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RNA sequencing is starting to compete with the use of DNA microarrays for transcription analysis in eukaryotes as well as in
prokaryotes. The application of RNA sequencing in prokaryotes requires additional steps in the RNA preparation procedure to
increase the relative abundance of mRNA and cannot employ the poly(T)-primed approach in cDNA synthesis. In this study, we
aimed to validate the use of RNA sequencing (direct cDNA sequencing and 3=-untranslated region [UTR] sequencing) using Lac-
tobacillus plantarum WCFS1 as a model organism, employing its established microarray platform as a reference. A limited effect
of mRNA enrichment on genome-wide transcript quantification was observed, and comparative transcriptome analyses were
performed for L. plantarum WCFS1 grown in two different laboratory media. Microarray analyses and both RNA sequencing
methods resulted in similar depths of analysis and generated similar fold-change ratios of differentially expressed genes. The
highest overall correlation was found between microarray and direct cDNA sequencing-derived transcriptomes, while the 3=-
UTR sequencing-derived transcriptome appeared to deviate the most. Overall, a high similarity between patterns of transcript
abundance and fold-change levels of differentially expressed genes was detected by all three methods, indicating that the biologi-
cal conclusions drawn from the transcriptome data were consistent among the three technologies.

Understanding the influence of environmental conditions on
genome-wide gene expression levels requires the accurate

quantification of all expressed (m)RNAs. Microarrays provide an
effective method for the analysis of thousands of transcripts in a
parallel manner, and they allow the measurement of the genome-
wide transcriptome of an organism in a single experiment (12, 51).
It is especially suited for the transcriptome comparison of two
biological conditions (34). However, background and saturation
problems (42) and the low reproducibility of results between lab-
oratories (16) during microarray analyses could limit the use of
microarrays for transcriptome interpretation.

The rapid development of next-generation sequencing (NGS)
technology for transcriptome analysis, which is known as RNA
sequencing, is promoting the use of this method as a replacement
for DNA microarrays. RNA sequencing using NGS technology has
the advantage of low per-base costs through massive parallel de
novo sequencing. This is starting to make RNA sequencing a cost-
effective alternative for transcriptome analysis, and it is especially
suited for samples from biological material with unknown genetic
content. RNA sequencing enables the direct determination of the
identity and abundance of a transcript, which facilitates the iden-
tification of novel transcripts (4, 24) and allows the detection of
rare transcripts at considerable sequencing depth (43). The RNA
sequencing approach was initially described for eukaryotic cells,
such as yeast (26), mouse embryonic stem cells and embryoid
bodies (6), human cell lines (36), and plants (11, 42). The main
principle of RNA sequencing in eukaryote cells includes the selec-
tive conversion of mRNA into double-stranded cDNA fragments
by poly(T) (or random)-primed reverse transcription and strand
duplication, followed by the direct sequencing of the double-
stranded cDNA and quantitative mapping of the identified reads
to the genome to estimate the level of gene expression (21, 46). To
assess the robustness of the RNA sequencing methodology com-

pared to that of microarrays, several studies were conducted using
RNA of eukaryote cells, such as human liver and kidney (22) and
mouse hippocampi (39). These comparative studies revealed a
good correlation between the levels of transcripts measured by
microarrays and RNA sequencing. Moreover, these studies fa-
vored RNA sequencing in terms of its higher reproducibility and
higher accuracy of detection of the fold change in expression level
(22, 39). However, these conclusions were contradicted by a well-
defined study that used synthetic RNA samples and demonstrated
that microarray quantification correlated better with actual tran-
script levels and was more sensitive than RNA sequencing, while
both methods performed equally well with respect to reproduc-
ibility and relative transcript ratio determination (47). In addition
to the expressed sequence tag (EST) sequencing, an alternative
sequencing-based transcriptome approach was described by Eve-
land et al. (11), in which the 3=-untranslated region (3=-UTR) of
mRNAs in Zea mays was sequenced. This 3=-UTR sequencing
method offers the possibility to determine differential expression
between closely related genes. To date, no studies have been re-
ported that assess the robustness of 3=-UTR sequencing for tran-
scriptome analysis or its comparison to alternative transcriptome
analysis methods.

