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Now that the human genome has been sequenced, the challenge
of assigning function to human genes has become acute. Existing
approaches using microarrays or proteomics frequently generate
very large volumes of data not directly related to biological
function, making interpretation difficult. Here, we describe a
technique for integrative systems biology in which: (i) primary cells
are cultured under biologically meaningful conditions; (ii) a limited
number of biologically meaningful readouts are measured; and
(iii) the results obtained under several different conditions are
combined for analysis. Studies of human endothelial cells over-
expressing different signaling molecules under multiple inflamma-
tory conditions show that this system can capture a remarkable
range of functions by a relatively small number of simple mea-
surements. In particular, measurement of seven different protein
levels by ELISA under four different conditions is capable of
reconstructing pathway associations of 25 different proteins rep-
resenting four known signaling pathways, implicating additional
participants in the NF-�B or RAS�mitogen-activated protein kinase
pathways and defining additional interactions between these
pathways.

The completion of the human genome has made the full com-
plement of human genes available, offering unparalleled op-

portunities for biology and medicine (1). Realizing this potential,
however, will require practical and rapid methods for discovering
the functions of novel genes in complex biological systems (2).
Existing attempts to meet this challenge have generally used
whole-cell measurements of gene expression levels (3), protein–
protein interactions (4), or cellular metabolism (5) to model system
responses. In yeast, genes have been successfully assigned to
particular functional or signaling pathways on the basis of their
coordinate regulation in genomewide expression analyses using
DNA microarrays (3). But despite extensive efforts to develop
improved statistical techniques for predicting functional networks
from large data sets (6) the transition from whole-cell molecular
measurements to useful models of cellular responses in higher
eukaryotes remains daunting.

In seeking to address this problem, we have developed an
alternative technique with three main features. First, to reduce
artifacts induced by the use of cell lines, we have concentrated
on measuring the responses of primary human cells cultured in
biologically relevant contexts. Second, rather than measuring the
expression levels of every gene or the physical interactions of
every protein, we have focused on a small set of biologically
relevant parameters. And third, instead of performing these
measurements under only one set of culture conditions, we have
studied the same cell type in multiple different contexts (culture
conditions differing in cell activation stimuli), so as to allow
functional characterization of a wide range of protein activities
from a manageably small number of measurements.

To implement this approach, which we have termed biologi-
cally multiplexed activity profiling (BioMAP), it is important to
assemble a set of measurements and cell systems (cells in
different defined contexts) broad enough to encompass most or
all of the signaling pathways relevant to a particular biological

process. The responses of these systems to genetic or other
experimental perturbation is then registered by changes in the
selected parameters. Here, we show by using vascular endothe-
lium in four contexts defined by stimulation with different
proinflammatory cytokines that BioMAP analysis can predict
functional relationships of proteins within pathways and reveal
interactions between different pathways that could not have
been deduced from analysis of cells in any single context.
BioMAP analyses will be a useful tool for modeling the signaling
networks operating in human cells.

Methods
Cytokines, Antibodies, and Cell Culture. Recombinant human IFN-�,
tumor necrosis factor � (TNF-�), and IL-1� were from R & D
Systems. Murine IgG was from Sigma, mouse anti-human inter-
cellular adhesion molecule 1 (ICAM-1) (clone B4H10) was from
Beckman Coulter, and mouse anti-human E-selectin (clone ENA1)
was from HyCult Biotechnology (Uden, The Netherlands). Un-
conjugated mouse antibodies against human vascular cell adhesion
molecule 1 (VCAM-1) (clone 51–10C9), CD31 (clone WM-59),
HLA-DR (clone G46–6), monokine induced by IFN-� (MIG)
(clone B8–77), and monocyte chemoattractant protein 1 (MCP-1)
(clone 5D3-F7) were from BD Biosciences (San Diego). Mouse
anti-human IL-8 (clone 6217.111) was from R & D Systems.
PD098059 was from Calbiochem. EGM-2 medium and required
supplements were from Clonetics (San Diego). Human umbilical
vein endothelial cells were from Clonetics and cultured in microtiter
plates in EGM-2 medium containing manufacturer’s supplements
plus 2% heat-inactivated FBS. Confluent cell were stimulated with
cytokines (1 ng�ml IL-1�, 5 ng�ml TNF-�, or 100 ng�ml IFN-�) for
24 h. PD098059 (3.7 �M final concentration) was added 1 h before
stimulation and was present during the whole 24-h stimulation
period.

