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Female rhesus macaques were immunized with HIV virus-like particles (HIV-VLPs) or HIV DNA administered as sequential
combinations of mucosal (intranasal) and systemic (intramuscular) routes, according to homologous or heterologous prime-
boost schedules. The results show that in rhesus macaques only the sequential intranasal and intramuscular administration of
HIV-VLPs, and not the intranasal alone, is able to elicit humoral immune response at the systemic as well as the vaginal level.

The vast majority of new HIV infections worldwide are acquired
via the genital mucosa, and women account for close to 50% of

them (39). The development of vaccination strategies able to elicit
protective systemic and mucosal immune response represents a
major goal in the HIV vaccine field, possibly providing a crucial
method for halting the spread of HIV/AIDS.

Mucosal secretory immunoglobulin A (sIgA) specific for
HIV-1 envelope glycoproteins is consistently detected in seropos-
itive subjects (1, 14) and has been strongly associated with protec-
tion from HIV-1 infection in uninfected individuals having un-
protected sexual intercourse with HIV-1-seropositive partners
(13, 23, 25, 28). Furthermore, intravenous or intravaginal passive
administration of the gp120-specific human neutralizing mono-
clonal antibody (Ab) b12 has been shown to be highly effective in
protecting monkeys from a vaginal challenge (12, 30, 40).

Considering this epidemiological and experimental evidence,
specific mucosal immunity is extremely relevant for controlling
the primary HIV-1 infection. Intranasal (i.n.) immunization has
been shown to be effective for protection against infectious respi-
ratory diseases such as influenza (2, 22, 33, 35, 38, 43). However,
the effectiveness of mucosal immunization often relies upon co-
administration of appropriate adjuvants that can initiate and sup-
port the transition from innate to adaptive immunity (recently
reviewed in reference 20). In addition to adjuvants, particulate
antigens (e.g., virus-like particles [VLPs]) have been shown to be
advantageous for intranasal immunization, given that they effi-
ciently target antigen-presenting cells (APCs) and facilitate the
induction of potent immune responses (7, 9, 10, 11, 16, 18, 31, 34,
41, 43, 44). However, several vaccine concepts have been evalu-
ated in nonhuman primates (NHPs) by intranasal administration
with inconsistent immunogenicity results, probably related to the
different vaccination strategy (3, 17, 24, 26, 27, 29).

HIV-VLPs developed in our laboratory, and used in the pres-
ent study, are based on HIV Gag protein and express the whole
HIV gp120/140 envelope protein derived from an Ugandan clade
A field isolate (4, 5, 6, 36, 37, 42). Elicitation of immune response
at systemic as well as mucosal (vaginal and intestinal) levels has
been previously evaluated in mice by intraperitoneal as well as
intranasal administration (7, 8, 11). In particular, the mucosal
immunogenicity of such HIV-VLPs has been evaluated by com-
paring a homologous (VLP � VLP) and a heterologous (DNA �

VLP) prime-boost strategy by intranasal administration, in an ad-
juvant formulation (7).

In the present study, the immunogenicity of HIV-VLPs was
evaluated in rhesus macaques immunized with HIV-VLPs admin-
istered via a sequential combination of mucosal (intranasal) and
systemic (intramuscular [i.m.]) routes, according to homologous
(VLP prime � VLP boost) or heterologous (DNA prime � VLP
boost) prime-boost schedules.

A total of 24 female rhesus macaques were equally divided into
four experimental arms and immunized by the intranasal route as
described in Fig. 1. Groups 2 and 3 were immunized using the
homologous prime-boost protocol in the absence (group 2) or in
the presence (group 3) of the Eurocine L3 nasal lipid adjuvant.
Group 4 was immunized using the heterologous prime-boost pro-
tocol in the presence of Eurocine L3 and N3 adjuvants. Addition-
ally, group 3 received two further boosting doses of VLPs by the
intramuscular (i.m.) route, 22 weeks after the last intranasal (i.n.)
administration. Group 1 was the control group administered
adjuvants. VLPs were administered at 100 �g per immunization
dose; DNA plasmids were administered at 200 �g per immuniza-
tion dose. Antigens as well as adjuvants used in the study have all
been previously described (5, 7, 8, 11, 15, 19, 21, 32).

Sera were collected from 10 ml of whole blood 1 week before
and 1 week after each antigen administration, and enzyme-linked
immunosorbent assays (ELISAs) were performed in microwell
plates coated with recombinant HIV gp120 or p24 of subtype B.
The data show that intranasal administration of HIV-VLPs, in
either the homologous or heterologous prime-boost protocol,
does not elicit measurable serum anti-Env or anti-Gag Ab titers
(Fig. 2A). Moreover, the i.n. administration protocol does not
appear to efficiently prime the systemic immune system, since two
subsequent i.m. injections were needed to observe significant se-

Received 13 February 2012 Returned for modification 13 March 2012
Accepted 23 March 2012

Published ahead of print 29 March 2012

Address correspondence to Luigi Buonaguro, lbuonaguro@tin.it.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

doi:10.1128/CVI.00068-12

970 cvi.asm.org Clinical and Vaccine Immunology p. 970–973 June 2012 Volume 19 Number 6

http://dx.doi.org/10.1128/CVI.00068-12
http://cvi.asm.org


rum Ab titers (�1:1,000) (Fig. 2B). In particular, evaluating the
individual animals in such group, it is possible to identify the best
responders for both Env and Gag (no. 4642 � 4635 � 4636) (Fig.
2C and D).

Vaginal washes were collected on the same days as the serum,
and ELISAs were run in parallel. The data show that intranasal
administration of HIV-VLPs, in either a homologous or a heter-

ologous prime-boost protocol, does not elicit measurable mucosal
titers (data not shown); however, it seems to prime the mucosal
immune system which, 6 months after the last i.n. boost, is able to
respond after the i.m. immunizations. The effect is evident in 2/6
animals in group 3 and appears to be selective for Env (Fig. 3).
Furthermore, antibody titers elicited by the two i.m. administra-
tions of VLPs do not show HIV neutralization or antibody-depen-

FIG 1 Immunization scheme in NHPs. Six animals per group were immunized as described at indicated weeks.

FIG 2 Systemic immune response. Specific anti-env and anti-gag immune responses in serum of immunized animals were evaluated by ELISA. (A and B)
Average Ab titer in each group. (C and D) Ab titer for each animal in group 3 after the two i.m. immunizations. Results are expressed as the reciprocal last dilution
with a 3-fold optical density at 492 nm of the preimmune sera.
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dent cell-mediated cytotoxicity (ADCC) activity (data not
shown).

The results obtained in NHPs in the present study by i.n.
administration of VLPs are in contrast to those obtained in
mice (7); however, this could be due to either the administered
dose (i.e., too low in NHPs) or lower permeability to antigens
of the nasal epithelium in macaques. Indeed, our data are in
agreement with results from others who have previously shown
the limited or absent immune response in NHP by i.n. admin-
istration. Such results have been obtained using different vac-
cine delivery systems, which suggests that they are not vaccine
related (3, 24, 26, 27).

In conclusion, the described NHP preclinical trial shows the
elicitation of specific immune response by HIV-VLPs when ad-
ministered by the i.m. route. On the other hand, at least in our
experimental model, the i.n. administration is possibly only prim-
ing the humoral mucosal immunity for subsequent i.m. boosting
doses in a few animals. However, such an observation needs fur-
ther investigation and must be taken into consideration for future
preclinical vaccine evaluations.
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