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An individual’s disease risk is determined by the compounded action of both common variants, inherited from remote ancestors, that

segregated within the population and rare variants, inherited from recent ancestors, that segregated mainly within pedigrees. Next-

generation sequencing (NGS) technologies generate high-dimensional data that allow a nearly complete evaluation of genetic variation.

Despite their promise, NGS technologies also suffer from remarkable limitations: high error rates, enrichment of rare variants, and a large

proportion of missing values, as well as the fact that most current analytical methods are designed for population-based association

studies. To meet the analytical challenges raised by NGS, we propose a general framework for sequence-based association studies that

can use various types of family and unrelated-individual data sampled from any population structure and a universal procedure that

can transform any population-based association test statistic for use in family-based association tests. We develop family-based func-

tional principal-component analysis (FPCA) with or without smoothing, a generalized T2, combined multivariate and collapsing

(CMC) method, and single-marker association test statistics. Through intensive simulations, we demonstrate that the family-based

smoothed FPCA (SFPCA) has the correct type I error rates and much more power to detect association of (1) common variants, (2)

rare variants, (3) both common and rare variants, and (4) variants with opposite directions of effect from other population-based or

family-based association analysis methods. The proposed statistics are applied to two data sets with pedigree structures. The results

show that the smoothed FPCA has a much smaller p value than other statistics.
Introduction

Resequencingof exomes—andultimately,whole genomes—

generate unprecedentedly massive, high-dimensional

genetic-variation data that allow a nearly complete

evaluation of genetic variation, including several million

common (>5% population frequency), low-frequency

(>1% and < 5% population frequency), and rare variants

(<1% population frequency) in typical human genomes,

and provides a powerful tool for the comprehensive cata-

loging of human genetic variation and the identification

of the association of the entire allele-frequency spectrum

of genetic variation.1,2 Limitations of next-generation

sequencing (NGS) technologies include high error rates,

enrichment of rare variants, and a large proportion of

missing values.3–7

It is hypothesized that common variants are derived

from distant ancestors and rare variants are of recent

origin.8 An individual’s disease risk is likely to arise from

the compounded action of common variants that segre-

gated in the population and rare variants that arose

recently in extended pedigrees. There has been a gradual

realization that common variants play a less-significant

role in causing disease than that played by rare variants

that are of recent origin; accordingly, during the past

several years, genetic studies of complex diseases have

undergone a paradigm shift from identifying common

risk variants to identifying either rare risk variants or

both common and rare risk variants.9 The current popular

statistical method for testing the association of rare vari-

ants is the population-based association test. However,
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rare variants arise from recent mutations in pedi-

grees.8,10,11 Given that an individual rare variant would

have a relatively small impact on the common disease

and that rare variants have very low population frequen-

cies, the power the current analytical platforms have in

testing the association of rare variants is limited, regardless

of whether they are traditional variant-by-variant analysis

methods or the recently developed group tests. An

outstanding question is how to meet the analytical

challenges raised by NGS through integration of all risk-

associated common and rare variants that segregate in

populations or pedigrees over several generations, and, in

so doing, efficiently use NGS for the identification of the

association of rare variants with disease.

To achieve this goal, we propose a general framework for

association studies that uses data sampled from pedigrees

with a complex structure and unrelated individuals from

structured populations as well as an entire allelic spectrum

of genetic variants.12 Typical pedigrees include: parent-

offspring trios, sibling pairs, extended pedigrees with

multiple affected and unaffected individuals, multigenera-

tional families, and families and related individuals from

structured populations.

The proposed approach has several remarkable features.

First, it can be applied to various types of genetic data.

Specifically, it does not require assumptions as to how

the individuals might be related and allows for unknown

or partially known pedigree structures. The individuals

can come from structured populations, such as consan-

guineous populations and admixed populations. The

genetic variants can be common, rare, or both common
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and rare. Second, the mathematical disadvantage of tradi-

tional linkage analysis is its use of the likelihood approach.

Specification of likelihood functions for complex genetic

data with multiple pedigrees, large numbers of unrelated

individuals, and multiple rare and common variants in

a genomic region is difficult, as is the development of algo-

rithms for estimation of the parameters from such

complex likelihood functions. We present a statistical

method that is simple, easy to implement, and therefore

computationally feasible for NGS data. Third, the inclu-

sion of families in association studies has the potential

to enhance our ability to enrich for rare risk or for

protective variants that occur in the pedigrees over several

generations, and hence substantially increase their

power. Fourth, joint analysis of linkage and association

can effectively use the observed transmission (linkage)

information in the pedigrees, the linkage disequilibrium

(LD) information hidden in the history of populations,

rare variants segregating in the pedigrees, and common

variants segregating in the population. Fifth, the transmis-

sion pattern in the pedigrees allows for easy correction

of sequencing errors. Sixth, the genotype data of other

members of the pedigrees provide useful information for

inferring the missing genotypes of the individuals in the

pedigrees. Seventh, family data allow for control of hetero-

geneity and population substructures. Eighth, this

approach can use both pedigree and unrelated individual

data; hence, it provides a highly flexible general framework

for association studies of complex disease.

Extension of the population-basedassociation-analysis

methods designed for NGS to the family-based or mixed

family-based and population-based association studies

for NGS is a core of the proposed general framework

for association studies. The key to such extensions is

calculation of the covariance matrix of multiple genetic

variants in the genome region or the functional principal

scores between related individuals. Therefore, motivated

by case-control association testing for related individuals

who have population substructure,13–16 we first derive

the formulas for calculation of the covariance matrices

of genetic variance and the functional principal-compo-

nent scores. Then, with the aid of these formulas, we

extend the combined multivariate and collapsing (CMC)

method,9 generalized T2,17 and functional principal-

component analysis (FPCA)18 statistics for population-

based association studies to family-based or mixed

family-based and population-based association studies.

To evaluate the statistics’ performance, we use large-scale

simulations to calculate the type I error rates and compare

the power of several statistics with simulated data

containing both pedigrees and unrelated individuals. For

further evaluation of their performance, statistics devel-

oped in this report are applied to the Framingham Heart

Study (FHS) data set and childhood-onset asthma studies.

A program for implementing the developed statistical

methods can be downloaded from our website (see Web

Resources).
The Americ
Material and Methods

We extend four population-based association tests for NGS to

a general case that has multiple families and unrelated individuals

present in the samples.

The Generalized T2 Test for Families and Unrelated

Individuals
Consider n sampled individuals from multiple families or unre-

lated individuals. Assume that each individual has T genetic vari-

ants. Suppose that the genotypes of the ith individual at the tth

genetic variant site are denoted by atat ; atAt, and AtAt , respec-

tively. Assume that At is a risk allele. Define an indicator variable

for the genotype as

Zt
i ¼

8<
:

2 AtAt

1 Atat
0 atat

; i ¼ 1;2;.;n; t ¼ 1;2;.;T:

Let

Zt ¼ �
Zt
1;.;Zt

n

�T
and Z ¼

h�
Z1

�T
;.;

�
ZT

�TiT
:

Define Dr ¼ ½u1;.;un�T and Dp ¼ ½1;1;.;1�T , a column vector

of 1 of length n, where

ui ¼
�

1 if i is a case
0 if i is a control:

Define

H ¼

2
6666666664

�
Dr � nc

n
Dp

�T

0 / 0

0
�
Dr � nc

n
Dp

�T

/ 0

/ / / /

0 0 /
�
Dr � nc

n
Dp

�T

3
7777777775

¼ IðTÞ5
�
Dr � nc

n
Dp

�T

(Equation 1)

where nc is the number of affected individuals, IðTÞ is a T dimen-

sional identity matrix, and 5 denotes the Kronecker product of

two matrices.

The generalized T2 statistic with pedigree structures is defined as

T2
F ¼ ðHZÞTG�1HZ; (Equation 2)

where G ¼ covðHZ;HZÞ.
Let

X
z

¼

2
664
s11 s12 / s1T

s21 s22 / s2T

/ / / /
sT1 sT2 / sTT

3
775; (Equation 3)

where sij ¼ covðZi
1;Z

j
1Þ.

It can be shown that (Appendix A)

Lz ¼ covðZ;ZÞ ¼ Sz5F; (Equation 4)

where F is the kinship matrix and defined as

F ¼

2
664
1þ h1 2f12 / 2f1n

2f21 1þ h2 / 2f2n

/ / / /
2fn1 2fn2 . 1þ hn

3
775; (Equation 5)
an Journal of Human Genetics 90, 1028–1045, June 8, 2012 1029



hi is the inbreeding coefficient of individual i, and fij is the kinship

coefficient between individuals i and j.

