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Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacter-
aceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are
associated with soil. The Acx of CH34 forms the heterohexameric complex �2�2�2 and can carboxylate only acetone and 2-bu-
tanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively.

Acetone is a toxic compound found in air, water, and soil, both
naturally as a pollutant (5, 17) and also as a result of being

produced by mammals and bacteria (8, 11, 12, 23). Acetone can
also be degraded by various bacteria using a CO2-dependent path-
way including acetone carboxylase as a key enzyme, a property of
increasing interest for bioremediation purposes (1–3, 6, 7, 9, 10,
15, 16, 18–22). Acetone carboxylase (Acx) is a member of a pro-
tein family that also contains acetophenone carboxylase and ATP-
dependent hydantoinases/oxoprolinases. While the members of
this family share several similar characteristics, they differ with
respect to the substrates, the products of ATP hydrolysis, and
structural properties (16).

Genome analyses revealed a lot of bacterial species that possess
the acetone carboxylase and thus are potentially able to detoxify
acetone (see Fig. S1 in the supplemental material). Most of these
bacteria, such as Cupriavidus metallidurans, were found in soil or
in contact with soil (e.g., by plant symbiosis) and belong to Pro-
teobacteria and especially Betaproteobacteria. In the Alphaproteo-
bacteria class, the Rhizobiales and the Rhodobacterales orders were
found to contain an Acx. In the Deltaproteobacteria class, only one
species (Geobacter uraniireducens Rf4), up to now, was discovered
to contain an Acx, which had around 30% amino acid (aa) se-
quence identity with the CH34 Acx depending on the subunit. The
only pathogenic species that possess the enzyme are those belong-
ing to the Helicobacteraceae family (Epsilonproteobacteria) which
are found in the mammalian stomach (4).

In general, similar gene organizations for the Acx operon were
found, with three genes, acxA, acxB, and acxC, encoding the three
acetone carboxylase subunits (�, �, and � subunits, respectively)
and one regulator, acxR, which was identified as a �54- or �70-
specific transcriptional regulator and can be divergently tran-
scribed (19). The only known paralogous enzyme with similar
biochemical function is acetophenone carboxylase from Aroma-
toleum aromaticum (16). This enzyme consists of a hetero-octa-
mer of four subunits whose corresponding genes apcABCDE are
clustered as an operon. Acetone carboxylase does not contain a
paralogue of ApcE.

Acetone carboxylase induction in Cupriavidus metallidu-
rans. A recent study focused on acetone metabolism in C. metal-
lidurans CH34, a betaproteobacterium found in industrial
biotopes highly contaminated with metals (14), showing an over-
expression of the acetone carboxylase when grown in spaceflight

conditions (13). As observed in Rhodobacter capsulatus and Xan-
thobacter autotrophicus, the C. metallidurans Acx subunits were
induced at a high level (19% � 4% of the total proteins) when
acetone was present in the culture (Fig. 1) (19, 20). An acxR
knockout mutant was constructed in this study. This mutant, in
which no acetone carboxylase was produced (Fig. 1), was unable
to grow with acetone or isopropanol. High expression of this en-
zyme may compensate for a low turnover number for catalysis,
allowing a reasonable rate of acetone carboxylation to support
growth with a relatively low doubling time (4 to 20 h for X. au-
totrophicus, R. capsulatus, and C. metallidurans CH34) (19).

Acetone carboxylase purification and characterization. The
partial characterization of acetone carboxylase was conducted
in X. autotrophicus strain Py2, Rhodococcus rhodochrous strain
B276, R. capsulatus strain B10, Alicycliphilus denitrificans strain
K601, two species of Paracoccus, and very recently Aromato-
leum aromaticum, showing high structural similarities (1, 6, 7,
15, 16, 18–20).

In this study, the Acx of CH34 was purified according to a
two-step procedure consisting of anion DEAE-Sepharose chro-
matography followed by Sephacryl S300 molecular filtration (18,
19). The native molecular mass of the acetone carboxylase com-
plex was determined by gel filtration and was estimated to be
388 � 15 kDa, corresponding to an �2�2�2 configuration (86, 76,
and 19 kDa for the �, �, and � subunits, respectively), as described
previously in other bacteria (6, 7, 16, 18, 19). The absorption spec-
trum of acetone carboxylase between 250 and 350 nm exhibited a
maximal peak at 287.2 nm, which is close to the value obtained in
X. autotrophicus (281 nm) (18).

Enzymatic activity. Depending on the species, the properties
of Acx enzymes differ with regard to the substrates and cofactors
required to support the carboxylation reaction (1, 6, 16, 18–20).
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The C. metallidurans enzyme showed poor stability and maxi-
mum activity in a pH range of 6.5 to 8.0.

