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Entamoeba histolytica is an intestinal parasite that causes dysentery and liver abscess. Parasite cell surface receptors, such
as the Gal/GalNAc lectin, facilitate attachment to host cells and extracellular matrix. The Gal/GalNAc lectin binds to galac-
tose or N-acetylgalactosamine residues on host components and is composed of heavy (Hgl), intermediate (Igl), and light
(Lgl) subunits. Although Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), Hgl and Lgl
transiently associate with this compartment in a cholesterol-dependent fashion. In this study, trophozoites were exposed
to biologically relevant ligands to determine if ligand binding influences the submembrane distribution of the subunits.
Exposure to human red blood cells (hRBCs) or collagen, which are bona fide Gal/GalNAc lectin ligands, was correlated
with enrichment of Hgl and Lgl in rafts. This enrichment was abrogated in the presence of galactose, suggesting that direct
lectin-ligand interactions are necessary to influence subunit location. Using a cell line that is able to attach to, but not
phagocytose, hRBCs, it was shown that physical attachment to ligands was not sufficient to induce the enrichment of lectin
subunits in rafts. Additionally, the mutant had lower levels of phosphatidylinositol (4,5)-bisphosphate (PIP2); PIP2 load-
ing restored the ability of this mutant to respond to ligands with enrichment of subunits in rafts. Finally, intracellular cal-
cium levels increased upon attachment to collagen; this increase was essential for the enrichment of lectin subunits in
rafts. Together, these data provide evidence that ligand-induced enrichment of lectin subunits in rafts may be the first step
in a signaling pathway that involves both PIP2 and calcium signaling.

Entamoeba histolytica is an intestinal parasite responsible for
dysentery and amoebic liver abscess (22). Amoebiasis is a

food- and waterborne illness and is prevalent in underdeveloped
countries lacking proper sanitation practices. As of 2010, it is es-
timated that 2.6 billion people worldwide do not use modern san-
itation practices, and 886 million do not have access to clean
drinking water sources (54). Thus, there is considerable global risk
for acquiring E. histolytica infection.

Amoebiasis occurs when food or water contaminated with the
environmentally resistant cyst form of the parasite is ingested;
excystation leads to the release of amoeboid trophozoites in the
small intestine. Trophozoites then move to and colonize the large
intestine. Serious complications arise when trophozoites invade
the colonic epithelium, enter the bloodstream, and travel to ex-
traintestinal sites such as the liver, lungs, and brain. During colo-
nization of the host, trophozoites attach to numerous ligands,
including red blood cells (RBCs), extracellular matrix (ECM)
components (e.g., collagen and fibronectin), intestinal flora, co-
lonic mucins, and leukocytes (6, 15, 39). Therefore, adhesion is an
important virulence function for the parasite.

In mammalian cells, integrins are dimeric transmembrane re-
ceptors that are responsible for cell-cell and cell-ECM adhesion
and signal transduction. Although no integrin homologs have
been identified in the E. histolytica genome (27), attachment to
ligands in the host can occur through cell surface receptors, which
share sequence homology with integrins. One such receptor is the
heterotrimeric protein complex galactose/N-acetylgalactosamine
lectin (Gal/GalNAc lectin). This adhesin binds to galactose and
N-acetylgalactosamine residues on host cells and is composed of
heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl is a

transmembrane protein that is disulfide linked to a glycophos-
phatidylinositol (GPI)-anchored Lgl. The heterodimer noncova-
lently associates with a GPI-anchored Igl. Both Hgl and Igl share
sequence homology with � integrins (12, 46–48, 51), suggesting
that they may also play a role in signaling.

Attachment of E. histolytica to human red blood cells (hRBCs)
or collagen is inhibited in the presence of galactose, suggesting
that the Gal/GalNAc lectin is an important receptor for these li-
gands (2, 33). On the other hand, binding of amoebae to fibronec-
tin is not significantly inhibited by galactose, suggesting that the
Gal/GalNAc lectin may not be the major receptor for this ligand
(33). The functional regulation of the Gal/GalNAc lectin is not
well understood.

In other systems, lipid rafts play a role in regulating the func-
tion of cell surface receptors, including integrins (24). Lipid rafts
are tightly packed cholesterol- and sphingolipid-rich membrane
microdomains. Lipid rafts are thought to serve as platforms within
which signaling proteins interact. The removal of cholesterol, re-
sulting in the disruption of lipid rafts, significantly inhibits the
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adhesion of E. histolytica trophozoites to host cells (23) and colla-
gen (33) but only slightly inhibits the adhesion of trophozoites to
fibronectin (33). This suggests that E. histolytica lipid rafts play a
significant role in binding to host cells and collagen and a lesser
role in binding to host fibronectin. The parallel roles of the Gal/
GalNAc lectin and lipid rafts in binding to collagen, but not fi-
bronectin, suggest that these membrane domains regulate the
function of the lectin.