Cell-Based ELISAs. Cell-based ELISAs were carried out as de-
scribed (7). Briefly, microtiter plates containing treated and
stimulated human umbilical vein endothelial cells were blocked,
and then incubated with primary antibodies or isotype control
antibodies (0.01–0.5 �g�ml) for 1 h. After washing, plates were
then incubated with a peroxidase-conjugated anti-mouse IgG
secondary antibody (Promega) for 1 h. Plates were washed and
developed with TMB substrate (Clinical Science Products,
Mansfield, MA), and the OD was read at 450 nm (subtracting the
background absorbance at 650 nm) on a SpectraMAX 190 plate
reader (Molecular Devices).

Retroviral Gene Transduction. Test genes were cloned into a vector
derived from the Moloney murine leukemia virus (MoMLV)-
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based vector pFB (Stratagene) downstream of the MoMLV
LTR. A truncated form of the human nerve growth factor
receptor preceded by an internal ribosomal entry site (8) was
used as a marker gene. Retroviral vector plasmid DNA was
transfected into AmphoPack-293 cells (Clontech) by a modified
calcium phosphate method according to the manufacturer’s
protocol (MBS transfection kit, Stratagene). Cell supernatants
were harvested 48 h posttransfection, filtered to remove cell
debris (0.45 �m), and transferred onto exponentially growing
human umbilical vein endothelial cells. DEAE dextran (10
�g�ml) was added to facilitate transduction. After 5–8 h, the
viral supernatant was removed, and cells were cultured for an
additional 40 h. Gene transfer efficiency was determined by flow
cytometric analysis using a nerve growth factor receptor-specific
mAb and was typically �70%.

Statistical Analysis. The value of each parameter was measured
three times per experiment, and two to four experiments were
carried out for each overexpressed gene. Within each experi-
ment, the mean value obtained for each parameter was then
divided by the mean value from a sample transduced with empty
vector to generate a ratio. All ratios were then log10-
transformed, the transformed ratios were averaged from repeat
experiments, and nonparametric analysis was used to compare
the profile of these ratios to the envelope of control profiles.
Those profiles containing ratio values that exceeded the 95%
prediction level envelope for control profiles were used to
calculate pairwise Pearson correlation coefficients (PARTEK PRO,
version 5.1). To select statistically significant correlation coef-
ficients, 100 randomized data sets were created by permuting the
original expression data, and the pairwise correlation coeffi-
cients were calculated for each randomized set. Correlation
limits were then selected so as to exclude all but a defined
minimal number of correlations from the randomized data sets.
For the four cellular environments combined, limits of [�0.5035,
0.546] excluded all but 2.5% of the ‘‘correlations’’ derived from
the randomized data sets (in other words, at these limits 2.5% of
the correlations observed are potentially false positives). Limits
used to filter correlations obtained in individual cellular envi-
ronments were: IL-1�-treated cells [�0.87, 0.88], TNF-�-treated
cells [�0.87, 0.90], IFN-�-treated cells [�0.86, 0.88], and control
cells [�0.84, 0.89] (see also Tables 2–4, which are published as
supporting information on the PNAS web site). Significantly
anticorrelated profiles were observed as well, although too few
examples of negative correlations occurred to permit biological
interpretation. The arrangement of genes in two dimensions was
automatically determined from the entire set of correlation
values by a multidimensional scaling method using AT&T
GRAPHVIZ software (www.research.att.com�sw�tools�graphviz);
the statistically significant correlations are highlighted by con-
necting lines seen in Fig. 2 c–g.

Results
Analysis of Endothelial Cells Overexpressing Signaling Proteins. En-
dothelial cells control vascular inflammation by regulating leu-
kocyte traffic and express immunomodulatory cytokines and
chemokines. To analyze this range of activity, we overexpressed
genes encoding key elements of the NF-�B signaling pathway,
the phosphatidylinositol 3-kinase (PI3K)�Akt pathway, and the
RAS�mitogen-activated protein kinase (MAPK) pathway in
cultures of primary endothelial cells and stimulated individual
proinflammatory pathways (genes overexpressed are listed in
Table 1). Some genes (denoted by an asterisk in Table 1) were
overexpressed in a constitutively active form (with the exception
of SHP2, dominant negative) to maximize their activity. The
effects were then assessed by measuring the levels of surface
proteins known to be regulated by inflammation and�or to
reflect the functional state of the cells, including VCAM-1,

ICAM-1, and E-selectin (vascular adhesion molecules for leu-
kocytes), HLA-DR (MHC class II; the protein responsible for
antigen presentation), MIG�CXCL9 and IL-8�CXCL8 (chemo-
kines that mediate selective leukocyte recruitment from the
blood), and platelet-endothelial cell adhesion molecule 1�CD31
(a protein controlling leukocyte transmigration).