Although RNA sequencing technologies have been imple-
mented and validated in eukaryotes, it is still quite challenging to
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employ these methods for prokaryote transcription analysis. This
is not surprising, since the prokaryote RNA pool contains a large
amount of rRNA and tRNA, which may constitute more than 95%
of the total RNA (31), while the selective reverse transcription of
mRNA by poly(T) priming is not possible (9, 42). Moreover, pro-
karyote transcriptional profiles are considered to be much more
dynamically regulated and less stable than those of eukaryotes. To
increase the relative abundance of mRNA in total prokaryote RNA
material, several methods have been developed, including rRNA
capture, the selective degradation of processed RNA, the selective
polyadenylation of mRNA, and the antibody capture of subsets of
mRNAs that interact with Hfq proteins (32). Due to the lack of a
poly(A) tail in prokaryote mRNA, alternative priming approaches
during reverse transcription (RT) are commonly based on ran-
dom oligonucleotide priming (hexamers or longer) and some-
times employ multiplexed gene-specific oligonucleotides (28, 50)
or based on a combination of gene-specific priming and 5=-end
RNA sequencing (48). Alternatively, oligo(dT) priming can be
employed following the artificial polyadenylation of mRNAs (13).
The development of mRNA enrichment and priming methods
allowed the successful use of RNA sequencing approaches for the
investigation of transcriptome changes under different growth
conditions of Burkholderia cenocepacia (50) and Bacillus anthracis
(28).

In this study, we aimed to validate the use of different RNA
sequencing techniques using a model prokaryote organism while
employing an established microarray platform as a reference. The
transcriptomes of Lactobacillus plantarum WCFS1 (grown in two
different laboratory media) were compared using custom-made
oligonucleotide microarrays and RNA sequencing approaches.
The microarray was also employed to evaluate the impact on the
transcriptome of mRNA enrichment by RNA capture methods.
This study includes the comparison of two RNA sequencing ap-
proaches, direct cDNA and 3=-UTR cDNA sequencing, to evaluate
their applicability in prokaryote transcriptome analyses. Our
analyses show that the depth of analysis for both RNA sequencing
methodologies was similar to that observed for the microarray,
leading to a coverage of �95% of all genes encoded in the L.
plantarum WCFS1 genome. The best transcriptome correlation
was found between microarray and direct cDNA sequencing anal-
yses, while the 3=-UTR sequencing method appeared to deviate
the most. Overall, patterns of transcript abundance and fold-
change levels of differentially expressed genes were similar for all
three methods.

MATERIALS AND METHODS

Bacterial strain and growth conditions. L. plantarum WCFS1 (19) was
grown in chemically defined medium (CDM) (38) and de Man Rogosa
Sharpe (MRS) medium (8) at 37°C without agitation. Cells were harvested
by centrifugation for 10 min at 4,570 � g and 4°C using a Heraeus Mul-
tifuge 3 S-R centrifuge (DJB Labcare Ltd., England) at an optical density at
600 nm (OD600) of approximately 1.0, which corresponds to the mid-
logarithmic phase of growth for both media.

Total RNA isolation and mRNA enrichment. Total RNA was ex-
tracted from the cell pellets according to the Macaloid-based RNA isola-
tion protocol (52). Extraction was followed by RNA purification using the
RNAeasy minikit (Qiagen), including an on-column DNase I (Roche,
Germany) treatment as described previously (52). The enrichment of
mRNA was performed by the selective removal of 16S and 23S rRNA using
oligonucleotide probes attached to magnetic beads according to the man-
ufacturer’s protocol (Microbexpress; Ambion, Applied Biosystems,
Niewerkerk a/d Ijssel, the Netherlands) (44). Total RNA and enriched
mRNA yields were quantified spectrophotometrically (NanoDrop 1000;
Nanodrop Technologies, Wilmington, DE), and total RNA quality was
assessed by a microfluidics-based electrophoresis system (Experion RNA
StdSens; Bio-Rad Laboratories Inc.).