In addition to protein receptors, lipids can also participate in
signaling pathways that emanate from lipid rafts. One such family
of signaling lipids are the phosphoinositides. Two phosphorylated
members of the phosphoinositide family are phosphatidylinositol
(4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-tris-
phosphate (PIP3). Both of these lipids play important roles in
cellular processes such as phagocytosis, protein kinase activation,
and actin polymerization (9, 18). PIP2 also regulates calcium sig-
naling (8, 19, 28). For example, signal transduction can lead to
hydrolysis of PIP2, resulting in the production of second-messen-
ger molecules, inositol trisphosphate (IP3) and diacylglycerol
(DAG) (20). These, in turn, facilitate the release of calcium into
the cytoplasm from intracellular calcium stores and from the
extracellular space through channels in the plasma membrane
(16, 40).

Phosphoinositides can also facilitate signaling by recruiting
downstream proteins that have specific phosphoinositide binding
domains. For example, FYVE-finger domains, which were origi-
nally observed in Fab1p, YOTB, Vac1p, and EEA1 proteins, bind
specifically to phosphatidylinositol 3-phosphate (44). Addition-
ally, certain pleckstrin homology (PH) domains, such as that from
Bruton’s tyrosine kinase (PHBTK), have been shown to specifically
bind PIP3 (42). Overexpression of green fluorescent protein
(GFP)–FYVE-finger domains or GFP-PHBTK domains has been
used to localize phosphoinositides in real time in E. histolytica
(4, 38).

Previously, we demonstrated that cholesterol loading of para-
site membranes induced the enrichment of the Gal/GalNAc lectin
subunits in lipid rafts, which in turn increased the activity of the
Gal/GalNAc lectin (53). In this study, we have examined the lo-
calization of Gal/GalNAc lectin subunits after attachment to bio-
logically relevant extracellular ligands. We show that binding to
human red blood cells (hRBCs) and collagen results in the enrich-
ment of Hgl and Lgl in lipid rafts, while attachment to fibronectin
does not change the localization of the subunits. We also demon-
strate that cells expressing GFP-PHBTK exhibit reduced PIP2 levels.
In these cells, attachment to ligand is not correlated with enrich-
ment of Hgl and Lgl in lipid rafts; the phenotype is reversible upon
the addition of exogenous PIP2, indicating a role for PIP2 in reg-
ulating the submembrane position of the Gal/GalNAc lectin. Fi-
nally, intracellular calcium levels increase upon attachment to col-
lagen; increased intracellular calcium levels appear to be essential
for the enrichment of lectin subunits in rafts. Together, our data
suggest that colocalization of Gal/GalNAc lectin subunits in rafts
may be the first step in the activation of a signaling pathway and
that PIP2 and calcium may be involved in this pathway.

MATERIALS AND METHODS
Strains and culture conditions. E. histolytica trophozoites (strain HM1:
IMSS) were grown axenically in TYI-S-33 medium (11) in 15-ml glass
screw-cap tubes or T25 cell culture flasks (Sarstedt, Newton, NC) at 37°C.
The construction of a cell line conditionally expressing GFP-PHBTK (tet-

racycline inducible) is described elsewhere (4). GFP-PHBTK-expressing
trophozoites were maintained in TYI-S-33 medium supplemented with 6
�g/ml G418 and 15 �g/ml hygromycin. The expression of GFP-PHBTK

was induced with 5 �g/ml tetracycline for 24 h prior to use in assays. Prior
to performance of assays, cells were incubated on ice for 10 or 20 min in
order to release them from tube or flask surfaces, respectively.

Exposure to ligands. Wild-type or GFP-PHBTK-expressing cells
(3.5 � 106) were incubated in serum-free medium for 30 min and then
exposed to various ligands prior to lipid raft extraction. For hRBC expo-
sure, trophozoites were incubated in the presence of 3.5 � 108 hRBCs
(U.S. Biological, Swampscott, MA) for 5 min at 37°C. For exposure to
collagen and fibronectin, cells were incubated on ECM-coated flasks (BD
Biosciences, Bedford, MA) or uncoated flasks (Sarstedt) for 15 min at
37°C.

Lipid raft extraction. After exposure to ligands, isolation and charac-
terization of lipid rafts were carried out as previously described (23). Ex-
tracted raft-associated proteins were characterized by SDS-PAGE and
Western blotting as described previously (23). Primary antibodies in-
cluded a mixture of monoclonal anti-Lgl antibodies (3C2, IC8, IA9, and
ID4) (1:4,000 dilution), polyclonal anti-Hgl antibodies (1:5,000 dilution),
monoclonal anti-Hgl antibodies (1G7) (1:1,000 dilution), or a mixture of
monoclonal anti-Igl antibodies (3G5-A3-G3, 5H1-F11-D11, and 4G2-
D8-H1) (1:4,000 dilution) (antibodies were kind gifts from William A.
Petri, Jr., University of Virginia School of Medicine, Charlottesville, VA).
Western blots were analyzed by densitometry using ImageJ software (ver-
sion 1.42q; U.S. National Institutes of Health, Bethesda, MD).