The matrix Sz can be estimated by

Ŝz ¼ 1

n� T

Xn

i¼1

ðZi � ZÞðZi � ZÞT ; (Equation 6)

where

Zi ¼
�
Z1
i ;Z

2
i ;.;ZT

i

�T
;Z ¼ 1

n

Xn

i¼1

Zi:

The covariance matrix G is calculated as follows:

G ¼ covðHZ;HZÞ
¼ HLzH

T

¼
h
IðTÞ5

�
Dr � nc

n
Dp

�Ti
½Sz5F�

h
IðTÞ5

�
Dr � nc

n
Dp

�i

¼
h�

Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�i
Sz:

(Equation 7)

To establish the relationship between the test statistic T2
F for

general pedigrees and the T2 statistic for the population-based

association test, we need to simplify HZ. It is easy to see that

�
Dr � nc

n
Dp

�T

Zt ¼
X

i˛ cases

Zt
i �

nc

n

Xn

i¼1

Zt
i

¼ ncZ
t

A � nc

n

h
ncZ

t

A þ ðn� ncÞZt

G

i

¼ ncðn� ncÞ
n

h
Z

t

A � Z
t

G

i
;

(Equation 8)

where Z
t

A and Z
t

G are averages of the indicator variables for the

genotypes at the tth variant site in cases and controls, respectively.

From Equation 8 it follows that

HZ ¼
h
IðTÞ5

�
Dr � nc

n
Dp

�Ti
Z

¼ ncðn� ncÞ
n

2
6664
Z

1

A � Z
1

G

«

Z
T

A � Z
T

G

3
7775:

(Equation 9)

Therefore, the test statistic T2
F can be simplified to

T2
F ¼ ðHZÞTS�1

z HZ�
Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�

¼

	
ncðn� ncÞ

n


2h
ðZA � ZGÞTS�1

z ðZA � ZGÞ
i

�
Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�

¼ T2

n

ncðn� ncÞ
�
Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�

¼ T2

Pcorr

;

(Equation 10)

where T2 is the generalized T2 statistic for the population-

based association tests and Pcorr ¼ ðn=ncðn� ncÞÞðDr � ðnc=nÞDpÞT
FðDr � ðnc=nÞDpÞ is the correction factor to be applied to the
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generalized T2 statistic to have a valid test in the presence of pedi-

gree structures. The correction factor depends on kinship coeffi-

cients and the number of affected and unaffected individuals.

Under the null hypothesis of no association of the genomic region

with the disease, T2
F is distributed as a central c2

ðTÞ distribution with

T degrees of freedom.

CMC Test for Families
Now we extend the population-based CMC test to the families

with known or unknown population structure. We previously

extended the population-based generalized T2 test to the families.

Combining the collapsing test and the generalized T2 test for fami-

lies, we can obtain the CMC test for families in the samples. Specif-

ically, suppose that T variants can be classified as k groups of rare

variants and m individual variant sites.

Define indicator variables for the k group of rare variants:

vsi ¼
8<
:

1 presence of rare variants in the s-th group
of the i-th individual

0 otherwise;

s¼ 1..,k, and Ps¼ P(presence of the rare variants in the s - th group).

The variance of the indicator variable can be estimated by

s2
s ¼ Psð1� PsÞ; s ¼ 1;2;.; k:

Let

Vs ¼

2
64
vs1
«

vsn

3
75 and V ¼

2
64V1

«

Vk

3
75:

Define

h ¼
	
V
Z



and HCMC ¼ IðkþmÞ5

�
Dr � nc

n
Dp

�T

;

where the parameters in the above equations are defined as before.

The vector h consists of two parts: one is for collapsed variants and

other one is for uncollapsed variants.

We define a diagonal matrix:

Sv ¼ diag
�
s2
1;s

2
2;.;s2

k

�
: (Equation 11)

The covariance matrix is given by (Y.Y. Shugart, Y.Z., W. Guo,

and M.X., unpublished data)

Lv ¼ covðV ;VÞ ¼ Sv5F: (Equation 12)
Thus, the covariance matrix of h is given by

L ¼
	
Sv Svz

Szv Sz



5F ¼ S5F; (Equation 13)

where

S ¼
	
Sv Svz

Szv Sz



:

Then, by the similar argument as before, the covariance matrix

of HCMCh is given by

GCMC ¼
�
Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�
S: (Equation 14)
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Thus, the family-based CMC statistic can be defined as

TCMCF ¼ ðHCMChÞTG�1
CMCHCMCh

¼ ðHCMChÞTS�1
CMCHCMCh�

Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�

¼
ncðn� ncÞ

n

h
ðVA � VGÞTS�1

v ðVA � VGÞ þ ðZA � ZGÞTS�1
z ðZA � ZGÞ

i
ncðn� ncÞ

n

�
Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�

¼ TCMC

Pcorr

;

(Equation 15)

where VA;VG are the averages of the indicator variables in cases

and controls, respectively; TCMC is the CMC statistic for the popu-

lation-based association test; and the correction factor Pcorr is

defined as before. The test statistic TCMCF follows a c2
ðkþmÞ distribu-

tion with (k þ m) degrees of freedom, asymptotically, under the

null hypothesis of no association of the genomic region being

tested.
The FPCA and Smoothed FPCA for Families
The FPCA and smoothed FPCA (SFPCA) can be applied to the pop-

ulation-based association studies.18 Now we extend them to

a general case where multiple families and additional population

structures are presented in the samples. Let bjðtÞ; j ¼ 1;2;.; k be

a set of eigenfunctions that are formed from the genotype data

of the sampled individuals under the SFPCA model. Let

xiðtÞ; i ¼ 1;2:;.;n be a genotypic function of the ith individual,

where t is the genomic position, and defined as

xiðtÞ ¼
8<
:

2 AtAt

1 Atat
0 atat

: (Equation 16)
Suppose that the genotypic function xiðtÞ is expanded by eigen-

functions that are formed by the SFPCA as

xiðtÞ ¼
Xk

j¼1

xijbjðtÞ; (Equation 17)

where

�
bj;bl

�
l
¼

Z
T

bjðtÞblðtÞdt þ l

Z
T

€bjðtÞ€blðtÞdt ¼ 0

and xij ¼ hxi;bjil ¼
R
TxiðtÞbjðtÞdt þ l

R
T
€xiðtÞ€bjðtÞdt. l is a penalty

parameter, which is referred to as the smoothed functional-

component scores.When l is equal to zero, expansion of Equation

17 will be reduced to the FPCA expansion.

Our purpose is to use the functional principal-component scores

to develop test statistics that can be applied to pedigrees. To

achieve this, we first calculate the covariance matrix of the func-

tional principal-component scores. Let

x:j ¼
�
x1j; x2j;.; xnj

�T
; xi: ¼ ½xi1; xi2;.; xik�T and x ¼ ½x:1; x:2;.; x:k�T :
The Americ
Define

sx
jk ¼ cov

�
x1j; x1k

�
¼ R

T

R
T

bjðsÞRðs; tÞbkðtÞdsdt þ l
R
T

R
T

bjðsÞ
v2Rðs; tÞ

vt2
€bkðtÞdsdt

þl
R
T

R
T

€bjðsÞ
v2Rðs; tÞ

vs2
bkðtÞdsdt þ l2

Z
T

Z
T

€bjðsÞ
v4Rðs; tÞ
vs2vt2

€bkðtÞdsdt;

(Equation 18)

and

X
SFPCA

¼

2
666664
sx
11 sx

12 . sx
1k

sx
21 sx

22 . sx
2k

/ / / /

sx
k1 sx

k2 / sx
kk

3
777775:

The matrix Sx can be estimated by

ŜSFPCA ¼ 1

n� k

Xn

i¼1

ðxi � xÞðxi � xÞT : (Equation 19)

Then, it can be shown that (Appendix B)

LSFPCAF ¼ covðx; xÞ
¼ P

SFPCA

5F:
(Equation 20)

Define

HFPCAF ¼ IðkÞ5
�
Dr � nc

n
Dp

�
(Equation 21)

and GSFPCA ¼ covðHFPCAFx;HFPCAFxÞ.
It follows from Equation 20 that

GSFPCA ¼
h
IðkÞ5

�
Dr � nc

n
Dp

�Ti
LSFPCA

h
IðkÞ5

�
Dr � nc

n
Dp

�i

¼
h�

Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�i
SSFPCA:

(Equation 22)

The family-based SFPCA statistic is then defined as

TSFPCAF ¼ ðHFPCAxÞTG�1
SFPCAHFPCAx: (Equation 23)

When l ¼ 0, the family-based SFPCA statistic TSFPCAF in Equa-

tion 23 is reduced to the family-based FPCA statistic without

smoothing.