DNA microarray-based transcriptome analysis. The microarray
used was a custom-designed L. plantarum WCFS1, 8�15K Agilent oligo-
nucleotide microarray (GPL13984) containing (maximally) three differ-
ent probes per annotated gene that were spotted in duplicate (30). Both
total RNA and enriched mRNA were subjected to cDNA synthesis using a
random nonamer primed approach as has been described before (33).
Cy3- and Cy5-labeled cDNAs were prepared using a Cyscribe postlabeling
kit (Amersham Biosciences, United Kingdom) according to the manufac-
turer’s protocol. Cy5/Cy3 dye swaps were performed for the cDNA sam-
ples according to the scheme shown in Fig. 1. Labeled cDNA mixtures
were subsequently concentrated in a Hetovac VR-1 (Heto Lab Equipment
A/S, Birkerod, Denmark) to a final volume of 25 �l (if needed), incubated
at 98°C for 3 min, and cooled at room temperature for 5 min. After the
addition of 25 �l 2� GEX HI-RPM hybridization buffer (Agilent Tech-
nologies, Palo Alto, CA), 40 �l of each mixture was applied to an Agilent
8�15K array (Agilent Technologies, Palo Alto, CA). The hybridization
and scanning of the microarray slides were performed as described previ-
ously (23). Slides were scanned with a ScanArray Express 4000 scanner
(Perkin Elmer, Wellesley, MA), and the image was analyzed and processed
using ImaGene version 7.5 software (BioDiscovery Inc., Marina Del Rey,
CA). Both total RNA and mRNA-enriched data sets were normalized and
corrected by the local fitting of an M-A plot applying the Lowess algo-
rithm (49) and interslide scaling, which are available in MicroPrep (41),
and different transcriptomes were compared using CyberT (3), taking
into account the dye swaps of each of the conditions as described previ-
ously (23). The microarray data have been deposited in NCBI’s Gene.

FIG 1 Hybridization scheme of total RNA and enriched mRNA of L. plantarum WCFS1 grown in CDM and MRS. Each arrow represents a single hybridization.
Samples at the base of the arrow were labeled with Cy3 label and samples at the arrowhead with Cy5.
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RNA sequencing-based transcriptome analysis. Double-stranded
cDNA was synthesized using enriched mRNA of CDM- or MRS-grown L.
plantarum WCFS1 using the SuperScript double-stranded cDNA synthe-
sis kit (11917-010; Invitrogen) with the addition of SuperScript III reverse
transcriptase (18080-044; Invitrogen) and random primers (48190-011;
Invitrogen) as described previously (50). This was followed by RNase A
(Roche, Germany) treatment, phenol-chloroform extraction, and ethanol
precipitation. Double-stranded cDNA was quantified using the Nano-
Drop 1000 spectrophotometer (Nanodrop Technologies, Wilmington,
DE), and the quantity and purity were verified by GATC Biotech using an
Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Waldbronn, Ger-
many). Sequencing libraries were constructed from double-stranded
cDNA samples according to the Illumina Genome Analyzer II protocol
(46), followed by direct cDNA sequencing (GATC Biotech, Konstanz,
Germany). In addition, enriched mRNA samples of L. plantarum WCFS1
from both CDM and MRS were used for 3=-UTR library preparation. To
this end, the enriched mRNA samples were poly(A) tailed using poly(A)
polymerase, treated with tobacco acid pyrophosphatase (TAP), and li-
gated at the 5= end to an RNA adaptor (GATC Biotech, Konstanz, Ger-
many). First-strand cDNA synthesis was performed using an oligo(dT)
adapter primer and Moloney murine leukemia virus (M-MLV) H-reverse
transcriptase. The resulting cDNAs were PCR amplified to 20 to 30 ng/�l
in 18 cycles using a high-fidelity DNA polymerase. PCR products were
purified using the NucleoSpin Extract II kit (Macherey-Nagel GmbH &
Co. KG., Germany) and were examined using a Shimadzu MultiNA mi-
crochip electrophoresis system (Shimadzu Corporation, Japan). Both di-
rect cDNA and 3=-UTR sequencing were performed simultaneously using
a single flow cell of the Illumina Genome Analyzer II (GATC Biotech,
Konstanz, Germany) at 8 pM. Sequence data were cleaned for the poly(A)
(for 3=-UTR sequencing only) and low-complexity regions using seqclean
(http://compbio.dfci.harvard.edu/tgi/software/), with a length threshold
of 20. The mapping and quantification of the cleaned sequences to an in
silico transcriptome reference was performed by GATC Biotech. The
cDNA reference was created using the annotation of the L. plantarum
WCFS1 genome obtained from UCSC Genome Bioinformatics (http:
//genome.ucsc.edu/). To map the 3=-UTR-derived sequences to the ap-
propriate gene-specific transcripts, additional mappings of 100-, 200-,
and 300-bp 3=-extended transcriptional unit predictions were employed
(45). These multiple mappings were performed to increase the frequency
of read assignments to genes, because the position of a 3=-UTR at the end