Whole-cell PIP2 extraction and lipid dot blots. Total lipid was ex-
tracted from wild-type and GFP-PHBTK-expressing trophozoites accord-
ing to the methods of Gray et al. (14). Briefly, 1 � 106 cells were washed
twice with phosphate-buffered saline (PBS). Lipids were precipitated by
the addition of 5 ml of 0.5 M trichloroacetic acid (TCA) and centrifuged at
500 � g for 5 min at 4°C. The pellets were washed with 3 ml of 5% (wt/vol)
TCA–1 mM EDTA and centrifuged at 500 � g for 5 min. To the pellets, 3
ml of methanol-chloroform (2:1) was added, and the mixture was vor-
texed 3 times over a period of 10 min at room temperature to facilitate
neutral lipid extraction. The extracted lipids were centrifuged at 500 � g
for 5 min at 4°C. To the pellet, 2.25 ml methanol-chloroform-12.1 N HCl
(80:40:1) was added, and the mixture was vortexed 4 times over 15 min at
room temperature and centrifuged at 500 � g. The resulting supernatant
was subjected to phase split by the addition of 750 �l chloroform and 1.35
ml 0.1N HCl. The solution was centrifuged at 500 � g for 5 min at 4°C.
After centrifugation, the organic phase was collected and dried using a
MiVac Duo Sample Concentrator Speed Vac centrifuge (GeneVac, Gar-
diner, NY).

The vacuum-dried lipid pellets were resuspended in a methanol-chlo-
roform-water mixture (2:1:0.8) and vortexed for 30 s, followed by soni-
cation in a cold water bath for 10 min. The lipids were then spotted onto
a nitrocellulose membrane. The membrane was blocked with 1.5% fatty
acid-free bovine serum albumin (BSA) for 1 h at room temperature and
probed with mouse anti-PIP2 (Abcam, Cambridge, MA) or mouse anti-
PIP3 (Echelon Biosciences, Salt Lake City, UT) antibodies. Densitometric
analysis was performed using Image J software.

PIP2 loading. GFP-PHBTK-expressing cells were loaded with PIP2 us-
ing a shuttle PIP2 kit (Echelon Biosciences, Salt Lake City, UT) according
to the manufacturer’s guidelines. Concentrations of 25 �M PIP2 and 12.5
�M PIP2 carrier histone (H1) were used. Loading was carried out for 30
min at 37°C. PIP2 loading was confirmed using fluorescence microscopy
of a BODIPY-labeled PIP2 (Nikon Eclipse TI-E spectral confocal micro-
scope; Nikon Instruments Inc., Lewisville, TX). After PIP2 loading, cells
were exposed to hRBCs and lipid rafts were extracted as described above.

Calcium assay. Relative intracellular calcium levels were assessed us-
ing the calcium indicator fluo-4/AM according to the manufacturer’s in-
structions. Fluo-4/AM is fluorescent when bound to calcium. Wild-type
cells were washed twice with calcium stain loading buffer (CSB) (50) and
then incubated in CSB supplemented with 5 �M fluo-4/AM (Invitrogen,
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Carlsbad, CA) or an equivalent volume of dimethyl sulfoxide (DMSO)
(diluent control) for 30 min at 37°C. After staining, cells were washed
twice with CSB, and 1 � 105 cells (stained or control) were added to the
wells of a 12-well plate which contained 1 mM CaCl2 (5) and a glass
coverslip coated with collagen or fibronectin (BD Biosciences). After 3
min, plates were transferred to a BioTek Flx800-I microplate reader
(BioTek, Winooski, VT) and incubated at 37°C, and fluorescence (exci-
tation, 485 nM; emission, 525 nM) was monitored at 5-min intervals for
10 min. To account for background fluorescence, the fluorescence value
of control cells (DMSO) was subtracted from the fluorescence value of
fluo-4/AM-stained cells.

Calcium chelation. To chelate intracellular calcium, cells were incu-
bated in the presence of 50 �M 1,2-bis(2-aminophenoxy)ethane-
N,N,N=,N=-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM)
(EMD Chemicals Group, Darmstadt, Germany) in serum-free medium
for 30 min at 37°C. Cells were then exposed to collagen-coated coverslips,
and the calcium assay was performed as described above. Cells were also
exposed to collagen-coated flasks, and lipid rafts were isolated and char-
acterized as described above.

Adhesion assay. To determine the effect of intracellular calcium che-
lation on adhesion, we used a previously described adhesion assay (33,
38). Cells were preexposed to serum-free medium with or without 50 �M
BAPTA/AM for 30 min at 37°C in the presence of the fluorescent vital
stain calcein-AM (5 �g/ml). Cells (3 � 104) were seeded in the wells of a
96-well collagen-coated plate (BD Biosciences) (in triplicate) for each
condition and incubated at 37°C for 15 min. The wells were then washed
with warm PBS to remove nonadherent cells. Fluorescence was measured
using a BioTek Flx800-I microplate reader (excitation, 485 nM; emission,
525 nM). Values were reported as percentages of the control value, which
was arbitrarily set to 100%.