Let xA and xG be the vector of averages of the functional prin-

cipal-component scores in cases and controls, respectively. It can

be show that the statistic TSFPCAF can be simplified to (Appendix B)

TSFPCAF ¼

	
ncðn� ncÞ

n


2
ðxA � xGÞTS�1

SFPCAðxA � xGÞ�
Dr � nc

n
Dp

�T

F
�
Dr � nc

n
Dp

�

¼ TSFPCA

Pcorr

;

(Equation 24)

where TSFPCA is the population-based SFPCA statistic (L. Luo, Y.Z.,

and M.X., unpublished data) and Pcorr is the correction factor as

defined previously.

When penalty parameter l is equal to zero, the family-based

SFPCA TSFPCAF is reduced to the family-based FPCA statistic:

TFPCAF ¼ TFPCA

Pcorr

: (Equation 25)
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Table 1. Type I Error Rates of Five Statistics for the First Study
Design

Nominal Level 0.05 0.01 0.001

Theoretical Kinship Coefficient

c2 0.0349 0.0074 0.0006

CMC 0.0397 0.0082 0.0006

T2 0.0363 0.0078 0.0008

FPCA 0.0413 0.0086 0.0008

SFPCA 0.0413 0.0091 0.0008

Estimated Kinship Coefficient

c2 0.0364 0.0072 0.0006

CMC 0.0388 0.0084 0.0006

T2 0.0368 0.0078 0.0008

FPCA 0.0414 0.0088 0.0008

SFPCA 0.0426 0.0092 0.0008

Theoretical þ Estimated Coefficient

c2 0.0563 0.0124 0.0015

CMC 0.0591 0.0109 0.0009

T2 0.0719 0.0105 0.0017

FPCA 0.0857 0.0180 0.0010

SFPCA 0.0803 0.0135 0.0018

c2, individual c2 test; CMC, combined multivariate and collapsing method; T2,
generalized T2 test; FPCA, functional principal-component analysis; SFPCA,
smoothed FPCA.
Under the null hypothesis of no association of the genomic

region, the statistics TSFPCAF and TFPCAF will be asymptotically

distributed as a central c2
ðkÞ distribution where k is the number of

functional principal components in the eigenequation expansion

of genotypic functions.

Estimation of Kinship Matrix
All previous covariance matrices involve the kinship matrix.

Although the genealogical relationship between individuals in

the same pedigrees can be directly specified, the relationships

between individuals in the different pedigrees are usually

unknown. Given the presence of hidden population substructures

and cryptic relatedness in the samples, the genealogical relation-

ships between individuals in the different pedigrees cannot be

ignored. The kinship matrix includes both the pedigree relation-

ships of the related individuals and of the population structures.

In general, the kinship matrix F is unknown and can be estimated

by the genetic variants in the data. Consider m markers. Let xij be

the indicator variable for the jth SNP of the ith individual, as

defined before, and pi be the frequency of its reference allele.

The genealogical matrix can be estimated by19

fij ¼
1

m

Xm
k¼1

ðxik � 2pkÞ
�
xjk � 2pk

�
2pkð1� pkÞ ; isj

fii ¼ 1þ 1

m

Xm
k¼1

x2ik � ð1þ 2pkÞxk þ 2p2k
2pkð1� pkÞ ; i ¼ j:

(Equation 26)

Because the allele frequencies are unknown, they are estimated

as follows:16

Step 1 (initial): use the average allele frequency in the popula-

tion as bp to estimate F0;

Step 2 (iteration): let t be the tth SNP in the genomic region. For

the ith iteration, we

d use Fi to estimate bpi, bpt

i ¼ ð1TF�1
i 1Þ�11TF�1

i Zt , where 1 is

a vector of 1 and Zt is a vector of indicator variable for the

genotypes at the tth SNP in the genomic region, as defined

before;

d use this bpi to estimate Fiþ1; and

d stop upon convergence or the meeting of maximum itera-

tion limits.

Results

Null Distribution of Test Statistics

To assess the type I error rates of the test statistics and the

impact of the use of known and estimated kinship coeffi-

cients on the family-based association studies, we per-

formed a series of simulation studies. We used the software

ForSim20 to simulate three different design settings. In the

first sitting, we sampled 40 outbred pedigrees that have

three generations, each pedigree having approximately

17 individuals, and 60 pedigrees that have two genera-

tions, each pedigree having approximately five individ-

uals, from a homozygous population. In each pedigree,

roughly half of the individuals were randomly labeled

as affected individuals; the remaining individuals were

assigned as unaffected. The second setting was similar to

the first, except that 70% of the pedigrees were sampled

from subpopulation 1 and the remaining 30% of the
1032 The American Journal of Human Genetics 90, 1028–1045, June
pedigrees were sampled from subpopulation 2. Two

subpopulations were generated by dividing a population

into two subpopulations through phenotypic selection at

the fifth generation (The total number of generations in

the simulations was 100). The phenotype of an individual

was determined by natural selection. In subpopulation 1

we selected individuals within 0.4 SD of the mean pheno-

type, and in subpopulation 2 we selected individuals

within 0.6 SD of the mean phenotype. Two subpopula-

tions were then evolved in 95 generations via population

genetics models. The third setting was also similar to the

first, with the difference of the inclusion of an additional

500 unrelated cases and 500 unrelated controls in the

study. In all three settings, each individual had 168 rare

variants with minor allele frequencies (MAF) less than

0.01. A total of 5,000 simulations were repeated.

Tables 1, 2, and 3 summarize the type I error rates of the

five statistics: the SFPCA statistic, the FPCA statistic, the

CMC method,9 the generalized T2,17 and the corrected

individual c2 test (where we averaged the type I error rates

of multiple variants) for the first, second, and third study

designs, respectively. We considered three scenarios for

relatedness of individuals. For the first scenario, we used

theoretical kinship coefficients between pairs of individ-

uals in the same pedigrees as our kinship coefficients and
8, 2012



Table 2. Type I Error Rates of Five Statistics for the Second Study
Design

Nominal Level 0.05 0.01 0.001

Theoretical Kinship Coefficient

c2 0.0365 0.0070 0.0006

CMC 0.0375 0.0087 0.0006

T2 0.0389 0.0083 0.0008

FPCA 0.0423 0.0091 0.0008

SFPCA 0.0428 0.0099 0.0008

Estimated Kinship Coefficient

c2 0.0389 0.0075 0.0006

CMC 0.0390 0.0092 0.0006

T2 0.0402 0.0086 0.0008

FPCA 0.0434 0.0095 0.0008

SFPCA 0.0438 0.0100 0.0008

Theoretical þ Estimated Coefficient

c2 0.0573 0.0103 0.0008

CMC 0.0553 0.0141 0.0006

T2 0.0554 0.0114 0.0012

FPCA 0.0667 0.0102 0.0008

SFPCA 0.0618 0.0118 0.0008

c2, individual c2 test; CMC, combined multivariate and collapsing method; T2,
generalized T2 test; FPCA, functional principal-component analysis; SFPCA,
smoothed FPCA.

Table 3. Type I Error Rates of Five Statistics for the Third Study
Design

Nominal Level 0.05 0.01 0.001

Theoretical Kinship Coefficient

c2 0.0344 0.0073 0.0007

CMC 0.0390 0.0096 0.0006

T2 0.0382 0.0096 0.0009

FPCA 0.0454 0.0118 0.0008

SFPCA 0.0475 0.0122 0.0008

Estimated Kinship Coefficient

c2 0.0343 0.0070 0.0006

CMC 0.0347 0.0083 0.0006

T2 0.0395 0.0081 0.0008

FPCA 0.0412 0.0095 0.0007

SFPCA 0.0418 0.0099 0.0008

Theoretical þ Estimated Coefficient

c2 0.0348 0.0074 0.0007

CMC 0.0406 0.0097 0.0006

T2 0.0370 0.0089 0.0009

FPCA 0.0445 0.0123 0.0008

SFPCA 0.0458 0.0118 0.0009

c2, individual c2 test; CMC, combined multivariate and collapsing method; T2,
generalized T2 test; FPCA, functional principal-component analysis; SFPCA,
smoothed FPCA.
assumed that kinship coefficients between pairs of individ-

uals in differing pedigrees were zero. For the second

scenario, we assumed that individuals between different

pedigrees were related. The theoretical kinship coefficients

were again taken as our kinship coefficients between pairs

of individuals in the same pedigrees, and the kinship coef-

ficients between pairs of individuals in differing pedigrees

were estimated by the typed SNPs. For the third scenario,

we estimated all kinship coefficients between pairs of indi-

viduals by the typed SNPs, regardless of whether the paired

individuals were in the same or in differing pedigrees.