of a transcript in L. plantarum WCFS1 is unknown. The visualization of
the mapped transcript was performed using the UCSC Genome Browser
(http://microbes.ucsc.edu/).

Comparative data analyses of direct cDNA sequencing versus 3=-
UTR sequencing and microarray versus both RNA sequencings. The
signal intensity data obtained by microarrays and the number of read
counts of direct cDNA and 3=-UTR sequencings were quantile normalized
(5) using the CLC-Bio Genomic Workbench software to adjust the data
range. Normalized read counts of direct cDNA sequencing were plotted
against those of the 3=-UTR sequencing using a scatter plot to investigate
the read distribution between the two data sets. Rank-based analysis using
the Spearman correlation coefficient was applied to investigate the corre-
lation between two sequencing techniques for CDM and MRS culture-
derived RNA samples. For the comparison using the microarray, which
was utilized as the benchmark technology, normalized microarray signal
intensities were used for the comparison of the normalized read counts
from both RNA sequencing techniques using Spearman correlation anal-
ysis. The analysis of the differentially expressed genes (DEG) based on a
log2 fold-change ratio of CDM/MRS between microarray and both RNA
sequencing techniques was performed using a parametric method, Pear-
son correlation, assuming that the relative expression of the DEG should
be conserved within all techniques irrespective of the difference in abso-
lute gene expression values or the various dynamic ranges of the different
techniques. Only those genes that showed a �2-fold absolute fold-change
ratio for all techniques and displayed significant (FDR-adjusted P values
of �0.05) differential expression according to the microarray analysis
were used. Spearman and Pearson correlation analyses were performed
using the PASW Statistic 17.0 software suite (SPSS Inc., Chicago, IL).

Microarray data accession number. The microarray data have been
deposited in NCBI’s Gene Expression Omnibus (10) and are accessible
through GEO series accession number GSE35754.

RESULTS AND DISCUSSION
Microarray transcript profiles for total RNA and mRNA sam-
ples. In this study, L. plantarum WCFS1 was grown in two labo-
ratory media (CDM and MRS) to represent different environ-
mental conditions. Microarray analysis was performed using both
total RNA and enriched mRNA samples. The effect of mRNA
enrichment on the transcriptome profile was evaluated by com-
paring normalized signal intensities per gene in the total RNA to
those of mRNA-enriched transcriptome data sets by Spearman
correlation analysis. A highly similar ranking of gene expression
values in total RNA versus mRNA-enriched samples was detected,
as illustrated by the high Spearman correlation coefficients of
0.957 (P � 0.01) and 0.953 (P � 0.01) for the RNA samples de-
rived from CDM- and MRS-grown cultures, respectively. Only 81
genes were differentially quantified with FDR-adjusted P values of
�0.05 for total RNA versus enriched mRNA samples for both
growth conditions (Fig. 2), indicating that mRNA enrichment has
only a limited effect on overall transcript quantification. Notably,
of these 81 genes, 60 were differentially quantified in the RNA
samples from both growth conditions and were consistently ob-
served at a higher level in the mRNA-enriched sample, suggesting
that the enrichment procedure selectively and consistently en-
riches a small but specific RNA subset. Their fold-change ratio
generally varied from 2- to 10-fold, and in the few cases where the
fold change exceeded a factor of 10, the genes were among the least
expressed within the data set. The majority of these differentially
quantified genes were related to hypothetical protein functions
(Fig. 3). In addition, the limitation of the mRNA enrichment
method used (Microbexpress; Ambion), which does not target
tRNA removal, resulted in the differential quantification of some
tRNAs in the mRNA-enriched fraction (17).