Statistical analysis. All data are reported as a mean � standard devi-
ation (SD). Statistical analyses were carried out using GraphPad Instat
V.3. Comparisons were carried out using a one-way analysis of variance
(ANOVA) with posttest. P values of less than 0.05 (*) were considered
statistically significant, and values of less than 0.01 (**) or 0.001 (***) were
considered highly statistically significant.

RESULTS
Exposure to hRBCs correlates with enrichment of Hgl and Lgl
subunits in lipid raft fractions. In mammalian cells, binding to

ligand induces clustering of integrins in lipid raft domains (17).
To determine if ligand engagement also influences the submem-
brane distribution of the subunits of the Gal/GalNAc lectin, we
exposed trophozoites to hRBCs and isolated and characterized
lipid rafts as described previously (23). The composition of lipid
rafts confers detergent resistance to these membrane domains.
Therefore, purification of lipid rafts was initiated by extraction
with cold Triton X-100. This resulted in the isolation of detergent-
resistant membrane (DRM), which consists of both lipid raft and
actin-rich membrane. Since the buoyant density of lipid rafts is
less than that of actin-rich membrane, these two membrane do-
mains were further separated by sucrose density gradient centrif-
ugation. To address possible contamination of DRM from hRBCs,
whole-cell lysates from hRBCs were tested by Western blotting
with antibodies for Hgl, Lgl, and Igl and were shown to have no
cross-reacting proteins (data not shown).

Western blot analysis of gradient fractions revealed that the
majority of Igl was found in a low-density region (fractions 9 to
14) (Fig. 1). Previously, these fractions were shown to possess the
highest levels of cholesterol among other detergent-resistant frac-
tions (23). Thus, these fractions are identified as lipid rafts. The
localization of Igl to these low-density rafts was consistent with
previous reports (23, 53). In control cells, the majority of Hgl and
Lgl was associated with less buoyant, actin-rich fractions (frac-
tions 17 to 20) (Fig. 1). However, after exposure to hRBCs, there
was an increase in the proportion of Hgl and Lgl that was localized
to lipid raft fractions (fractions 9 to 14), whereas the submem-
brane distribution of Igl remained unchanged (Fig. 1). This obser-
vation suggests that binding to at least one ligand, hRBCs, can
induce the enrichment of Hgl and Lgl in lipid rafts.

To determine if enrichment of Hgl and Lgl in lipid rafts was
dependent on a physical interaction between the Gal/GalNAc lec-
tin and its ligand, cells were pretreated with galactose, a competi-
tive inhibitor of lectin-ligand binding, or mannose (a control
sugar) prior to hRBC exposure. Incubation with galactose pre-
vented the enrichment of Hgl and Lgl in lipid raft fractions after

FIG 1 Exposure to hRBCs is correlated with enrichment of Hgl and Lgl in lipid rafts. Trophozoites (3.5 � 106) were serum starved and exposed to hRBCs.
Detergent-resistant membrane (DRM) was extracted and fractionated using sucrose gradient density centrifugation. Nineteen fractions and a pellet (20P) were
collected and subjected to SDS-PAGE and Western blot analysis using antibodies specific for Hgl (A), Lgl (B), or Igl (C). Average values and standard deviations
for densitometric scans (n � 2) are reported as the percentage of total detergent-resistant protein for each subunit. In both control trophozoites and trophozoites
exposed to hRBCs, Igl is localized predominantly to fractions 9 to 14, previously identified as lipid rafts. Hgl and Lgl, which are localized to dense, actin-rich
fractions 17 to 20 in control cells, are enriched in lipid rafts (fractions 9 to 14) upon hRBC exposure.
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hRBC exposure, while incubation with mannose did not inhibit
the enrichment of Hgl and Lgl in lipid raft fractions after hRBC
exposure (Fig. 2). The localization of Igl in lipid raft domains was
unaffected in the presence of galactose or mannose. These data
suggest that physical interaction between the Gal/GalNAc lectin
and its ligand is necessary for raft enrichment of Hgl and Lgl.

