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A conspicuous feature of cortical organization is the wide diversity of
inhibitory interneurons; their differential computational functions
remain unclear. Here we propose a local cortical circuit in which three
major subtypes of interneurons play distinct roles. In a model de-
signed for spatial working memory, stimulus tuning of persistent
activity arises from the concerted action of widespread inhibition
mediated by perisoma-targeting (parvalbumin-containing) interneu-
rons and localized disinhibition of pyramidal cells via interneuron-
targeting (calretinin-containing) interneurons. Moreover, resistance
against distracting stimuli (a fundamental property of working mem-
ory) is dynamically controlled by dendrite-targeting (calbindin-con-
taining) interneurons. The experimental observation of inverted tun-
ing curves of monkey prefrontal neurons recorded during working
memory supports a key model prediction. This work suggests a
framework for understanding the division of labor and cooperation
among different inhibitory cell types in a recurrent cortical circuit.

Synaptic inhibition is of paramount importance to cortical re-
current dynamics, sensory processing, and memory function.

The complex inhibitory operation is likely to be accomplished by
coordinated action of many subtypes of GABAergic (GABA,
�-aminobutyric acid) interneurons present in the cortex. Recent
years have witnessed a dramatic accumulation of our knowledge
about these inhibitory cells, their morphology, physiology, chemical
markers, synaptic connections, short-term plasticity, and molecular
characteristics (1–6). On the other hand, little is known about
specific computations by the diverse interneuron subtypes in animal
behavior.

To elucidate distinct operations performed by diverse interneu-
rons, we have investigated a cortical microcircuit model that
incorporates three interneuron subpopulations. Specifically, we
report here a recurrent network model for working memory in the
prefrontal cortex (PFC). PFC is a brain system critical to working
memory, the ability to hold information actively in the mind for a
short period of time (7, 8). Understanding the cellular and circuit
mechanisms of stimulus-selective persistent activity associated with
working memory is a subject of intense current experimental and
computational research (9, 10). More generally, persistent activity
is believed to be a hallmark of strong recurrency in a cortical
microcircuit, therefore modeling a working memory circuit repre-
sents a testbed for our investigation of cortical organization and
functions.

Methods
Model Architecture. The network model represents a local circuit of
dorso-lateral prefrontal cortex in monkey. There are four cell
populations: pyramidal (P) neurons and three subpopulations of
inhibitory cells. Perisoma-targeting, dendrite-targeting, and inter-
neuron-targeting interneurons are assumed to express parvalbumin
(PV), calbindin (CB), and calretinin (CR) calcium-binding pro-
teins, respectively (Fig. 1). P cells are four times more numerous
than interneurons, and half of the interneurons are of the CR type

in prefrontal cortex (11, 12). For the sake of computational
efficiency, simulations reported here were done with NP � 512,
NCR � 64, NCB � 32, and NPV � 32. Neurons are spatially
distributed in a ring according to the preferred cues (0–360°). The
strength of the recurrent connections between neurons in the
network depends on the difference between their preferred cues.
The conductance between neurons i and j is gsyn,ij � GsynW(�i � �j),
where W(�i � �j) is the normalized connectivity profile. The W for
excitatory projections (pyramid-to-interneurons and pyramid-to-
pyramid) is chosen as W(�i � �j) � J� � (J� � J�) exp (�(�i �
�j)2�2�2) (13). Our reference parameters are: JE3E

� � 5.25, JE3CR
�

� 5.0, �E3E � 18�, �E3CR � 36� for the tuned projections.
Excitatory projections to PV and CB are unstructured (JE3PV

� �
JE3CB
� � 1.0), except for Fig. 3. Inhibitory projections are modeled

as W(�i � �j) � A exp(�(�i � �j)2�(4�2�2)), where A is a
normalization constant. Inhibitory projections from CR and CB are
narrow (�CB3P � �CR3CB � 9�), whereas projections from the PV
neurons are unstructured. The recurrent excitatory N-methyl-D-
aspartate (NMDA) synaptic conductances are (in mS�cm2):
GE3E � 1.63, GE3PV � 1.09, GE3CB � 1.12, GE3CR � 0.94.
GABAergic synaptic conductances are: GPV3E � 0.93, GPV3PV �
0.65, GPV3CR � 0.98, GCB3E � 0.75, and GCR3CB � 2.81 (in
mS�cm2).

All neurons receive unspecified external excitatory inputs medi-
ated by �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors. This external input is modeled as Poisson spike
trains to each neuron at a rate of �ext � 1,000 Hz per cell, where the
synaptic conductances are: gext,E � 0.2, gext,PV � 0.04, gext,CB � 0.025,
and gext,CR � 0.055.