FIG 2 Venn diagram showing the number of upregulated/downregulated/
oppositely regulated genes in the enriched mRNA sample obtained from bac-
terial cells grown in CDM and MRS (A) or in the RNA obtained from cells
growing in CDM, either total RNA or after mRNA enrichment (B).
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Variation in gene expression levels caused by the different
growth conditions (CDM versus MRS) was observed for a total of
207 genes (FDR-adjusted P values of �0.05) from both total RNA
and mRNA-enriched analyses. Of these 207 genes, 180 genes were
shared between the differential genes identified in the total RNA
and mRNA-enriched samples, of which 178 showed conserved
up- or downregulation as a consequence of the difference in
growth medium (Fig. 2). Average linkage hierarchical clustering
with Pearson correlation distance (35) confirmed a more pro-
nounced separation of CDM and MRS profiles relative to the sep-
aration seen for total RNA versus mRNA enrichment profiles
(Fig. 3).

This finding shows that the transcriptome variation caused by
different growth conditions exceeds the variation caused by the
enrichment procedure, indicating that mRNA enrichment will
have only a limited effect on the biological interpretation of tran-
scriptome data, which are validated for a well-defined culture un-
der well-defined conditions, with the anticipation of similar per-
formance in complex ecosystems. The genes displaying significant
differential expression between cultures grown on CDM and MRS
predominantly belonged to specific functional categories that ap-
pear to reflect the different medium compositions, such as trans-
port and binding proteins (in particular for amino acids, peptides,
and amines), amino acid biosynthesis (in particular for histidine
and aspartate), energy metabolism, and the synthesis of purines,
pyrimidines, nucleosides, and nucleotides (Fig. 3; also see Fig. S1
in the supplemental material). The limited amount of nucleotides
(18) and specific amino acids available in CDM relative to MRS
apparently requires an alternative pallet of transport functions to
import those components, which could be concluded consistently

from the arrays irrespective of the RNA source (enriched mRNA
versus total RNA) used.

RNA sequencing-based transcriptome analysis: direct cDNA
sequencing versus 3=-UTR sequencing. Direct cDNA sequencing
and 3=-UTR sequencing were performed using mRNA-enriched
samples of L. plantarum WCFS1 grown in CDM or MRS. The
number of sequence reads recovered varied between 17.5 and 28.1
million per sample (see Table S1 in the supplemental material),
with an average trimmed length of 36 bp. Of all sequence reads
obtained, 93 to 98% could be assigned to the L. plantarum WCFS1
genome. Sequence reads that could be mapped to the genome
were subsequently aligned to the coding sequences (CDS) based
on the current annotation of protein-encoding genes of L. planta-
rum WCFS1 (19). The majority of the direct cDNA sequencing
reads that mapped to the genome could be aligned to the CDS
(14.6 to 18.5 million). In contrast, the sequences obtained by 3=-
UTR sequencing mapped with much lower frequency to the CDS
(�20%) (see Table S1 in the supplemental material). A possible
explanation for the strongly reduced CDS mapping of the short
reads (�36 bp) obtained by 3=-UTR sequencing is the preferential
sequencing of the genetic regions downstream of the protein-cod-
ing region that is intrinsic to this method. Unfortunately, there is
no accurate prediction of the 3= end of the transcript sequences for
the L. plantarum genome. To overcome the low CDS mapping, an
in silico approach was chosen that included a stepwise 3= extension
of the CDS with 100, 200, and 300 bp. In silico predictions indi-
cated that approximately 75% of the predicted terminator se-
quences in the L. plantarum WCFS1 genome were encompassed
within the 100-bp extension (7), while an additional 12 and 6% of
the predicted terminators were encountered within the 200- and
300-bp extended 3=-UTRs, respectively (see Fig. S2 in the supple-
mental material). Analogously, the in silico 3= extension of the
CDS of the L. plantarum WCFS1 genome by 100 bp enabled an 80
and 130% increase in the gene-specific mapping of the CDM and
MRS 3=-UTR transcript sequence data sets, respectively. Notably,
larger 3= extensions of the gene sequences with 200 and 300 bp led
to significantly smaller increases of CDS-specific transcript map-
ping (�25 and �30%, respectively), supporting the prediction
that 75% of the terminators are within the first 100 bases down-
stream of the CDS (see Fig. S2A). Moreover, 200- and 300-bp 3=
extensions of gene sequences included a significantly higher frac-
tion of the transcript sequences that were erroneously mapped to
downstream genes, which is a consequence of the overlap of these
extensions with downstream genes (see Fig. S2B). Based on these
analyses, 100-bp 3= extensions were incorporated in the gene-spe-
cific mapping of 3=-UTR transcript sequence mapping to the L.
plantarum WCFS1 genome, which improved the number of reads
mapped to the CDS from below 20% to approximately 35%.