Exposure to collagen type I correlates with galactose-sensi-
tive enrichment of Hgl and Lgl subunits in lipid rafts. To deter-
mine if another ligand also induces the enrichment of Gal/GalNAc

lectin subunits in lipid rafts, we exposed trophozoites to collagen
type I, which has been shown to initiate signaling in E. histolytica
(7, 10, 35). Trophozoites were incubated on collagen-coated flasks
or uncoated control flasks. Lipid rafts were extracted and charac-
terized. Similar to the case for incubation with hRBCs, incubation
on collagen was accompanied by an increase in the levels of Hgl
and Lgl subunits in high-buoyancy lipid raft fractions (Fig. 3).
Interestingly, the fractions with the highest levels of Hgl and Lgl
(fractions 13 to 16) (Fig. 3) differed from those with the highest

FIG 2 Enrichment of Hgl and Lgl in lipid rafts upon exposure to hRBCs is inhibited in the presence of galactose. Trophozoites (3.5 � 106) were serum starved
and exposed to 10 mM galactose (gal) or 10 mM mannose (man) prior to exposure to hRBCs. DRM was isolated and fractionated using sucrose gradient density
centrifugation. Nineteen fractions and a pellet (20P) were collected and subjected to Western blot analysis using antibodies specific for Hgl (A), Lgl (B), or Igl (C).
Average values and standard deviations for densitometric scans (n � 2) are reported as the percentage of total detergent-resistant protein for each subunit. The
localization of Igl remained unchanged after exposure to galactose or mannose followed by hRBCs. The enrichment of Hgl and Lgl in lipid rafts after exposure
to hRBCs was inhibited in the presence of galactose but not mannose.

FIG 3 Exposure to collagen is correlated with a calcium-dependent enrichment of Hgl and Lgl in lipid rafts. Trophozoites (3.5 � 106) were serum starved or
serum starved and incubated in the presence of BAPTA/AM and incubated on collagen-coated flasks (coll) or uncoated control flasks. DRM was isolated and
fractionated by sucrose gradient density centrifugation. Nineteen fractions and a pellet (20P) were collected and subjected to Western blot analysis using
antibodies specific for Hgl (A), Lgl (B), or Igl (C). Average values and standard deviations for densitometric scans (n � 2) are reported as the percentage of total
detergent-resistant protein for each subunit. In cells treated with collagen, the distribution of Igl was not different from that in control cells. Hgl and Lgl subunits
were enriched in fractions 13 to 16 upon exposure to collagen. Enrichment of Hgl and Lgl in lipid rafts was inhibited in the presence of BAPTA/AM.
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levels of Hgl and Lgl after exposure to hRBCs (fractions 9 to 14)
(Fig. 2). This suggests that the molecular mechanism governing
the submembrane distribution of the Gal/GalNAc lectin subunits
differs in a ligand-specific manner. This enrichment was pre-
vented by the addition of galactose but not by the addition of
mannose (Fig. 4). Therefore, physical interaction of trophozoites
with collagen also appears to be necessary for enrichment of Hgl
and Lgl in lipid rafts.

Exposure to fibronectin does not correlate with an enrich-
ment of Hgl and Lgl subunits in lipid rafts. Because galactose
and raft-disrupting agents have little effect on trophozoite-
fibronectin interaction (33), it is likely that neither the Gal/
GalNAc lectin nor lipid rafts play a primary role in the inter-

action between the parasite and this ECM component. There-
fore, as a control, we incubated trophozoites on fibronectin-
coated flasks and isolated and characterized lipid rafts. In both
control cells and cells exposed to fibronectin, Hgl and Lgl were
concentrated in the actin-rich fractions (fractions 17 to 20),
while Igl was concentrated in lipid raft fractions (fractions 9 to
14) (Fig. 5). Therefore, exposure to fibronectin did not affect
the localization of any of the Gal/GalNAc lectin subunits and in
particular did not induce the enrichment of Hgl and Lgl in lipid
raft domains of E. histolytica. This supports the authenticity of
our finding that binding to a bona fide ligand of the Gal/GalNAc
lectin (e.g., hRBCs and collagen) can influence the submem-
brane localization of this adhesin.

FIG 4 Enrichment of Hgl and Lgl in lipid rafts after exposure to collagen is inhibited by the presence of galactose but not mannose. Trophozoites (3.5 � 106) were
serum starved and pretreated with 10 mM galactose (gal) or 10 mM mannose (man). Cells were then incubated on collagen-coated flasks (coll) for 15 min at 37°C.
DRM was isolated and subjected to sucrose gradient density centrifugation. Nineteen fractions and a pellet (20P) were collected and subjected to Western blot
analysis using antibodies specific for Hgl (A), Lgl (B), or Igl (C). Average values and standard deviations for densitometric scans (n � 2) are reported as the
percentage of total detergent-resistant protein for each subunit. The localization of Igl to lipid rafts (fractions 9 to 14) remained unchanged in the presence of
galactose or mannose. The enrichment of Hgl and Lgl in lipid rafts after exposure to collagen was inhibited in the presence of galactose but not mannose.