Genes to be overexpressed were introduced into endothelial
cells by retroviral transduction. After waiting 48 h to ensure that
the encoded proteins were expressed, the cells were incubated
for an additional 24 h in the presence of proinflammatory
cytokines (IL-1�, TNF-�, or IFN-�) or medium alone, and levels
of readout proteins were measured by ELISA (7). Figs. 1 and 2a
show that the levels of readout proteins were a function of the
gene being overexpressed and the cell context (presence of
proinflammatory cytokines). For example, TNFRSF1A (the
gene encoding TNF receptor I) elicited strong responses in
IFN-�-treated and medium-treated cells, whereas RAS* (encod-
ing a constitutively active form of RAS) was most active in the
context of IL-1� and TNF-� treatment (Fig. 1). Fig. 2a summa-
rizes the effect of each gene on the level of each readout protein
in the four different cell systems (cells plus contexts) used.

Analysis of Gene Function by Correlating Responses. We next asked
whether the readout profiles could be used to identify functional
relationships between the overexpressed genes. We initially
performed pairwise comparisons of the readout profiles induced
by all overexpressed genes in each individual cell system, mea-
suring the similarity between profiles by using Pearson correla-

Table 1. Genes overexpressed

Gene Gene description

GenBank
accession

no.

TNFRSF1A TNF-� receptor type I BC010140
RIPK1 Receptor-interacting serine threonine

kinase 1 (RIP)
NM_003804

TNFRSF5 CD40 BC012419
TNFB TNF-� (lymphotoxin A) D12614
TNFRSF10B TRAIL receptor 2 BC001281
TNFA TNF-� NM_000594
IKBKB* I-�B kinase � (IKKB), constitutively active

(15)
AF031416

RELA NF-�B subunit 3 (p65) NM_021975
IRAK1 IL-1 receptor-associated kinase 1 BC014963
MGC3067 Hypothetical protein MGC3067 BC002457
MEK1* MAP2K1, constitutively active R4F (16) NM_002755
MEK2* MAP2K2, constitutively active K71W (16) L11285
RAF* Raf1, constitutively active (17) L00212
RAS* H-Ras, constitutively active V12 (18) NM_005343
MYD88 Myeloid differentiation primary

response gene 88
NM_002468

SHP2** Phosphotyrosyl-protein phosphatase
(SH-PTP2), dominant negative (19)

L03535

LSM1 Sm-like protein 1 (CASM) BC001767
IFNG IFN-� NM_000619
MHC2TA MHC class II transactivator (C2TA) NM_000246
P2Y6R Pyrimidinergic receptor P2Y BC000571
TRADD TNF receptor type 1-associated death

domain protein
BC004491

IL11RA IL-11 receptor � BC003110
AKT1* AKT1-estrogen receptor fusion,

constitutively active upon tamoxifen
treatment (20)

BC000479

PI3K* p110 subunit of PI3K, constitutively
active (21)

M93252
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tion coefficients (r). The relationships implied by these corre-
lations were visualized by using multidimensional scaling to
represent them in two dimensions (Fig. 2 c–f ), drawing lines
between pairs of genes whose profiles were significantly corre-
lated (details of the statistical techniques used are given in
Methods; the individual value of each correlation appears in
Table 4).

Strikingly, the readout profiles of genes with closely related
functions were indeed strongly correlated, but the strength of the
correlation highly depended on the cell context. For example,
the profiles produced by MEK1* and MEK2* were strongly
correlated in IL-1�- and TNF-�-treated cells (r � 0.95 and 0.98,
respectively), but the correlation between the two did not survive
significance filtering in IFN-�-treated or control cells (r � 0.69
and 0.68, respectively). Similarly, the profiles produced by TNFA
and TNFB were highly correlated in control cells (r � 0.98), but
the correlations in IFN-�-, IL-1�- and TNF-�-treated cells were
not statistically significant (r � 0.77, 0.68, and 0.74, respectively).