Tables 1, 2, and 3 show that the empirical type I error rates

of the test statistics were close to each other, whether we

use all theoretical kinship coefficients or all estimated

kinship coefficients in all three study designs. In this

case, the type I error rates of the SFPCA and FPCA statistics

were not significantly deviated from the nominal levels,

although they are slightly deflated at the significance level

a ¼ 0:05: In contrast, type I errors of the other statistics

were more deflated than the SFPCA and FPCA statistics.

Tables 1 and 2 also show that we found this result when

taking theoretical kinship coefficients between pairs of

individuals in the same pedigree as our kinship coefficients

and estimating the kinship coefficients between pairs of

individuals in the different pedigrees. Type I error rates of

all test statistics deviated significantly from the nominal
The Americ
levels (inflated at the significance level a ¼ 0:05) for the

first and second study designs, and the statistics of the

individual c2 test, FPCA, and SFPCA also showed inflated

type I error rates at the significance level a ¼ 0:01 for the

first study design. The reason for this is as follows. The

estimated kinship coefficients depend on the selected

markers. In general, the estimated kinship coefficients

will not be equal to the theoretical kinship coefficients.

In our experience, the estimated kinship coefficients are

often smaller than the theoretical kinship coefficients.

Approximately, the estimated kinship coefficients are

equal to the theoretical kinship coefficients multiplied by

a constant. Let PE
corr and PT

corr be the correction factors that

are obtained by the estimated and theoretical kinship coef-

ficients, respectively. Thus, we have PE
corr ¼ aPT

corr , which

implies that T2
FðEÞ ¼ ð1=aÞT2

FðTÞ, where T2
FðEÞ and T2

FðTÞ are

the test statistics based on the estimated and theoretical

kinship coefficients, respectively. The empirical distribu-

tion of the test statistic based on the estimated kinship

coefficients in simulations will be shifted by a constant

from the empirical distribution of the test statistic based

on theoretical kinship coefficients in the simulations.

Therefore, the type I error rates of both statistics will be

the same. However, when the theoretical kinship coeffi-

cients are used to measure the genetic relationships among

individuals in the same pedigrees and the estimated
an Journal of Human Genetics 90, 1028–1045, June 8, 2012 1033
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Figure 1. Power Curves of the Family-Based
CMC and Single-Marker Statistics as a Function
of Sample Size
(A) The power curves of the family-based CMC
(variants with frequencies % 0.005 were
collapsed) statistic as a function of the total
number of individuals at the significance level
a ¼ 0:05 in the test under seven settings: unre-
lated individuals in cases-controls study, nuclear
family groups 1 and 2, sib-pair groups 1 and 2,
and three-generational family groups 1 and 2,
assuming the dominant model, 20% of the risk
variants, and a baseline penetrance of 0.01.
(B) The power curves of the corrected single-
marker statistic as a function of the total number
of individuals at the significance level a ¼ 0:05
in the test under seven settings: unrelated
individuals in cases-controls study, nuclear
family groups 1 and 2, sib-pair groups 1 and 2,
and three-generational family groups 1 and 2,
assuming the dominant model, 20% of the risk
variants, and a baseline penetrance of 0.01.
kinship coefficients are used to measure the genetic rela-

tionships among individuals in differing pedigrees,

because the genotypes of individuals in each simulation

will be changed, the correction coefficient that is depen-

dent on the simulations will change in complicated way,

which in turn will affect the empirical distribution of the

test statistics and type I error rates.

Power Evaluation

To evaluate the performance of the proposed statistics for

testing the association of variants, we used simulated

data to estimate their power to detect true associations.

We used the software ForSim20 to simulate pedigrees.

Each individual in the pedigree had 189 variant sites; the

MAF of all sites was less than 0.01, but more than 0.0001.

An individual’s disease status was determined on the

basis of the individual’s genotype and its penetrance at

each locus. Let Ai be a rare risk allele at the ith variant

site. Let Gkiðk ¼ 0;1;2Þ be the genotypes aiai, Aiai, and

AiAi, respectively, and let fki be the penetrance of geno-

types Gki at the ith locus. The relative risk (RR) at the ith

variant site is defined as R1i ¼ f1i=f0i and R2i ¼ f2i=f0i, where

f0i is the baseline penetrance of the wild-type genotype at

the ith variant site.We assumed that for the additive disease

model, R2i ¼ 2R1i � 1; for the dominant disease model,

R2i ¼ R1i; for the recessive disease model, R1i ¼ 1; and for

the multiplicative disease model, R2i ¼ R2
1i. The genotype

RR was assumed to be inversely proportional to the MAF,

where the population attributable risk of each group was

assumed to be 0.006.21We assumed that the baseline pene-

trance of the wild-type genotype was equal across all

variant sites and that the variants influenced disease

susceptibility independently (i.e., without epistasis). We

considered four disease models: additive, dominant, reces-

sive, and multiplicative. Due to space limitation, we only
1034 The American Journal of Human Genetics 90, 1028–1045, June
present the power of the tests under the dominant disease

models. However, the pattern of power of the tests under

other disease models will be mentioned. The disease status

of an individual in the pedigree was randomly assigned

according to the disease models. The process of sampling

required pedigrees from the population of pedigrees was

repeated until the desired pedigrees were obtained for

each disease model.

We considered three family structures: nuclear family

with two parents and two offspring, sibling pair (sib-

pair), and three-generational family (each family with

about 20 individuals). We further divided the nuclear fami-

lies into nuclear family 1, in which we considered one

affected parent and one affected offspring, and nuclear

family 2, in which we considered one affected parent and

two affected offspring. Sib-pairs were also divided into

two groups. Sib-pair 1 consisted of one affected sibling

and one unaffected sibling. In sib-pair 2, we considered

a total of 2/3 of the sib-pairs with two affected siblings

and 1/3 of the sib-pairs with one affected sibling and one

unaffected sibling. Again, three-generational families

were also divided into two subgroups. In group 1, we

assume that each family had an equal number of affected

and unaffected individuals. In group 2, 2/3 of the

individuals in each family were affected, and 1/3 of

the individuals in each family were unaffected. To study

the sensitivity of the developed methods to the number

of affected individuals, we considered three-generational

family group 3, wherein only 1/3 of individuals were

affected. We assumed that the total number of individuals

in each family structure was approximately equal. Power

calculations were performed by simulations. For each

case, 2,000 simulated replicates were performed.

Figures 1 and 2 show the power curves of the family-

based CMC (variants with frequencies % 0.005 were
8, 2012
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FPCA, DominantA B Figure 2. Power Curves of the Family-Based
FPCA and SFPCA Statistics as a Function of
Sample Size
(A) The power curves of the family-based FPCA
statistic as a function of the total number of indi-
viduals at the significance level a ¼ 0:05 in the
test under seven settings: unrelated individuals
in cases-controls study, nuclear family groups 1
and 2, sib-pair groups 1 and 2, and three-genera-
tional family groups 1 and 2, assuming the domi-
nant model, 20% of the risk variants and a base-
line penetrance of 0.01.
(B) The power curves of the family-based SFPCA
statistic as a function of the total number of indi-
viduals at the significance level a ¼ 0:05 in the
test under seven settings: unrelated individuals
in cases-controls study, nuclear family groups 1
and 2, sib-pair groups 1 and 2, and three-genera-
tional family groups 1 and 2, assuming the
dominant model, 20% of the risk variants, and
a baseline penetrance of 0.01.
collapsed), FPCA, SFPCA, and the corrected single-marker

c2 statistics as a function of the total number of individuals

in the test, at the significance level a ¼ 0:05 and under

seven settings: unrelated individuals in cases-controls

study, nuclear family groups 1 and 2, sib-pair groups 1 and

2, and three-generational family groups 1 and 2, with the

assumption of a homogeneous population, the dominant

model, 20% of risk variants, and a baseline penetrance of

0.01. Several remarkable features emerged from these

results. First, as expected, in general, family-based associa-

tion studies had much higher power than population-

based association studies. Particularly, the corrected

single-marker c2 test, wherein permutation was used to

adjust formultiple testing, is designed to adapt the standard

c2 test for accounting for relatedness among in-

dividuals.13,14 The corrected single-marker c2 test is a tradi-

tional linkage- and association-analysis method without

defined pedigrees. The corrected single-marker c2 test also

clearly demonstrated that family-based association tests

had a higher power than population-based association tests

(Figure 1B). Second, when the pedigrees have more com-

plex structures, the rare risk variants will be more enriched

in the pedigrees; therefore, such pedigrees will provide

more information of coinheritance of rare risk variants

with diseases in families, and hence, they will have more

power to detect associations. Third, we also observed that

the three-generational family group2, nuclear family group

2, and sib-pair group 2 had higher power than the corre-

sponding three-generational family group 1, nuclear family

group 1, and sib-pair group 1, where each family in group 2

had more affected individuals than in group 1. We also

observed the same patterns in Figures 3 and 4, which

show the power of four statistics as a function of the propor-

tion of risk variants, assuming 1,800 sampled individuals.