Of all the tested high-energy compounds (ATP, ITP, UTP, or
GTP), only Mg-ATP supported acetone carboxylation in CH34,
resulting in acetoacetate formation (Fig. 2). Similar results were
obtained in X. autotrophicus, A. aromaticum, and R. capsulatus,
while in R. rhodochrous, no activity was observed with ATP (6, 16,
19). As observed in these bacteria, the acetone carboxylase reac-
tion in CH34 showed that ATP is hydrolyzed into AMP and 2
inorganic phosphates.

NH4
� ions have also been shown to increase acetone carboxy-

lase activity (19). Yet tests performed in the presence of NH4Cl
(100 mM) showed no significant increase in acetoacetate produc-
tion by the Acx of CH34. In contrast, as observed in X. autotrophi-

cus, potassium (40 mM) and CO2 (KHCO3) sources stimulated
the CH34 acetone carboxylase activity.

The specific activities obtained with the purified enzyme of
CH34 were 0.4 to 0.6 U/mg, compared to 0.08 to 0.240 U/mg for
the other Acx enzymes (6, 16, 18, 19). Nevertheless, the compari-
son in terms of activity has to be taken cautiously due to the dif-
ferences observed with the stability of the purified enzymes.

Among all the tested substrates, only acetone and 2-butanone
were identified as substrates of the C. metallidurans Acx (Fig. 2).
Interestingly, we showed that C. metallidurans CH34 was also able
to grow in the presence of 2-butanone as the sole carbon source.
Studies in X. autotrophicus and A. aromaticum also revealed that
2-butanone was the only alternative substrate of acetone carbox-
ylase (16, 18). In R. rhodochrous, the acetone carboxylase was
found to utilize a wider range of substrates, including 2-butanone,
which was consumed at a rate identical to that of acetone, and also
2-pentanone, 3-pentanone, and 2-hexanone, which were de-
graded at rates that were 70, 40, and 42% of the rate of acetone,
respectively (6). Nuclear magnetic resonance (NMR) analyses re-
vealed that carboxylation of 2-butanone by the Acx of CH34 pro-
duces 3-keto-2-methylbutyrate (Fig. 3). Recently, Schühle and
Heider suggested that the Acx of A. aromaticum carboxylates only
methyl groups adjacent to carbonyl and proposed that butanone
was transformed to 3-oxopentanoic acid (16). Nevertheless, no
experimental characterization of the carboxylated product was
realized from butanone by the Acx of A. aromaticum (16).

We propose for C. metallidurans that 3-keto-2-methylbu-
tyrate obtained by carboxylation of butanone was then acti-
vated to coenzyme A (CoA) thioester and thiolytically cleaved
to propionyl-CoA and acetyl-CoA, as observed in the leucine
catabolism pathway.

FIG 1 Acetone carboxylase expression. SDS-PAGE of protein extracts (10 �g)
from CH34 grown in the presence of 9 mM gluconate (1), 25 mM acetone (2),
25 mM isopropanol (3), and 25 mM n-propanol (4). (5) Protein extract (10
�g) from the acxR knockout mutant cultivated in the presence of acetone 25
mM. (6) Purified acetone carboxylase (5 �g). Molecular mass is indicated on
the left.

FIG 2 Comparison of the acetone and acetophenone carboxylases from various species. 1, information obtained from reference 16; 2, information obtained
from references 18 and 19; 3, information obtained from reference 19; 4, information obtained from reference 6; 5, information obtained from reference 10. A
superscript “a” indicates that the products of the enzymatic reaction were not identified in X. autotrophicus and R. capsulatus; for A. aromaticum, the nature of
the product was suggested by the authors but not experimentally identified. A superscript “b” indicates that the product of the enzymatic reaction was not
identified. ND, not determined. �, supports the Acx reaction at different levels; �, does not support the Acx reaction.
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In conclusion, C. metallidurans CH34 is able to degrade ace-
tone and, besides acetone, only 2-butanone using an ATP-depen-
dent pathway including the Acx enzyme. The corresponding acx
genes are located on the second chromosome or chromid.
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FIG 3 Determination by NMR analyses of acetone carboxylase reaction products with 2-butanone as the substrate. (A and B) Enzymatic reactions realized
without substrates. (C, D, E, and F) Enzymatic reactions realized in the presence of 81.5 �g of pure Acx with 8 mM, 12 mM, 16 mM, and 24 mM ATP, respectively.
(G) Enzymatic reaction realized with 16 mM ATP and 163 �g of pure Acx. ppm, parts per million.
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