Context-dependent correlations were also seen between mem-
bers of the same signaling pathway. For example, genes encoding
members of the NF-�B pathway (9) (including TNF-�, TNF-�,
their receptor TNFRSF1A, and the intracellular signaling mol-
ecules RIPK1, IKBKB*, and RELA) all produced correlated
profiles in control cells and to a lesser extent in IFN-�-treated
cells, but not in cells treated with IL-1� or TNF-�. By contrast,
genes encoding members of the RAS�MAPK pathway (10)
(including RAS*, RAF*, MEK1*, and MEK2*) produced cor-
related profiles in IL-1�- and TNF-�-treated cells, but not in
cells treated with IFN-� or control cells. Thus, only some of the
possible functional relationships can be mapped in any one
cellular context. Conversely, some genes whose products are
known to belong to the same signaling pathway (such as IRAK1
and MYD88, which both encode key components of the IL-1
signaling pathway, or IFNG, which induces the transcription of
MHC2TA) did not produce significantly correlated responses in
any of the individual cell systems tested.

Enhanced Resolution of Biological Activity in Correlations of Com-
bined Profiles. Because the functional relationships observed
depended so strongly on the cellular context, we hypothesized

that an analysis that simultaneously encompasses the data from
multiple context-defined systems should increase the sensitivity
of our approach. We therefore concatenated the gene-induced
readout profiles from the four cellular systems, yielding for each
gene a combined profile comprising 28 normalized parameter
readouts (the seven measured parameters from each of the four
systems: no cytokine, and IL-1-, TNF-, and IFN-�-treated en-
dothelial cells). (As examples, the 28 parameter readouts illus-
trated inside the rectangles in Fig. 1 comprise the multisystem
profiles for the TNF receptor, MYD88, or RAS*.) We per-
formed pairwise comparisons of these 28-parameter profiles,
measuring the similarity between profiles with Pearson corre-
lations (summarized in Fig. 2b) and representing the implied
relationships in two dimensions as before (Fig. 2g).

Virtually all of the relationships observed in individual systems
were still apparent, but many other relationships also could be
detected, including those between IRAK1 and MYD88 and
between IFNG and MHC2TA. The only relationships that were
no longer evident were those previously detected between AKT1
and LSM1 in cells treated with IFN-� and between IL11RA and
TNFA or LSM1 in control cells. In fact, AKT1, LSM1, and
IL11RA induced very different responses in other cellular con-
texts, indicating their distinct biological functions: the responses
to AKT1 and LSM1 were generally related to those induced by
PI3K and members of the NF-�B pathway, respectively, whereas
IL11RA induced responses, especially robust in IL-1�- and
TNF-�-treated cells, that were not significantly correlated to
those produced by any other genes tested. Combining data
obtained in multiple cell contexts thus improved the specificity
and the sensitivity of the analysis.

Interactions Between Signaling Pathways. One benefit of the
greater detail revealed by multisystem BioMAP analysis was a
much clearer separation of the genes whose products participate
in different pathways. Genes encoding members of the NF-�B
and RAS�MAPK pathways, for instance, define separate highly
interconnected clusters in Fig. 2g. Even more strikingly, however,
additional routes by which pathways can interact could also be

Fig. 1. Response profiles induced in endothelial cells overexpressing selected genes and stimulated with proinflammatory cytokines. Endothelial cells
transduced with retroviral vectors expressing the genes TNFRSF1A, MYD88, and RAS* were treated with IL-1�, TNF-�, IFN-�, or media alone (Control). The relative
levels of readout parameters (CD31, E-selectin, etc.) were measured by ELISA. Data presented are log expression ratios (see Methods) from three (TNFRSF1A, RAS*)
or four (MYD88) repeat experiments. The black line representing the overall shape of each profile connects the mean values of the data points.
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detected. As shown in Fig. 2g, MYD88 and IRAK1 were func-
tionally related to genes encoding members of both the NF-�B
and RAS�MAPK pathways, suggesting that MYD88 and IRAK1
can interact with both of these pathways.