FIG 5 Exposure to fibronectin is not associated with enrichment of Gal/GalNAc lectin subunits. Trophozoites (3.5 � 106) were serum starved and incubated on
fibronectin-coated flasks or uncoated control flasks. DRM was isolated and fractionated using sucrose gradient density centrifugation. Nineteen fractions and a pellet
(20P) were collected and subjected to Western blot analysis using antibodies specific for Hgl (A), Lgl (B), or Igl (C). Average values and standard deviations for
densitometric scans (n � 2) are reported as the percentage of total detergent-resistant protein for each subunit. In both control and fibronectin exposed cells, Igl was
localized to fractions 9 to 14, previously identified as lipid rafts. Hgl and Lgl were localized primarily to fractions 17 to 20 in both fibronectin-exposed and control cells.
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Attachment to hRBCs is not sufficient for enrichment of Hgl
and Lgl in lipid rafts. Previously, an E. histolytica cell line expressing
GFP-labeled PH domain derived from Bruton’s tyrosine kinase
(GFP-PHBTK) was developed (4). The GFP-PHBTK-expressing cell
line exhibited interesting phenotypes, including enhanced mo-
tility and a phagocytic defect characterized by the ability to
bind to, but not internalize, hRBCs (4). The latter characteris-
tic provided the opportunity to test the sufficiency of ligand
binding in the regulation of Gal/GalNAc localization. GFP-
PHBTK-expressing cells were exposed to hRBCs, and lipid rafts
were purified and characterized. In this cell line, attachment to
hRBCs was not correlated with the enrichment of Hgl and Lgl
in lipid rafts (Fig. 6), suggesting that while necessary (Fig. 2 and

4), ligand binding is not sufficient to induce enrichment of Hgl
and Lgl in lipid rafts.

PIP2 regulates the submembrane distribution of Hgl and Lgl.
Given the phenotype of the GFP-PHBTK-expressing cells (4), we
hypothesized that phosphoinositide signaling was altered in the
mutant. Therefore, we used lipid dot blots to determine the levels
of PIP2 in the transgenic cell line. Compared to that in wild-type
cells, the level of PIP2 in GFP-PHBTK-expressing cells was de-
creased approximately 77% (Fig. 7). Since the regulation of inte-
grin function depends on PIP2 signaling (21, 25, 26), it is conceiv-
able that alterations in the levels of this lipid could influence the
enrichment of Hgl and Lgl in lipid rafts upon ligand binding. In
other systems, it has been established that PIP2 resides in rafts

FIG 6 PIP2 plays a role in Hgl and Lgl enrichment in lipid rafts. GFP-PHBTK-expressing trophozoites (3.5 � 106) were serum starved and exposed to hRBCs.
DRM was isolated and fractionated using sucrose gradient density centrifugation. Nineteen fractions and a pellet (20P) were collected and subjected to Western
blot analysis using antibodies specific for Hgl (A), Lgl (B), or Igl (C). Average values and standard deviations for densitometric scans (n � 2) are reported as the
percentage of total detergent-resistant protein for each subunit. In the mutant, the submembrane distribution of the three subunits remained unchanged upon
exposure to hRBCs. PIP2 loading restored the enrichment of Hgl and Lgl in lipid raft fractions.

FIG 7 GFP-PHBTK-expressing cells have altered PIP2 levels, and can be loaded with PIP2. (A) Phosphoinositides were extracted from whole-cell lysates, and PIP2

levels were measured using dot blots with antibodies specific to PIP2. Levels were analyzed and assigned a value of arbitrary densitometric units. PIP2 levels were
lower in GFP-PHBTK-expressing cells than in wild-type cells. (B) PIP2 loading in GFP-PHBTK-expressing cells was confirmed using a BODIPY-labeled PIP2. Both
differential interference contrast (DIC) and fluorescence images are shown. Scale bars represent 25 �m.
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(reviewed in references 29, 37, and 52). Since the GFP-PHBTK-
expressing cell line had reduced levels of PIP2, we determined
whether addition of exogenous PIP2 to this mutant could rescue
the Hgl and Lgl raft enrichment defect. The mutant cell line was
loaded with PIP2 using a Shuttle PIP2 kit (Echelon Biosciences),
and the successful addition of PIP2 to cells was confirmed by flu-
orescence microscopy using BODIPY-labeled PIP2 (Fig. 7). Inter-
estingly, loading of PIP2 resulted in restoration of the ability of this
cell line to respond to hRBC exposure with enrichment of Hgl and
Lgl in lipid raft domains (Fig. 6). However, PIP2 addition did not
completely reverse the phenotype, since the percent enrichment of
Hgl and Lgl in rafts was less in the PIP2-loaded mutant than in wild-
type cells (Fig. 1). These data provide genetic evidence of a role for
PIP2 in regulating the lectin subunit localization in lipid rafts.

Calcium signaling is necessary for the enrichment of Hgl and
Lgl in rafts after ligand binding. In other systems, PIP2 can be
hydrolyzed into IP3 and DAG, which facilitates calcium signaling
(8, 43). Given the importance of PIP2 in the localization of Hgl and
Lgl to lipid rafts, we measured intracellular calcium levels after
exposure to collagen and fibronectin using a fluorescence-based
calcium assay. We observed a significant increase in intracellular
calcium levels after exposure to collagen but not after exposure to
fibronectin (Fig. 8).