To compare the power of five family-based statistics,

SFPCA, FPCA, CMC, the generalized T2, and the single-
The Americ
marker c2, wherein we used permutation to adjust for

multiple testing of three family structures, we present

Figures 5 and 6, which show the power curves of five statis-

tics as a function of the total number of sampled individ-

uals in the pedigrees for three-generational family group

1, sib-pair group 1, nuclear family group 1 and three-gener-

ational family group 3 that has 1/3 affected individuals in

its pedigrees. The power of the five statistics for the three-

generational family group 2, sib-pair group 2, nuclear

family group 2, and unrelated individuals are shown in

Figures S1–S4 (available online), respectively. From these

results, we observed that the family-based SFPCA had the

highest power for any family structure and sample size.

We also observed that the corrected single-marker c2 test

had the lowest power in all settings. This demonstrates

that, similar to population-based association studies, the

classical variant-by-variant paradigm of linkage and associ-

ation analysis designed for common variants may also

have low power to test the association of rare variants in

family-based association studies.

To study the sensitivity of these methods to the number

of affected individuals, we performed simulations for

three-generational family group 3 (wherein only 1/3 of

individuals in the family were affected). The results are

shown in Figure 6B. Although the power of the test statis-

tics was reduced, the power pattern of all statistics did not

change. This is also true for other types of families (data

not shown).

Next, we studied the impact of the proportion of risk

variants on the power. Figures 7 and 8A show the power

curves of five statistics, SFPCA, FPCA, CMC, the general-

ized T2, and the corrected single-marker c2, as a function

of the proportion of risk-increasing variants for testing

the association of 189 rare variants with disease, under

the dominant disease model and at the significance level

a ¼ 0:05, for three-generational family group 1, sib-pair
an Journal of Human Genetics 90, 1028–1045, June 8, 2012 1035
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CMC, DominantA B Figure 3. Power of Family-Based CMC and
Single-Marker Statistics as a Function of the
Proportion of Risk Variants
(A) The power curves of the family-based CMC
(variants with frequencies % 0.005 were
collapsed) statistic as a function of the propor-
tion of risk variants at the significance level
a ¼ 0:05 in the test under seven settings: unre-
lated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups
1 and 2, and three-generational family groups
1 and 2, assuming the dominantmodel, a total
of 1,800 sampled individuals, and a baseline
penetrance of 0.01.
(B) The power curves of the corrected single-
marker statistic as a function of the proportion
of rare variants at the significance level
a ¼ 0:05 in the test under seven settings: unre-
lated individuals in cases-controls study,
nuclear family groups 1 and 2, sib-pair groups
1 and 2, and three-generational family groups
1 and 2, assuming the dominantmodel, a total
of 1,800 sampled individuals, and a baseline
penetrance of 0.01.
group 1, and nuclear family group 1 with 1,800 individuals

assigned as affected and 1,800 individuals assigned as unaf-

fected. The power of five statistics for the three-genera-

tional family group 2, sib-pair group 2, nuclear family

group 2, and unrelated individuals are shown in Figures

S5–S8, respectively. Similar to data shown in Figures 5, 6,

and S1–S4, we observed that the family-based SFPCA had

the highest power in every situation considered. We also

observed that power differences between the SFPCA

statistic and the corrected single-marker c2 test were

much larger than those between the CMC method and

the corrected single-marker c2 test. The difference in power

between the newly developed statistics such as FPCA and

CMC, originally designed for testing association of rare
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variants, and the corrected single-marker c2 test, originally

proposed for testing association of common variants in

population-based association studies, tends to become

larger as the proportion of risk variants increases in

family-based association studies, in general.

To study how the distribution of variants affects the

power, we plotted Figure 8B, which shows the power as

a function of the ratio of the number of rare risk variants

over the number of common risk variants for three-gener-

ational family group 2, wherein 1,500 individuals were

sampled. Figure 8B shows that as the ratio of the number

of rare risk variants over the number of common risk vari-

ants increases, the power of tests will increase. This shows

that the contribution of rare variants is larger than that of
0.25 0.3
Variants

nant

ted

air 1
air 2

r Family 1

r Family 2
 Generations 1

 Generations 2

Figure 4. Power Curves of Family-Based FPCA
and SFPCA Statistics as a Function of the Propor-
tion of Risk Variants
(A) The power curves of the family-based FPCA
statistic as a function of the proportion of risk
variants at the significance level a ¼ 0:05 in the
test under seven settings: unrelated individuals
in cases-controls study, nuclear family groups 1
and 2, sib-pair groups 1 and 2, and three-genera-
tional family groups 1 and 2, assuming the domi-
nant model, a total of 1,800 sampled individuals,
and a baseline penetrance of 0.01.
(B) The power curves of the family-based SFPCA
statistic as a function of the proportion of rare
variants at the significance level a ¼ 0:05 in the
test under seven settings: unrelated individuals
in cases-controls study, nuclear family groups 1
and 2, sib-pair groups 1 and 2, and three-genera-
tional family groups 1 and 2, assuming the domi-
nant model, a total of 1,800 sampled individuals,
and a baseline penetrance of 0.01.
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Three Generations 1, DominantA B Figure 5. Power of Tests as a Function of
Sample Sizes for Group 1 Three-Generational
Family and Sib-Pair
(A) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for three-generational family
group 1 as a function of the total number of indi-
viduals at the significance level a ¼ 0:05 under
the dominant model, assuming 20% of risk vari-
ants and a baseline penetrance of 0.01.
(B) The power curve of five family-based statistics:
S FPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for sib-pair group 1 as a function
of the total number of individuals at the signifi-
cance level a ¼ 0:05 under the dominant model,
assuming 20% of risk variants and a baseline
penetrance of 0.01.
common variants. This power pattern will hold for other

scenarios.

To examine the impact of the direction of the association

of rare alleles with disease risk on the power of the tests, we

assumed that the genomic region being tested included

both risk and protective variants. We randomly selected

10% of the variants as risk variants and 10% of the variants

as protective variants. Figure 9 shows the power curves of

the five statistics, S FPCA, FPCA, CMC, the generalized T2,

and the corrected single-marker c2, for three-generational

family group 2, under the dominant model and at the

significance level a ¼ 0:05, as a function of the total

number of sampled individuals in the pedigrees. The power

patterns of the five statistics for testing association of rare

variants for other family structures were similar (data not
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shown). These results clearly demonstrated

that thepower of the SFPCAwas thehighest,

followed by the classical nonsmooth FPCA.

We also observed that as sample size

increases, the SFPCA and FPCA statistics
were less sensitive to the direction of the association of

rare alleles than were other statistics.

Application to a Real Data Example

For further evaluation of their performance, five family-

based association test statistics were applied to the FHS

for cardiovascular disease (CVD) that includes coronary

heart disease, stroke, heart failure, and atrial fibrillation.

FHS is a prospective epidemiological cohort study estab-

lished in 1948 and designed to evaluate risk factors for

CVD. A total of 5,226 individuals were genotyped with

the Affymetrix GeneChip Human Mapping 500K Array-

Set.We included 1,603 individuals (267 individuals with

CVD and 1,336 controls) from 462 pedigrees in our

analysis.22 The data were downloaded from dbGAP. We
Figure 6. Power of Tests as a Function of
Sample Sizes for Group 1 Nuclear Family and
Group 2 Three-Generational Family
(A) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for nuclear family group 1 as
a function of the total number of individuals at
the significance level a ¼ 0:05 under the domi-
nant model, assuming 20% of risk variants and
a baseline penetrance of 0.01.
(B) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for the three-generational
family group 3 as a function of the number of
sampled individuals at the significance level
a ¼ 0:05 under the dominant model, assuming
20% of risk variants and a baseline penetrance
of 0.01.
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Figure 7. Power of Tests as a Function of the
Proportion of Risk Variants for Group 1 Three-
Generational Family and Sib-Pair
(A) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for the three-generational
family group 1 as a function of the proportion
of risk variants at the significance level a ¼ 0:05
under the dominant model, assuming a total of
1,800 sampled individuals and a baseline pene-
trance of 0.01.
(B) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for sib-pair group 1 as a function
of the proportion of risk variants at the signifi-
cance level a ¼ 0:05 under the dominant model,
assuming a total of 1,800 sampled individuals
and a baseline penetrance of 0.01.
analyzed the association of genes with at least three SNPs

with a MAF of less than 0.05. A total of 2,913 genes with

29,756 SNPs were analyzed. The p value for declaring asso-

ciation after Bonferroni correction was 1:72310�5 for

multiple tests. The results of five family-based association

tests, wherein the p value for the corrected single-marker

c2 statistic was obtained by permutation, are summarized

in Table 4. We found that four genes reached genome-

wide significance (1:72310�5) with the SFPCA test. Table 4

shows that the SFPCA statistic had the lowest p values

among the five tests, followed by the FPCA test statistic.