To explore this observation further, we re-examined the
response to MYD88 and genes encoding representative members
of the RAS�MAPK and NF-�B pathways (RAS* and
TNFRSF1A, respectively) in all four cell systems. As shown in
Fig. 1, overexpression of MYD88 and TNFRSF1A increased
E-selectin, ICAM-1, IL-8, and VCAM-1 levels in IFN-�-treated
and control endothelial cells, consistent with the known ability
of MYD88 and TNFRSF1A to activate the NF-�B pathway (9).

By contrast, the response induced by MYD88 in IL-1�-treated
cells was similar to that induced by RAS*, the main effect being
to inhibit expression of the adhesion molecules VCAM-1 and
E-selectin. Overexpression of MYD88 thus appears to stimulate
the RAS�MAPK pathway under these conditions. Blocking the
RAS�MAPK pathway by treatment with the MEK inhibitor
PD098059 reversed the effect of MYD88 or RAS* overexpression
(Fig. 3a), confirming that the effects induced by both genes were
mediated by the RAS�MAPK pathway. MYD88 (and IRAK1)
are known to be involved in IL-1-induced but not TNF-induced
signaling (9), and PD098059 indeed had no effect on VCAM-1
expression in TNF-�-treated cells (Fig. 3a). On the other hand,

Fig. 2. Functional classification of genes in multiple cellular contexts. (a) Endothelial cells transduced with retroviral vectors expressing the genes listed to the
right were treated with IL-1�, TNF-�, IFN-�, or media alone (Control). Shown are relative increase (red), decrease (green), or lack of change (black) in the mean
log expression ratio of each parameter relative to nontransduced cells in two to four experiments. (b) Pairwise Pearson correlation analysis of gene-specific
profiles using the combined 28 parameter profile comprising all seven readouts from each of the four cellular systems (cells plus cytokine-defined contexts)
combined into a single data string for calculations. Positive correlation is shown in blue, and negative correlation is shown in yellow. The order of genes was
automatically determined by multidimensional scaling of the Pearson correlation metric (see Methods). (c and d) 2D representations of the functional similarity
of gene profiles revealed in each individual system [cells in medium alone (c), IL-1�-treated cells (d), TNF-�-treated cells (e), and IFN-�-treated cells ( f)]. Pearson
correlation analysis was performed as before, using the seven readouts within a given system, and multidimensional scaling was used to represent the extent
of similarity of gene activities in the systems indicated. Only genes whose responses showed significant similarity to other genes in the indicated system are shown.
(g) The relationships revealed by combined systems analysis are shown. In this case, the 28 parameter combined systems profiles (encompassing the seven
readouts from each of the four cell systems) was used for correlation analysis and 2D representation. The arrangement of genes in two dimensions was
automatically determined by multidimensional scaling (see Methods), and statistically significant correlations are shown by the connecting lines. Genes are
color-coded to indicate participation in common pathways (red, NF-�B; blue, RAS�MAPK; green, IFN-�; gray, PI3K�Akt; white, unique genes). SHP2 is a dominant
negative and may stimulate NF-�B by suppressing RAS�MAPK pathway.
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treating TNF-�-treated cells with low doses of IL-1� did reduce
the level of VCAM-1 expression (Fig. 3b), as predicted from the
effect of MYD88 in IL-1�-treated cells. The inhibitory effect of
RAS* could be overcome by overexpressing RELA or IKBKB*
(Fig. 3c), indicating that the interaction between the two path-
ways occurs upstream of IKBKB kinase. A schematic summary
is presented in Fig. 3d. Multisystem analysis can thus detect
novel functional interelationships between different signaling
pathways.

Pathway Participants and Mechanisms. BioMAP analysis is also
capable of identifying additional participants in signaling path-
ways and defining their network interactions. For example, the
intracellular phosphatase SHP2 is known to have a role in growth
factor-induced signaling (11). In our experiments, however,
SHP2** showed clear functional similarity to members of the
NF-�B pathway (Fig. 2g), reflecting, for example, a similar
up-regulation of ICAM-1 and VCAM-1 in control cells and
down-regulation of HLA-DR in IFN-�-treated cells, and sug-
gesting that this protein can regulate NF-�B signaling in endo-
thelial cells. In fibroblasts, SHP2 has indeed been shown to
interact physically with the NF-�B complex and is required for
the NF-�B-dependent production of IL-6 (11). Similarly, our
studies reveal similarity of function of the hypothetical protein
MGC3067 to IRAK1, MEK1, and MEK, leading to the testable
hypothesis that it plays a role in the RAS�MAPK pathway.