As anticipated, the distribution of the mapped sequences to the
protein-encoding CDS was markedly different between direct
cDNA sequencing and 3=-UTR sequencing. While the reads ob-
tained from 3=-UTR sequencing predominantly mapped at the 3=
end of the (extended) genes (see Table S2 in the supplemental
material), the reads obtained from direct cDNA sequencing ap-
peared to distribute relatively equally over the entire CDS. Many
prokaryotic genes are transcribed in operons that generate poly-
cistronic transcripts that cover several genes, which are commonly
functionally related (20, 45). Analogously, most of the 3=-UTR
sequence data sets (�70%) consistently mapped to the last
gene of such polycistronic transcripts (Fig. 4). This indicates

FIG 3 Cluster analysis of 240 genes, 60 of total RNA versus mRNA enrichment
and 180 of CDM versus MRS (with a �2-fold change and FDR-adjusted P
values of �0.05) of L. plantarum WCFS1. Functional categories enriched with
the gene data sets in different growth conditions are indicated with continuous
lines, while dotted lines indicate clusters of genes that displayed differential
quantification due to the mRNA enrichment procedure. Very similar cluster-
ing results were obtained when the complete transcriptome data sets were used
(data not shown).
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that the accurate functional interpretation of 3=-UTR sequence
data sets requires the correct prediction of transcriptional units
(including operons) to precisely encompass all functions ex-
pressed.

Both sequencing techniques showed comparable transcript
coverage, where �95% of all annotated genes (3,135 genes) of the
L. plantarum WCFS1 genome were at least covered by a single
sequence read. A similar read distribution was observed for direct
cDNA sequencing and 3=-UTR sequencing (i.e., similar propor-
tion between the area above and below the continuous line) (Fig.
5), which indicates similar gene expression patterns. Notably, sev-
eral genes were apparently overestimated by 3=-UTR sequencing
(Fig. 5, upper left), which may be due to either a technical artifact
from the application of the poly(A) tail, an artifact in the data
interpretation from the 100-bp extension of the mapping, or the
existence of some internal promoters (7).

RNA sequencing validation by comparative analysis with the
microarray-derived transcriptomes. Since microarrays can be
considered an established transcriptome methodology, the data
obtained from the microarrays were employed as a reference to
evaluate the overall validity of direct cDNA and 3=-UTR sequenc-
ing. Only the genes that gave a value for all methods (2,962 genes)
were used for the comparison of the transcriptomes obtained by
microarray and direct cDNA or 3=-UTR sequencing. Normalized
signal intensity values per gene obtained by microarray analysis
were plotted against normalized CDS read assignment frequencies
derived from both RNA sequencing methods.