It is also noted that each gene in Table 4 had at least one

SNP with a small p value, but the SFPCA and FPCA tests

that combine the single-marker test with the group test
.2.5 1 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of number of rare variants over
 the number of common variants

P
ow

er

Three Generation  Family Group 2, Dominant

SFPCA
FPCA
CMC

T2

Individual χ2

0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of Risk Variants

P
ow

er

Nuclear  Family Group 1, Dominant
A B

1038 The American Journal of Human Genetics 90, 1028–1045, June 8, 2012
had a smaller p value than the single-

marker test with correction for multiple

tests. To further reveal the relationships

between the structure of rare variants
within the gene and the SFPCA test, we present

Figure S9, which shows the LD pattern of nine rare variants

within the gene CRY1 and their p values from individual

tests for the association of a single SNP with disease by

the family-based corrected single-marker c2 test. Seven of

these nine SNPs showed mild significance and formed

two haplotype blocks with strong LD. The strong LD

among the seven SNPs may imply that these variants are

of recent origin. CRY1 is a circadian gene and is involved

in breast cancer23 and chronic lymphocytic leukemia.24

NOX3 contributes to coronary endothelial dysfunction in

the failing heart25 and is involved in inflammation.26

BOMB is associated with signals for lipids and apolipopro-

teins,27 and MRPS18C helps with protein synthesis within
Figure 8. Power of Tests for the Proportion of
Risk Variants for Group 1 Nuclear Family and
Group 2 Three-Generational Family
(A) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for nuclear family group 1 as
a function of the proportion of risk variants at
the significance level a ¼ 0:05 under the domi-
nant model, assuming a total of 1,800 sampled
individuals and a baseline penetrance of 0.01.
(B) The power curve of five family-based statistics:
SFPCA, FPCA, CMC, generalized T2, and indi-
vidual c2 statistic for three-generational family
group 2 as a function of the ratio of the number
of rare risk variants over the number of common
risk variants at the significance level under the
dominant model, assuming a total of 1,500
sampled individuals and a baseline penetrance
of 0.01.
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Figure 9. Power Comparison of Tests for Group 2 Three-
Generational Family under Opposite Directions of Association
The power comparison of five family-based statistics: SFPCA,
FPCA, CMC, generalized T2, and individual c2 statistic for three-
generational family group 2 under opposite directions of associa-
tion as a function of the total number of individuals at the signif-
icance level a ¼ 0:05 under the dominantmodel, assuming 20%of
the risk variants in one direction of association, 10% of risk vari-
ants and 10% of protective variants in two opposite directions of
association, and a baseline penetrance of 0.01.
the mitochondrion and is involved in AIDS progression.28

FAM175A is involved in DNA repair29 and is a new candi-

date breast cancer-susceptibility gene.30

For illustration of the application of the family-based

association tests for common variants, the proposed statis-

tics were applied to childhood-onset asthma studies.31 A

total of 206 nuclear families (MRC-A), which included

285 sib-pairs, seven half sib-pairs, and three singletons

(counting all possible siblings), 420 individuals with

childhood asthma, and 428 unaffected individuals, were

sampled through a proband with severe childhood-onset

asthma (data were kindly provided by Dr. Liming Liang,
Table 4. p Values of Five Family-Based Statistics for Testing Associati

Gene
Number
of SNPs

p Value

SFPCA FPCA CMC

CRY1 10 1.20 3 10�05 1.29 3 10�04 3.77 3

NOX3 5 1.25 3 10�05 1.60 3 10�04 2.38 3

BOMB 5 1.60 3 10�05 2.07 3 10�03 2.26 3

MRPS18C 12 1.70 3 10�05 2.08 3 10�03 3.52 3

FAM175A 9 1.93 3 10�05 1.93 3 10�03 2.07 3

c2, individual c2 test; CMC, combined multivariate and collapsing method; T2

smoothed FPCA.

The Americ
Department of Epidemiology and Biostatistics, Harvard

University). The parents and children in the MRC-A panel

were typed with the Illumina Sentrix Human-1 Genotyp-

ing 10K BeadChip. A total of ten SNPs with MAF R 0.18

in Table 1 of the Moffatt et al. paper31 were included in

this analysis. Table 5 summarizes p values of five family-

based statistics for testing the association of ORMDL3,

which harbors common variants with childhood-onset

asthma. Given that all SNPs in the analysis were common

variants, no SNPs in ORMDL3 should be grouped in the

CMC test. Therefore, p values for both the CMC method

and the T2 test were the same. Similar to in Table 4, we

also observed that the SFPCA statistic had the lowest

p values among the five tests, followed by the FPCA test

statistic. Four of ten SNPs showed significant association,

with all p values % 0.015, as assessed by a family-based

corrected single-marker c2 test (data not shown). The

association of ORMDL3 with childhood-onset asthma

was discovered in the MRC-A study and also confirmed

in an independent replication study.31 The association of

ORMDL3 was also supported by a gene expression study.

It was reported that the SNPs in ORMDL3 showed strong

association (p < 10�22) in cis with expression levels of

ORMDL3.31
Discussion

Association studies can be carried out either by case-

control studies of unrelated individuals or by family-based

designs. Both designs have their merits and limitations.

However, since it was demonstrated in 1996 that associa-

tion studies are often more powerful than linkage anal-

yses,32 population-based association studies have become

the current paradigm for the genetic studies of complex

diseases. In the past several years, several authors12,13,33

have challenged the current genetic-study practice that

takes population-based association analysis as the only

paradigm for genetic studies of complex diseases. There

have been an increasing number of debates regarding

which study design, population-based or family-based, is

the choice design for identifying association of rare vari-

ants. One of the purposes of this report is to address several
on with CVD

T2
Individual c2

(Permutation)
Individual c2

(Minimum)

10�04 5.97 3 10�04 1.00 3 10�03 9.98 3 10�05

10�01 2.87 3 10�04 3.00 3 10�03 7.50 3 10�04

10�03 2.26 3 10�03 1.00 3 10�03 1.02 3 10�03

10�01 3.52 3 10�01 5.00 3 10�03 1.81 3 10�03

10�01 2.07 3 10�01 4.00 3 10�03 1.80 3 10�03

, generalized T2 test; FPCA, functional principal-component analysis; SFPCA,
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Table 5. p Values of Five Family-Based Statistics for Testing the Association of ORMDL3 with Childhood-Onset Asthma

SFPCA FPCA CMC T2 Individual c2 (Permutation) Individual c2 (Minimum)

7.87 3 10�07 4.39 3 10�06 1.46 3 10�03 1.46 3 10�03 2.35 3 10�02 1.37 3 10�03

c2, individual c2 test; CMC, combined multivariate and collapsing method; T2, generalized T2 test; FPCA, functional principal-component analysis; SFPCA,
smoothed FPCA.
issues in devising optimal strategies for association analysis

of rare variants.

The first issue is to develop a simple and general analyt-

ical framework that can unify both population-based and

family-based case-control association analysis. The tradi-

tional linkage-analysis methods, whether parametric or

nonparametric, are complex, difficult to collectively

analyze across multiple variants, and require intensive

computations. The current popular statistical methods

for population-based association studies are simple, but

often assume that the selected samples are independent.

Thus, these methods are unable to analyze correlated

family data with rare variants. Recently, case-control

association tests have been extended to include related

individuals from structured populations.16 Case-control

association testing with population and pedigree structure,

referred to herein as family-based case-control association

testing, can be applied to (1) an isolated population in

which individuals may be related, (2) an admixed popula-

tion, (3) pedigrees sampled with a single population, and

(4) pedigrees sampled from structured populations.

However, the recently developed family-based case-control

association analysis can test the association of a single

variant or of multiple unlinked variants. It is mainly

designed for testing association of common variants. To

overcome these limitations, we extend family-based case-

control association tests from a single variant to multiple

linked or unlinked variants. An essential element in the

family-based case-control association test statistics is calcu-

lation of the covariance matrix of genomic variants of the

related individuals. The current methods can only calcu-

late the covariance matrix of a single variant or multiple

unlinked variants of the related individuals. We derive

two new formulas to decompose the covariance matrix.

One decomposes the covariance matrix of multiple linked

variants of related individuals into the Kronecker product

of their corresponding covariancematrix of unrelated indi-

viduals and the kinship matrix of related individuals.