Multisystem BioMAP analysis also revealed additional effects
of known genes. TRADD, IL11RA, and P2Y6R, for example, all
induced unique profiles that were not significantly related to any
known pathway. P2Y6R is a G protein-coupled receptor that

binds UDP (12). The precise relationship between this activity
and the vascular responses to inflammation remain to be deter-
mined, but it is intriguing that P2Y6R also plays a role in
monocyte responses to cytokine stimulation (12).

Discussion
The BioMAP technique we describe represents a simplification
of existing approaches to systems biology. A very wide range of
biological behavior can be examined by overexpressing signaling
proteins in primary cells and evaluating the cells’ responses in a
range of biologically relevant environments. Surprisingly, only a
small number of measurements from each perturbed cell state is
required to reveal a great deal of information about the function
of the perturbing gene product. Using this approach with
endothelial cells in several contexts in which inflammatory
signaling pathways are activated, we have rapidly reconstructed
key pathway relationships of gene products, correctly identifying
genes involved in several known inflammatory signaling path-
ways, and also revealing additional mediators of pathway inter-
actions in endothelial cells. In addition, we have identified genes
with unique activities in endothelial responses (e.g., P2Y6R,
IL11RA) and others with activities similar to members of
the NF-�B or RAS pathways (SHP2 dominant negative and
MGC3067), leading to testable hypotheses about their pathway
interactions. Thus BioMAP analysis is useful for discovery and
characterization of pathways and pathway interactions and
for defining key nodal and regulatory points in cell signaling
networks.

The BioMAP approach should allow analysis of signaling
networks in other endothelial processes (e.g., angiogenesis) and

Fig. 3. IL-1 activates the RAS�MAPK pathway through MYD88, stimulating a MAPK-dependent negative feedback loop modulating endothelial VCAM-1
expression. (a) Endothelial cells overexpressing MYD88, RAS*, MEK1*, or MEK2* were stimulated with IL-1�, TNF-�, or media alone (None), and VCAM-1
expression was measured by ELISA. MEK inhibitor PD098059 (3.7 �M) or DMSO (0.1%) as buffer control was added to cells 1 h before cytokine stimulation. Note
that blockade of the RAS�MAPK pathway with PD098059 increases VCAM-1 expression when the pathway is activated through RAS*, MEK1*, MEK2*, or
IL-1�MYD88, but not in cells treated with TNF. Error bars indicate SD from triplicate samples. (b) Endothelial cells were stimulated with TNF-� (10 ng�ml), IL-1�

(1 ng�ml), or a mixture of TNF and IL-1 (10 ng�ml TNF plus 1 ng�ml IL-1), and VCAM-1 expression was measured by ELISA. Note that IL-1 modulates the VCAM-1
expression induced by TNF. (c) Endothelial cells were cotransduced with RAS* plus empty vector, RAS* plus IKBKB*, or RAS* plus RELA. Expression of individual
genes in cotransduced cells was confirmed by quantitative RT-PCR. Cells transduced with RAS* plus empty vector were treated with IL-1� to stimulate the NF-�B
pathway. In cells transduced with RAS* plus IKBKB* or RAS* plus RELA cells the NF-�B pathway is stimulated by overexpression of IKBKB* and RELA themselves.
Note that RAS* has no effect on VCAM expression in cells expressing IKBKB* or RELA. (d) Schematic diagram of the interactions between the NF-�B and
RAS�MAPK pathways in endothelial cells. Genes are color-coded according to the pathways to which they belong (red, NF-�B; blue, RAS�MAPK). The split
coloration of MYD88 and IRAK1 genes indicates that they participate in both pathways. Red dotted lines represent pathway interactions revealed by the present
study.
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other cells types as well. Application to a given biology will, of
course, depend on the empirical selection of systems (cell types
and contexts) and parameters that provide a sufficient sensitivity
and diversity of responses to perturbations of the physiologic
processes being studied. In practice, these are selected iteratively
by evaluating different test sets of cell contexts and parameters
for their ability to detect and discriminate benchmarking agents
(e.g., select genes or functional proteins representing diverse
relevant pathways). In the endothelial system we used here, the
readout parameters were chosen to detect and discriminate
signaling driven by three key cytokine drivers of the inflamma-
tory process, IL-1�, TNF-�, and IFN-�, that were also used to
define three of the cell contexts studied. Nevertheless, this set of
parameters also revealed the activity of other known signaling
pathways (for example, the RAS�MAPK and PI3K�Akt path-
ways) and that of additional pathways (such as signaling through
the UDP receptor P2Y6R or the IL-11 receptor).

