction was

simulated.

We simulated the interaction effects while constraining

the model to have locus-specific and exposure marginal

effects similar to those observed empirically. Rather than

using the popular parameterization that is based on
and 2

According to Equation 2

¼ a

¼ a þ b*

¼ a þ s*

� p) ¼ a þ b* þ s* þ g*

cy of the exposure E, respectively.
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counts of minor alleles for SNPs and indicator variables for

exposures and that includes product interaction terms

(Equation 2), we used a coding scheme that ensures

that the SNP and exposure main-effect parameters bj

and sl are equivalent to the desired marginal effects

(Equation 1). We stress, however, that the two parameteri-

zations yield identical models and, moreover, that the

interaction terms g*,* are equivalent.

We illustrate these two parameterizations in the simple

case in which there is one haploid SNP and one binary

exposure. (The results extend naturally to multiple

diploid SNPs and multiple exposures when it is assumed

that the population is in Hardy-Weinberg equilibrium,

the SNPs are unlinked, and there is no correlation

between the SNPs and exposures.) Table A1 presents the

coding for terms G, E, and w from Equation 1 and terms

G* and E* from Equation 2 over the four possible geno-

type-exposure combinations along with each combina-

tion’s frequency derived with the SNP minor allele

frequency q and the exposure frequency p. These codings

ensure that the expectations for E and w are 0 within

genotype strata and that the expectations for G and w

are also 0 within exposure strata. From this and Equation

1, it follows that the difference in average log penetrance

between carriers and noncarriers of the minor allele is

b and that the difference in average log penetrance

between exposed and unexposed subjects is s. The equiv-

alence between the interaction parameter g in both

models can be seen by the solution of the system of

equations described in Table A2. This yields b* ¼ b � gp,

s* ¼ s � gq, and g* ¼ g.

We validated our simulation model by comparing the

estimated marginal effects of the known risk factors while

either simulating or not simulating interactions. As an

indicator of the goodness of fit, the mean of the average

absolute distance between the estimated marginal additive

effects and the true marginal additive effects for the BRCA

model was equal to 0.030 (0.024 and 0.044 for the SNPs

and the four Gail covariates, respectively) when G-G

and G-E interactions between known risk factors were

simulated.
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Supplemental Data include one figure and six tables and can be
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Meta-Analysis of Glucose and Insulin-related traits Con-

sortium (MAGIC); Diabetes Genetics Replication and Meta-

analysis (DIAGRAM) Consortium. (2010). Genetic variants at

2q24 are associated with susceptibility to type 2 diabetes.

Hum. Mol. Genet. 19, 2706–2715.

59. Fernando, M.M., Stevens, C.R., Walsh, E.C., De Jager, P.L.,

Goyette, P., Plenge, R.M., Vyse, T.J., and Rioux, J.D. (2008).

Defining the role of the MHC in autoimmunity: A review

and pooled analysis. PLoS Genet. 4, e1000024.

60. Karlson, E.W., Chibnik, L.B., Kraft, P., Cui, J., Keenan, B.T.,

Ding, B., Raychaudhuri, S., Klareskog, L., Alfredsson, L., and

Plenge, R.M. (2010). Cumulative association of 22 genetic

variants with seropositive rheumatoid arthritis risk. Ann.

Rheum. Dis. 69, 1077–1085.

61. Karlson, E.W., Chibnik, L.B., Tworoger, S.S., Lee, I.M., Buring,

J.E., Shadick, N.A., Manson, J.E., and Costenbader, K.H.

(2009). Biomarkers of inflammation and development of

rheumatoid arthritis in women from two prospective cohort

studies. Arthritis Rheum. 60, 641–652.

62. Karlson, E.W., Mandl, L.A., Hankinson, S.E., and Grodstein, F.

(2004). Do breast-feeding and other reproductive factors influ-

ence future risk of rheumatoid arthritis? Results from the

Nurses’ Health Study. Arthritis Rheum. 50, 3458–3467.

63. Costenbader, K.H., Feskanich, D., Mandl, L.A., and Karlson,

E.W. (2006). Smoking intensity, duration, and cessation, and

the risk of rheumatoid arthritis in women. Am. J. Med. 119,

503.e1–503.e9.

64. Willett, W.C., Stampfer, M.J., Colditz, G.A., Rosner, B.A.,

Hennekens, C.H., and Speizer, F.E. (1987). Moderate alcohol

consumption and the risk of breast cancer. N. Engl. J. Med.

316, 1174–1180.

65. Thomas, G., Jacobs, K.B., Kraft, P., Yeager, M., Wacholder, S.,

Cox, D.G., Hankinson, S.E., Hutchinson, A., Wang, Z., Yu,

K., et al. (2009). A multistage genome-wide association study

in breast cancer identifies two new risk alleles at 1p11.2 and

14q24.1 (RAD51L1). Nat. Genet. 41, 579–584.

66. Li, Y., Willer, C.J., Ding, J., Scheet, P., and Abecasis, G.R.

(2010). MaCH: Using sequence and genotype data to estimate

haplotypes and unobserved genotypes. Genet. Epidemiol. 34,

816–834.
012


	Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases
	Introduction
	Material and Methods
	Simulation Scheme
	Estimation of Improvement in Risk Prediction

	Results
	Disease Models and Marginal Risk Prediction
	Increase in Discrimination if G-G and G-E Interactions Exist between Known Risk Factors
	Increase in Discrimination if Interactions Exist between Known Risk Factors and SNPs with No Marginal Effect
	Number of Interactions versus Size of the Interaction
	Impact on Public Health and Clinical Utility

	Discussion
	Appendix A
	Appendix B
	Supplemental Data
	Web Resources
	References