Another decomposes the covariance matrix of functional

principal-component scores that are derived from geno-

type profiles of related individuals into the Kronecker

product of their corresponding covariance matrix of the

functional principal-component scores generated from

unrelated individuals and the kinship matrix of the related

individuals. This lays down the foundation for developing

family-based statistics. Then, we extend the generalized T2

test and FPCA from independent samples to dependent

samples. In the presence of only unrelated individuals,

the kinship matrix becomes an identity matrix. Therefore,
1040 The American Journal of Human Genetics 90, 1028–1045, June
all statistics for population-based case-control association

studies are our special cases. We have successfully devel-

oped a general framework that can unify both popula-

tion-based and family-based case-control association tests.

The proposed methods can take the combination of data

from pedigrees with different relationship structure and

case-control samples from populations.

The second issue is to extend statistics for testing the

association of rare variants from the population-based

approach to the family-based approach. In the past several

years, a number of new population-based statistics for

testing the association of rare variants have been devel-

oped.We extend the generalizedT2 statistic, CMCmethod,

FPCA, and SFPCA statistics that are developed for popula-

tion samples to the pedigree data or mixed pedigree and

unrelated individual data sampled from the populations.

We show that statistics that compare differences in fre-

quencies of alleles, collapsed variables, or functional prin-

cipal-components scores between affected and unaffected

individuals in pedigrees can be decomposed into the

product of their corresponding statistics for population-

based association tests and correction factor that accounts

for pedigree and population structure. Thus, any popula-

tion-based statistics for association studies can be extended

to family-based association tests by multiplying their

statistics by a common correction factor that depends on

kinship coefficients and cryptic relatedness. This general

approach provides a bridge between population-based

association tests and family-based association tests.

The third issue is the validity of statistics for testing the

association of variants in the presence of pedigree struc-

ture. Using large simulations, we show that the type I error

rates of the FPCA and SFPCA statistics that use genotype

data to estimate the relatedness of individuals were not

significantly different from there nominal levels in the

presence of pedigree structures and population structures,

including admixed populations.

The fourth issue is the power of the tests and choice of

the designs. The challenge that arises from testing the asso-

ciation of rare variants is the power of the tests. Due to the

low frequency of rare variants, many statistics suffer from

low power of detection of the association of rare variants.

One strategy to improve the power of the tests is to enrich

rare variants in the samples. As we expected, the rare risk

variants are enriched in families. By using large simula-

tions, we show that, given an equal number of sampled

individuals, the family-based association studies have

a much higher power than the population-based associa-

tion studies for all statistics and in all settings. We also
8, 2012



observe that the more complex the pedigree structure in

the samples, the higher the power for testing the associa-

tion of rare variants. The families with more affected indi-

viduals can provide more enrichment of rare risk variants

and gain more power to detect association. Another

remarkable feature of family-based association studies is

that unlike in population-based association studies where

the group tests will lose power if the opposite association

directions exist among the collapsed rare variants, the

simultaneous presence of risk and protective variants has

less impact on the power of the family-based association

tests.

The difficulties in identifying association of rare variants

and the high cost of sequencing samples illustrate the need

for more powerful statistical methods for detection of the

association of variants. By using simulations, we compare

the power of the corrected single-marker c2 test, CMC,

the generalized T2 statistic, the FPCA, and the SFPCA

statistics. We find that the SFPCA statistic had the highest

power among five compared statistics in any setting, and

the difference in power between the SFPCA statistic and

other test statistics increased as the proportion of risk vari-

ants or sample sizes increased. The results in this report are

quite preliminary. Due to space limitations, we have not

presented the type I error rates and power of the developed

statistics for testing the association of common variants or

both rare and common variants. In our simulations, the

empirical type I error rates of both smoothed and

unsmoothed FPCA are not significantly deviated from

nominal levels. Their power is still much higher than

that of other tests (data not shown).

The fifth issue is how to reduce the sequencing errors

and effectively deal withmissing value problems that often

arise from NGS. Given that the transmission pattern in

the pedigrees easily allows the correction of sequencing

errors, and the genotype data in other members of the

pedigrees provide useful information to infer the missing

genotypes of other individuals in the pedigrees, family-

based association studies provide a powerful tool to over-

come high sequencing-error rates and the problems with

large proportions of missing values inherent in NGS

technologies.

To demonstrate the feasibility of the family-based statis-

tics for testing the association of rare variants with the

disease, we apply the proposed methods to FHS and

childhood-onset asthma studies. Our results showed that

although variant-by-variant analysis could not identify

the rare variants that were significantly associated with

CVD, the family-based SFPCA identified five significantly

associated genes after Bonferroni correction for multiple

tests by collectively testing the association of multiple

rare variants with mild association within the gene.

However, the results presented need to be interpreted

with caution. The number of SNPs within a gene is small

due to poor coverage by microarray. To our knowledge,

results of the FHS 500 K project have never been published.

It is difficult to validate our findings, although five identi-
The Americ
fied genes are biologically related with CVD according

to the reports in the literature.27 In childhood-onset

asthma studies, we confirmed the significant association

of ORMDL3, which harbors common variants related to

childhood-onset asthma. In the near future, exome- or

whole-genome-sequencing data with pedigrees are ex-

pected to become available, and evaluation of our methods

with sufficient sources will then be possible.

NGS has the potential to discover millions of rare vari-

ants and make it feasible to systematically search for the

entire allelic spectrum of genetic variants associated with

diseases. A great challenge raised by NGS is the develop-

ment of analytical methods and study designs with suffi-

cient power to identify association of variants with disease.

The methods presented here are simple extensions of pop-

ulation-based-association-test statistics to family-based

studies, on the basis of comparing differences in frequency

of alleles or collapsed alleles, or functional principal-

component scores. Other approaches to the extension of

population-based association tests to family-based tests,

such as the quasi-likelihood approach, may be more

powerful. However, the presented general framework that

can unify population-based and family-based association

analysis provides a platform to compare different study

designs. Computations of developed family-based associa-

tion tests are almost as simple as the population-based

association tests.

Recently, four Texas-based genome researchers8 pro-

posed a unified genetic model for human diseases. They

assumed that the common variants segregating within

a population arise from remote ancestors and the rare

variants segregating in the pedigree arise from recent ances-

tors. They hypothesized that genetic factors that cause

diseases include common variants, rare variants,mutations

inherent in the parents, and de novo variants. They also

broke down the artificial boundaries between categories

of human diseases and combined complex diseases,

Mendelian diseases, chromosomal syndromes, and geno-

mic disorders into one continuum disease model. The

unified genetic model requires integration of various

disease-risk variants in the population, pedigrees, and indi-

viduals. This raises a great analytical challenge for the use of

the unified genetic model to unravel the genetic architec-

ture of complex diseases. Our results in this report are

preliminary. Our intention is to stimulate further discus-

sion regarding the study designs and analytical methods

of association studies with next-generation-sequencing

data as well as the search for new analytical platforms

with which to use the unified genetic model for identifica-

tion of the genetic variants that underlie diseases.

Appendix A

Let

xti ¼
�
1 At

0 at ; t ¼ 1;2;.;m; i ¼ 1;2;.;n:
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We define yti similarly. Then, we have

zti ¼ xti þ yti ; t ¼ 1;2;.;m; i ¼ 1;2;.;n:

Define

stt ¼ 2PðAtÞð1� PðAtÞÞ; t ¼ 1;2:;.;m:

Let hi be the inbreeding coefficient of individual i and fij

be the kinship coefficient between individuals i and j:

Computing expectations by conditioning, we have

E
�
xti x

t
j

� ¼ E
�
xti E

�
xtj j xti

��
¼ 2fijE

h�
xti
�2i

:
(Equation A1)

Similarly, we have

E
h
xti y

t
j

i
¼ 2fijE

�
xti y

t
i

�
;

E
h
yti x

t
j

i
¼ 2fijE

�
yti x

t
i

�
;

E
h
yti y

t
j

i
¼ 2fijE

h�
yti
�2i

E
h
xtj þ ytj

i
¼ 2fijE

�
xti þ yti

�
:

(Equation A2)

By definition of the covariance between variables

zti and ztj , we obtain

cov
�
zti ; z

t
j

�
¼ E

h
xti x

t
j þ xti y

t
j þ yti x

t
j þ yti y

t
j

i
� E

h�
xti þ yti

��
xtj þ ytj

�i
:

(Equation A3)

Substituting Equations A1 and A2 into Equation A3, we

obtain

cov
�
zti ; z

t
j

�
¼ 2fij

n
E
h�
xti þ yti

�2i� �
E
�
xti þ yti

��2o
¼ 2fijstt :

(Equation A4)

Similarly, we have

cov
�
zti ; z

t
i

� ¼ ð1þ hiiÞstt : (Equation A5)