This broad sensitivity may be an innate property of complex
cellular systems, in which the level and state of each protein are
actually an indirect reflection of the interactions between tens or
hundreds of proteins. If we assume that we can experimentally
identify both an appropriate set of readout parameters and a
sufficient number of distinct contexts to capture the responses
induced by overexpressing each gene, as few as 10 independent
parameters would be sufficient to generate unique profiles for all
human genes. (Assuming that there are 40,000 genes and that a
readout parameter can have three states, up, down, or un-
changed, allows 310 � 59,049 profiles.) In practice, the breadth
of pathway coverage and functional discrimination will depend
on the cellular contexts and readout parameters selected.

Our data clearly show that parallel interrogation of cells in
multiple contexts allows classification of gene function by using
only a small set of readout parameters. From a theoretical
perspective, it is clear that each gene product, and the network
in which it participates, has evolved not to carry out a function
in one particular cell context or environment, rather it has
evolved to provide appropriate integration of inputs and outputs
from any context the cell may encounter. Thus, the physiologic
function of a gene product can only be defined by its effects
within multiple cell contexts. The ability of BioMAP analyses to
efficiently classify gene function by using only a few readouts
shows that multisystem analyses contribute enormously to the
biological information content. Indeed, multisystem analyses
may be essential for modeling signaling networks from measure-
ments of cell states no matter how many parameters are used.

Our results also suggest why it has been hard to extend earlier
successful systems biology studies of yeast to higher eukaryotes.
Studies based on whole-cell measurements of gene expression
levels under a single set of conditions might well link ICAM,

VCAM, E-selectin, IL-8, and MCP-1, because these proteins are
coordinately up-regulated in IL-1�- or TNF-treated cells. If an
additional input (such as overexpression of IL11RA) is provided,
however, the coordinated up-regulation is lost. Overexpression
of IL11RA blocks IL-1�-driven VCAM expression and further
increases E-selectin levels, but has no effect on the increased
expression of ICAM, IL-8, and MCP-1 (Fig. 2a). Thus the
observed correlation between output parameters depends on the
gene being overexpressed, disrupting pathway classification. In
the BioMAP technique, by contrast, such alterations actually
increase the discriminatory power of the analysis.

In this study we used specific proteins as readouts, both because
these proteins are directly relevant to the biology of vascular
inflammation and their levels can be readily measured in high-
throughput assays, but other readouts such as transcript levels could
certainly be used. Similarly, although we used gene overexpression
to perturb selected pathways, it should also be possible to carry out
a complementary analysis in which gene activity is suppressed by
using small interfering RNA or chemical compounds. Indeed,
compound profiling with the BioMAP technique is a powerful tool
for characterizing potential drug candidates (E. Kunkel, E.L.B.,
E.C.B., and I.P., unpublished work).

One of the findings in this study is the inhibition of the NF-�B
pathway by IL-1, MYD88, RAS, and MEK in primary endothe-
lial cells (Fig. 3d). Our results suggest that the RAS�MAPK
pathway may help to prevent overstimulation of the NF-�B
pathway and expression of adhesion molecules in endothelial
cells, so moderating immune responses and leukocyte recruit-
ment. By contrast, RAS has been shown to activate the NF-�B
pathway in transformed fibroblast and epithelial cell lines (13,
14), suggesting that the same signaling molecule may have
different biological roles in different cell types (or in trans-
formed as opposed to primary cells).

The BioMAP technique we describe provides an independent
system for classifying gene function, which is complementary to
methods relying on sequence homology, protein–protein inter-
actions, or expression profiling. It is well suited to large-
throughput analyses, and as such will allow a ‘‘discovery science’’
approach to defining signaling networks in human cells, as shown
by the reconstruction of functional relationships in the NF-�B,
Ras, and PI3K pathways. By providing critical insights into
functional relationships and networks, BioMAP analyses should
accelerate the systematic reconstruction of signaling pathways in
mammalian cells.
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