Both microarray and RNA sequencing transcriptome data sets
were normalized using quantile normalization as a quick and sim-
ple method to create an even distribution of microarray probe
intensities and RNA sequencing read counts (5). Additional nor-
malization approaches, such as RPKM (reads per kilobase of exon

FIG 4 Mapping of L. plantarum WCFS1 transcripts from direct cDNA sequencing and 3=-UTR sequencing of MRS- and CDM-grown cultures based on a
predicted transcriptional unit (38). Scaling differences of the y axis range are indicative for the upregulated transcription level observed in cells obtained from
CDM-grown cultures.

FIG 5 Comparison of normalized signal intensity between direct cDNA sequencing and 3=-UTR sequencing for bacteria grown in CDM (Spearman coefficient,
0.686; P � 0.01) and MRS (Spearman coefficient, 0.678; P � 0.01).
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model per million mapped reads) (25) or FPKM (fragments per
kilobase of transcript per million fragments mapped) (40), which
take into consideration the influence of transcript length toward
the gene expression quantification of RNA sequencing reads,
could give more accurate gene expression quantification, espe-
cially of direct cDNA sequencing. Although overall transcriptome
comparisons were done without considering the transcript length,
high comparability was shown between microarray and direct
cDNA sequencing as well as between microarray and 3=-UTR se-
quencing (Fig. 6).

Direct cDNA sequencing displayed a higher correlation to the
microarray than the 3=-UTR (Fig. 6). This was especially apparent
in transcripts with relatively high 3=-UTR sequencing assignments
compared to the array signal intensity (Fig. 6C and D, upper left).
These results indicate that direct cDNA sequencing generates
transcriptome results that resemble those obtained by microarray
transcriptome profiling, and that the 3=-UTR estimated expres-
sion levels appear to be higher for subsets of genes than for the
other two methods. These conclusions were also supported by
rank-based Spearman correlation analysis, showing higher corre-
lation values between microarray and direct cDNA sequencing
data sets (CDM, 0.835 [P � 0.01] and 0.762 [P � 0.01]; MRS,
0.881 [P � 0.01] and 0.707 [P � 0.01]; for direct cDNA sequenc-
ing and 3=-UTR sequencing, respectively).

The application of 3=-UTR sequencing as a method for pro-
karyote transcriptome analysis has not yet been well established
and may require additional normalization or processing steps to
obtain an appropriate quantitative representation of the tran-

script levels that can be compared to microarray-derived tran-
scriptome data sets. To evaluate whether the lower correlation
between 3=-UTR sequencing and array-based transcript data sets
was caused by a biased positioning of the sequence reads within an
operon, the expression values of the last genes in operons was also
assigned to each upstream gene within the same predicted operon.
However, this data transformation step to accommodate polycis-
tronic operon transcripts in the 3=-UTR data did not improve the
correlation with the array-derived data sets (data not shown). This
suggests that the lower correlation of these data sets arises from a
bias in the 3=-UTR extension or sequencing technology employed.

The most relevant comparative analysis of the three methods
employed here undoubtedly relates to the comparisons of the
biological conclusions they may generate. To this end, the ability
of the three technologies to consistently identify the same genes (1,
22) that are differentially expressed (DEG) after growth on CDM
and MRS. The sequence-based transcriptome quantification was
determined by the ratio of sequence reads assigned to a gene in
data sets obtained from CDM and MRS samples, while the differ-
ential expression per gene in the microarray data set was calcu-
lated using CyberT (3). In total, 538 DEG with an expression fold
change of �2 were detected within the DNA microarray, while
442 and 466 DEG with an expression fold change of �2 were
detected by direct cDNA sequencing and 3=-UTR sequencing, re-
spectively. Among the latter groups of genes, 233 and 204 DEG
were shared between the microarray-based analysis and direct
cDNA and 3=-UTR sequencing, respectively. Moreover, 172 genes
were identified to have an absolute fold change of �2 for all tech-