To determine if the accumulation of intracellular calcium was
essential for the localization of Hgl and Lgl in lipid rafts, we ex-
posed trophozoites to BAPTA-AM, an intracellular calcium chela-
tor, prior to exposure to collagen. Reduction of calcium by
BAPTA-AM was confirmed using a fluorescence-based calcium
assay (Fig. 8). Exposure to BAPTA/AM prior to exposure to col-
lagen prevented the enrichment of Hgl and Lgl in lipid rafts (Fig.
3), suggesting that the accumulation of intracellular calcium is
necessary for lipid raft association of Gal/GalNAc lectin subunits.
It is possible that the failure of Hgl and Lgl to become enriched in lipid
rafts after exposure to BAPTA/AM and collagen was due to decreased
adhesion. We measured adhesion to collagen in the presence of
BAPTA/AM. Adhesion to collagen was not significantly inhibited in
the presence of 50 �M BAPTA/AM (Fig. 9). This suggests that any
effects of BAPTA/AM exposure on intracellular calcium levels and

the localization of Hgl and Lgl were not simply due to a decrease in
adhesion to the collagen-coated surfaces.

DISCUSSION

In this study, we have shown that exposure of E. histolytica to bona fide
Gal/GalNAc lectin ligands (e.g.,. hRBCs or collagen) was accompa-
nied by enrichment of the Gal/GalNAc lectin subunits, specifically
Hgl and Lgl, in lipid raft domains. Previously, it was shown that cho-
lesterol loading induced colocalization of Gal/GalNAc lectin subunits
in rafts and increased activity of the Gal/GalNAc lectin (53). Here, we
have provided evidence that another condition, namely, ligand bind-
ing, can also influence the submembrane localization of the Gal/
GalNAc lectin subunits. We have also shown that binding to ligand
was necessary, but not sufficient, to induce enrichment of Hgl and Lgl
in lipid rafts after ligand binding. Our data also indicate that PIP2 and
calcium participate in the enrichment of Gal/GalNAc lectin subunits
in rafts.

Enrichment of Hgl and Lgl in high-buoyancy lipid raft do-
mains after ligand binding is similar to the clustering and activa-
tion of mammalian integrins in lipid rafts. For example, in Jurkat
T lymphocytes, attachment to collagen type IV or fibronectin in-
duces lipid raft enrichment of �2�1 and �4�1 integrins, respec-
tively (17). Furthermore, activation of another integrin in Jurkat T
lymphocytes, lymphocyte function-associated antigen 1 (LFA-1),
is correlated with its enrichment in lipid rafts (24). Although these
signaling pathways are well understood in immune cells, the cur-
rent study is an important first step toward the understanding of
downstream signaling pathways that arise from lipid rafts in a
parasite model.

The present study shows that attachment to ligand results in
colocalization of the three lectin subunits in lipid raft fractions.
Previously, it was shown by immunoprecipitation that Igl associ-
ates with Hgl (30). Importantly, we have not shown that Hgl and
Lgl physically interact with Igl in lipid rafts. However, it is con-
ceivable that the enrichment of Hgl and Lgl in raft regions, which
already contain Igl, facilitates the assembly of the lectin into a
functional trimer. This, in turn, may serve to activate subsequent
raft-based signaling pathways related to virulence.

Exposure to hRBCs or collagen was correlated with the enrich-
ment of Hgl and Lgl subunits in lipid rafts. Interestingly, these raft
populations differed slightly in their buoyant densities. For exam-
ple, after binding to hRBCs, Hgl and Lgl associated with rafts that

FIG 8 Intracellular calcium levels are significantly higher in collagen-exposed
cells than in collagen/BAPTA/AM- or fibronectin-exposed cells. Intracellular
calcium levels were measured for wild-type trophozoites that were exposed to
collagen, with or without BAPTA/AM, or fibronectin. Compared to those in col-
lagen-exposed cells (n � 3), calcium levels in BAPTA/AM-exposed or in fibronec-
tin-exposed cells (n � 4) were significantly lower at all tested time points.

FIG 9 Adhesion to collagen is not significantly inhibited in the presence of
BAPTA/AM. Adhesion to collagen was measured for wild-type cells that were
exposed to serum-free medium with or without BAPTA/AM. Values were
averaged, and adhesion is represented as a percentage of the control value, set
to 100% (�SD; n � 3). Adhesion to collagen was not significantly inhibited in
the presence of BAPTA/AM or control.

Lipid Raft Location of Ligand-Bound Gal/GalNAc Lectin

June 2012 Volume 11 Number 6 ec.asm.org 749

http://ec.asm.org


were more buoyant than the rafts harboring these same subunits
after collagen binding. It is possible that there are multiple types of
lipid rafts within the parasite membrane, and binding to collagen
or hRBCs causes the lectin to localize to distinct and separate lipid
raft domains. In other systems, there is evidence for distinct raft
populations. For example, purification of rafts from Madin-
Darby canine kidney cells, using a variety of detergents, resulted in
the isolation of distinct lipid raft domains with different protein
residents (41). Immunogold labeling and electron microscopy
have shown that all lipid raft markers do not colocalize. These data
from other systems support the notion that multiple lipid raft
domains exist within the plasma membrane (55). Our data suggest
that the same is true in E. histolytica.