Combining Equations A4 and A5, we obtain

cov
�
Zt ;Zt

� ¼ sttF; (Equation A6)

where

F ¼

2
666664
ð1þ h1Þ 2f12 / 2f1n

2f21 1þ h2 / 2f2n

/ / / /

2fn1 2fn2 . 1þ hn

3
777775 (Equation A7)

Through a similar argument as that for Equation A4, we

have

cov
�
ztki ; z

tl
j

�
¼ 2fijstktl : (Equation A8)
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Combining Equations A6 and A8 leads to

Lz ¼ covðZ;ZÞ

¼

2
66664
covðZ1;Z1Þ covðZ1;Z2Þ / covðZ1;ZmÞ
covðZ2;Z1Þ covðZ2;Z2Þ / covðZ2;ZmÞ

/ / / /

covðZm;Z1Þ covðZm;Z1Þ / covðZm;ZmÞ

3
77775

¼ Sz5F;

(Equation A9)

where

X
z

¼

2
664
s11 s12 / s1m

s21 s22 / s2m

/ / / /
sm1 sm2 / smm

3
775:
Appendix B

First, we calculate covðxiðsÞ; xkðtÞÞ. Computing expectation

by conditioning, we obtain

covðxiðsÞ; xkðtÞÞ ¼ E½E½xiðsÞxkðtÞ j xiðtÞ��
�E½xiðsÞ�E½E½xkðtÞ j xiðtÞ��

¼ 2fikE½xiðsÞxiðtÞ� � 2fikE½xiðsÞ�E½xiðtÞ�
¼ 2fikRðs; tÞ;

(Equation B1)

where Rðs; tÞ is a covariance function of the genotype indi-

cator variables between genomic positions s and t.

Similarly, we have

cov
�
xiðsÞ; €xkðtÞ

� ¼ 2fikcov
�
xiðsÞ; €xiðtÞ

�
¼ 2fik

v2Rðs; tÞ
vt2

;
(Equation B2)

cov
�
€xiðsÞ; xkðtÞ

�
¼ 2fik

v2Rðs; tÞ
vs2

; (Equation B3)

and

cov
�
€xiðsÞ; €xkðtÞ

�
¼ 2fik

v4Rðs; tÞ
vs2vt2

: (Equation B4)

From stochastic calculus,34 we can obtain

cov

0
@Z

T

x1ðtÞbjðtÞdt;
Z
T

x1ðtÞbkðtÞdt
1
A

¼
Z
T

Z
T

bjðsÞRðs; tÞbkðtÞdsdt;
(Equation B5A)

cov

0
@Z

T

x1ðtÞbjðtÞdt;
Z
T

€x1ðtÞbkðtÞdt
1
A

¼
Z
T

Z
T

bjðtÞ
v2Rðs; tÞ

vt2
€bkðtÞdsdt;

(Equation B5B)
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0Z Z 1

cov@

T

€x1ðtÞ€bjðtÞdt;
T

x1ðtÞbkðtÞdtA
¼

Z
T

Z
T

€bjðsÞ
v2Rðs; tÞ

vs2
bkðtÞdsdt;

(Equation B5C)

cov

0
@Z

T

€x1ðtÞ€bjðtÞdt;
Z
T

€x1ðtÞ€bkðtÞdt
1
A

¼
Z
T

Z
T

€bjðsÞ
v4Rðs; tÞ
vs2vt2

€bkðtÞdsdt:
(Equation B5D)

Combining Equations B5A–B5D, we obtain the covari-

ance between functional principal-component scores for

the same individual without inbreeding:

sx

jk ¼ cov
�
x1j; x1k

�
¼

Z
T

Z
T

bjðsÞRðs; tÞbkðtÞdsdt

þ l

Z
T

Z
T

bjðsÞ
v2Rðs; tÞ

vt2
€b

k

ðtÞdsdt

þ l

Z
T

Z
T

€bjðsÞ
v2Rðs; tÞ

vs2
bkðtÞdsdt

þ l2
Z
T

Z
T

€bjðsÞ
v4Rðs; tÞ
vs2vt2

€bj ðtÞdsdt:

(Equation B6)

Using Equations B1–B4 and B6, we can obtain the covari-

ance of the functional principal-component scores

between a pair of individuals:

cov
�
xij; xlk

� ¼ cov

0
@Z

T

xiðtÞbjðtÞdt þ l

Z
T

€xi ðtÞ€bj ðtÞdt;
Z
T

xlðtÞbkðtÞdt þ l

Z
T

€xl ðtÞ€bk dt

1
A

¼ 2fil

8<
:

Z
T

Z
T

bjðsÞRðs; tÞbkðtÞdsdt

þ l

Z
T

Z
T

bjðsÞ
v2Rðs; tÞ

vt2
€bkðtÞdsdt

þ l

Z
T

Z
T

€bjðsÞ
v2Rðs; tÞ

vs2
bkðtÞdsdt

þ l2
Z
T

Z
T

€bjðsÞ
v4Rðs; tÞ
vs2vt2

€bj ðtÞdsd
9=
;

¼ 2fils
x
jk: (Equation B7)

Similarly, considering inbreeding, we can prove that

var
�
xij
� ¼ ð1þ hiÞsx

jj: (Equation B8)
The Americ
Define the covariance matrix of the vector of functional

principal-component score x as

Lx ¼

2
666664

varðx:1Þ covðx:1; x:2Þ / covðx:1; x:kÞ
covðx:2; x:1Þ varðx:2Þ / covðx:2; x:kÞ

/ / / /

covðx:k; x:1Þ covðx:k; x:1Þ / varðx:kÞ

3
777775:

However, we have

var
�
x:j
� ¼ sx

jjF (Equation B9)

and

cov
�
x:j;x:k

� ¼ sx
jkF: (Equation B10)

Let

SSFPCA ¼

2
6666664

sx
11 sx

12 / sx
1k

sx
21 sx

22 / sx

2k

/ / / /

sx
k1 sx

k2 / sx
kk

3
7777775:
Then, by combining Equations B9 and B10, we obtain

LSFPCA ¼ SSFPCA5F: (Equation B11)

Let

xAj ¼
1

nc

X
i˛cases

xij and xGj
¼ 1

n� nc

X
i˛controls

xij;

xA ¼ ½xA1;.; xAk�T and xG ¼ ½xG1;.; xGk�T :
Note that

�
Dr � nc

n
Dp

�T

x:j ¼
X
i˛cases

xij �
nc

n

Xn

i¼1

xij

¼ ncxAj �
nc

n

�
ncxAj þ ðn� ncÞxGj

�

¼ ncðn� ncÞ
n

�
xAj � xGj

�
:

Therefore, we have

HSFPCAFx ¼
h
IðkÞ5

�
Dr � nc

n
Dp

�Ti
x

¼

2
666664

�
Dr � nc

n
Dp

�T

x:1

«

�
Dr � nc

n
Dp

�T

x:k

3
777775

¼ ncðn� ncÞ
n

ðxA � xGÞ:

(Equation B12)
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Combining Equations B12, 22, and 23, we obtain

TSFPCAF ¼
	
ncðn� ncÞ

n


2 ðxA � xGÞT
X�1

SFPCA

ðxA � xGÞ
�
Dr � nc

n
DP

�T

F
�
Dr � nc

n
Dp

�

¼

ncðn� ncÞ
n

ðxA � xGÞT
X�1

SFPCA

ðxA � xGÞ

n

ncðn� ncÞ
�
Dr � nc

n
Dp

�T�
Dr � nc

n
Dp

�

¼ TSFPCA

Pcorr

: (Equation B13)
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Supplemental Data include nine figures and can be found with

this article online at http://www.cell.com/AJHG/.
Acknowledgments

The project was supported by grants 1R01AR057120-01,

1R01HL106034-01, and 1U01HG005728-01 from the National

Institutes of Health. We thank the anonymous reviewers for their

helpful comments.

The Framingham Heart Study is conducted and supported by

the National Heart, Lung, and Blood Institute (NHLBI) in collabo-

ration with Boston University (contract no. N01-HC-25195). This

manuscript was not prepared in collaboration with investigators

of the Framingham Heart Study and does not necessarily reflect

the opinions or views of the Framingham Heart Study, Boston

University, or NHLBI. Funding for SNP Health Association

Resource (SHARe) genotyping was provided by NHLBI contract

N02-HL-64278.

Received: October 22, 2011

Revised: April 19, 2012

Accepted: April 28, 2012

Published online: June 7, 2012
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The URLs for data presented herein are as follows:

Bioconductor: Open Source Software for Bioinformatics, http://

www.bioconductor.org/

dbGAP. http://www.ncbi.nlm.nih.gov/gap

FPCA for Association Studies, https://sph.uth.tmc.edu/hgc/

faculty/xiong/software-A.html

NCBI Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/

geo/
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