FIG 6 Comparison between normalized signal intensity level of microarray and normalized read counts of direct cDNA sequencing (A and B) and 3=-UTR
sequencing (C and D) in transcriptome data sets from bacteria grown in CDM and MRS.
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niques with the same up- or downregulation pattern, among
which 152 genes were considered to be significantly differentially
expressed according to the DNA microarray technology (FDR,
�0.05) that was used as the reference technology. Therefore, this
comparative analysis of differentially expressed genes establishes a
good consistency of the biological outcomes generated by the
three transcriptome technologies, which is characterized by simi-
lar fold changes of expression for most shared DEG. The heat map
analysis of the differential expression data confirmed that 3=-UTR
sequencing deviates slightly more from the microarray than direct
cDNA sequencing (Fig. 7). This is also reflected by the somewhat
lower Pearson correlation for the comparison of the microarray to
3=-UTR sequencing (0.852; P � 0.01) relative to the comparison
of the microarray to direct cDNA sequencing (0.897; P � 0.01).
Notably, the highest Pearson correlation was obtained for the two
sequencing-based technologies (0.951; P � 0.01), which might be
due to the saturated hybridization signals in the array data sets (see
Fig. S3 in the supplemental material) (14).

Since this analysis of DEG was performed with microarray data
as a reference, DEG that display differential expression only ac-
cording to the transcriptome sequencing analyses may have been
missed. The DEG analysis of the direct cDNA and 3=-UTR se-
quencing data sets revealed 50 additional genes with a differential
expression value of �2 in both sequencing-based data sets. Of
these genes, 40 appeared not to reach significance of regulation in
the array data set (FDR, �0.05) but displayed a conserved direc-
tion of differential expression according to the array analyses, al-
beit it with a �2 absolute fold-change ratio. Moreover, many of
the probes associated with 36 of these 40 genes revealed saturated
hybridization signals in the array data sets (see Fig. S3 in the sup-
plemental material), suggesting that they were inaccurately mea-
sured by the array due to falling outside the dynamic range of the

array technology (14). This observation implies that RNA se-
quencing exceeds the depth of analysis of the traditional array
technologies, especially for genes that are expressed at a high level.

Unlike microarray data, RNA sequencing count data generally
are not well represented as a continuous distribution (27). There-
fore, normalization procedures that are successfully applied for
microarray data might not be optimal for RNA sequencing data
sets. Data normalization based on parametric approaches was im-
plemented in several analyses platforms, such as edgeR (29),
baySeq (15), and DESeq (2), which allow the lowering of both
biological and technical variability for replicated count data.
Moreover, nonparametric approaches, like the noise modeling
employed in NOISeq, allow the evaluation of low expression
counts without any need for replicates (37). Overall, it is very
encouraging that the data presented establish that the three tran-
scriptome methods generate a very similar biological view of the
transcriptional behavior of a well-defined culture under well-de-
fined conditions.

Concluding remarks and outlook toward undefined ecosys-
tem metatranscriptome sequencing. The present study provides
a validation of RNA sequencing techniques in prokaryotes, using a
well-studied bacterium under well-defined conditions and em-
ploying DNA microarray technology as the reference transcrip-
tome methodology. Such a validation of sequence-based tran-
scriptomics methodology is required to confidently apply
sequence-based transcriptome methods to samples derived from
complex microbial communities with unknown composition and
that live in poorly defined growth conditions. Such ecosystem
metatranscriptomic analyses cannot be performed using DNA
microarrays due to sequence variations among the coding capac-
ities among (close) relatives of similar phylogenetic origins, which
makes the quantification of transcripts on the basis of hybridiza-
tion signals highly unreliable. This study also demonstrates that
3=-UTR sequencing is complicated by the processing of the
sequence data that do not map to coding regions of genes and
therefore can be anticipated to present considerable uncertainties
during the biological (i.e., genes and functions) interpretation of
3=-UTR RNA sequencing data sets obtained from complex micro-
bial communities with unknown genetic content. Taken together,
the results presented in this study indicate that direct cDNA se-
quencing technology is a promising approach for the generation
of metatranscriptome data sets of an unknown microbial commu-
nity, and it offers good possibilities for biological interpretation
with a set of representative microbial genomes as a mapping plat-
form.
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