Differences in the buoyant density of rafts containing the lectin
may be due to the association of the lectin with a different set of
signaling proteins or cytoskeletal proteins in a ligand-specific
manner. In neutrophils, heavier detergent-resistant membranes
were found to contain more cytoskeletal proteins (34). Adhesion
plaques, which contain actin, myosin I and II, �-actinin, vinculin,
and tropomyosin (49), have been observed in E. histolytica upon at-
tachment to ECM components but have not been observed upon
attachment to hRBCs. Thus, the formation of a Gal/GalNAc lectin-
containing adhesion plaque after exposure to collagen may explain
why the lipid rafts harboring the lectin after collagen exposure are less
buoyant than those harboring the lectin after hRBC exposure.

We showed that ligand binding was not correlated with the
enrichment of Hgl and Lgl in rafts in a transgenic cell line with
reduced levels of PIP2. We also showed that addition of exogenous
PIP2 to this cell line partially rescued the phenotype. Together,
these data provide strong genetic evidence for a role for PIP2 in
regulating the submembrane distribution of the lectin subunits in
E. histolytica. To our knowledge, this is the first study, in any
system, to use a PIP2-deficient mutant to illustrate the role of PIP2

in protein-lipid raft interactions.
In the current study, intracellular calcium levels were increased

upon exposure to collagen but not fibronectin. Others have shown
that calcium levels increase when trophozoites are exposed to fi-
bronectin (5). One explanation for this difference is that we ex-
posed cells to fibronectin-coated coverslips instead of fibronectin
in solution (5); adhesion to the solid ECM surface may initiate
different signaling pathways. It is currently unknown whether the
increased intracellular calcium levels are directly related to PIP2

hydrolysis in the cell or are attributable to other mechanisms re-
lated to calcium influx. In mammalian cells, the physical interac-
tion between �II�3 integrin, sodium-proton exchangers, and so-
dium-calcium exchangers occurs simultaneously with integrin
binding to ligand and results in increased intracellular calcium
levels (56). Additionally, in phagocytes, extracellular calcium in-
flux was shown to be essential for movement of an integrin bound
to adenylate cyclase toxin from Bordetella into lipid rafts (3). Sim-
ilarly, in the current study, the increase in calcium levels was
shown to be necessary for ligand-induced enrichment of Hgl and
Lgl in lipid raft domains.

Other studies, with mammalian cells as well as with E. histo-
lytica, have supported the connection between calcium, PIP2, reg-
ulation of actin cytoskeleton, regulation of transcription, and vir-
ulence. For example, in B cells, calcium signaling has been shown
to activate transcriptional regulators, such as NF-�B and NFAT
(13). Likewise, attachment to collagen by trophozoites induces an
increase in the binding of transcriptional regulators AP-1, STAT1,

and STAT3 to DNA (7, 36) and an increase in the expression of
several important virulence factors, including amoebapore and
cysteine proteases (10). In E. histolytica, actin remodeling occurs
during attachment to collagen (32) and hRBCs (1), and calcium
mobilization can affect actin organization (5). In mammalian
cells, calpain, a calcium-dependent protease, has been shown to
cleave the cytoskeletal elements talin, filamin, and �-actinin,
thereby releasing integrins from the actin cytoskeleton (45). It has
been proposed previously that this cleavage of talin may be re-
sponsible for freeing proteins to allow their recruitment to lipid
raft domains (3). PIP2 also contributes to actin cytoskeletal reor-
ganization by guiding and activating actin binding proteins (20,
31). PIP2 plays an important role in mammalian cells by binding
to talin, thereby targeting it to focal adhesions, where it can inter-
act with and activate integrins (25). Together with our data, these
findings suggest an intriguing link between parasite-host interac-
tions, raft association of the Gal/GalNAc lectin, calcium mobili-
zation, the cytoskeleton, and changes in gene expression.

The data presented here provide insights into signaling path-
ways in E. histolytica and, importantly, add to a developing model
of the regulation of Gal/GalNAc lectin function. In the absence of
ligand, GPI-anchored Igl subunits reside predominantly in raft-
like domains, whereas Hgl-Lgl dimers are localized primarily to a
different submembrane compartment. Binding to at least two bi-
ologically relevant ligands, hRBCs and collagen, brings all three
subunits to the same raft fractions. Interestingly, our data are the
first to show a correlation between the submembrane position of
the lectin subunits and phosphoinositide-based signaling in this
pathogen. In the future, it will be important to identify effectors
that act downstream and in parallel with the Gal/GalNAc lectin
after ligand binding and enrichment in lipid rafts. Fully under-
standing the behavior of this receptor after contact with extracel-
lular ligands during invasion is necessary to fully appreciate viru-
lence functions in E. histolytica.
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