Neuron Models. We used Hodgkin-Huxley-type conductance-based
models for single pyramidal cells and interneurons, which were
calibrated by in vitro physiological measurements. Pyramidal neu-
rons have three compartments, representing a soma�initial axonal
segment(s) and a proximal (d1) and a distal (d2) dendrite. The
neuronal input–output relation and the shape of the somatic and
dendritic action potential were tuned to cortical slice data. Several
ion conductances that have been identified in prefrontal pyramidal
neurons are included in the model [see Tegnér et al. (14) and
Supporting Text, which is published as supporting information on
the PNAS web site]. The somatic compartment contains spike-
generating currents (INa and IK), a high-threshold calcium current
ICa, and a slow calcium-dependent cationic current ICan. The
proximal dendritic compartment has a persistent sodium current
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INaP and a slowly inactivating potassium current IKS. The distal
dendritic compartment has an ICa and a transient A type potassium
current IA. The somatic voltage Vs, proximal dendritic voltage Vd1,
and distal dendritic voltage Vd2 obey the following membrane
equations: CmdVs�dt � �INa � IK � ICa � IL � ICan � gc1 (Vs �
Vd1)�p1 � Isyn, CmdVd1�dt � �INaP � IKS � IL � gc1(Vd1 � Vs)�p2 �
gc2(Vd1 � Vd2)�p2 � Isyn and CmdVd2�dt � �IA � ICa � IL �
gc2(Vd2 � Vd1)�(1 � p1 � p2) � Isyn.

Perisoma-targeting (PV) interneurons are modeled as CmdV�
dt � � INa � IK � IL � Isyn, hence they include only spike-
generating sodium and potassium currents and show tonic fast-
spiking behavior. Dendritic targeting CB interneurons are modeled
as CmdV�dt � � INa � IK � Ih � ICa � IKCa � IL � Isyn. These cells
show spike-frequency adaptation due to ICa and IKCa as well as
postinhibitory rebound due to the hyperpolarization-activated cur-
rent Ih (3). CR interneurons follow CmdV�dt � �INa � IK � ICa �
IKCa � ICa,T � INaP � IL � Isyn. They contain a low-threshold
calcium current ICa,T, which can generate a transient burst response,
adaptation currents ICa and IKCa, and a persistent sodium current
INaP. The interplay between these currents produces irregular firing
patterns as observed experimentally (4).

A complete description of neuron models, with details of ion
channel kinetics and conductance parameters, can be found in
Supporting Text.

Synapses. Synaptic currents are modeled according to Isyn �
gsyns(V � Esyn), where gsyn represents the maximal synaptic con-
ductance, and the synaptic reversal potential Esyn (in mV) is 0 for
excitation and �75 for inhibition. The gating variable s models the
fraction of open synaptic ion channels and follows first-order
kinetics for �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and (GABA) transmission; ds�dt � �sF(Vpre)(1 � s) �
s��s; with �s � 12 (1�ms). The synaptic channels decay as �s � 2 (ms)
(AMPA) and �s � 10 (ms) (GABA). The normalized concentration
of the postsynaptic transmitter–receptor complex, F(Vpre), is 1�(1 �
exp(�(Vpre)�2)). The dynamics of the voltage-dependent N-
methyl-D-aspartate channel is modeled by second-order kinetics as:
dx�dt � �xF(Vpre)(1 � x) � x��x: ds�dt � �sx(1 � s) � s��s; �x �
10, �x � 2 ms, �s � 0.5, and �s � 100 ms. Due to the voltage-
dependent magnesium block, an additional multiplicative factor is
introduced in the current equation 1�(1�[Mg2�] exp(�0.062V)�
3.57), [Mg2�] � 1.0 mM.

Simulation Protocol. The simulation protocol used here follows the
experimental procedure of a delayed oculomotor response task
(15). The details were described previously (13, 14, 16).

Numerical Integration. The model was programmed in C and was
integrated by using a fourth-order Runge–Kutta algorithm.

Physiological Experiments. Neurons were recorded from two male
rhesus monkeys Macaca mulatta during a delayed oculomotor
response task. The behavioral paradigm and recording methods
have been described in detail (17). Neurons were classified as fast-
and regular-spiking, as reported previously, according to our nar-
row classification criterion (17). In the present study, we identified
neurons with inverted tuning curves as those that exhibited firing
rates significantly lower in the delay than the baseline fixation
period (0.5 s before cue presentation) and spatial tuning evidenced
by significantly different delay-period firing rates across the eight
target locations (ANOVA test, P � 0.05).

Results
Our model (Fig. 1) is designed to describe a local prefrontal
microcircuit, which is endowed with extensive horizontal connec-
tions between pyramidal neurons within layers 2 and 3 (9, 18, 19).
In the model, P neurons are labeled according to their preferred
stimulus cues: synaptic connection strength between P neurons
decreases with the difference of their preferred cues. The model
also includes three subpopulations of inhibitory cells: perisoma-,
dendrite-, and interneuron-targeting interneurons. We assume they
express, respectively, PV, CB, and CR calcium-binding proteins.
The three interneuron classes contribute to recurrent synaptic
inhibition in specific ways (Fig. 1). PV interneurons, presumably of
the large basket-cell type, provide widespread perisomatic inhibi-
tion to P cells (20). By contrast, CB and CR interneurons have
narrow dendritic and axonal arbors and subserve local inhibition.
CB interneurons project onto the dendritic sites of P cells (2, 5),
whereas CR interneurons target other interneurons, preferentially
CB cells (21–24). When CR interneurons are activated by elevated
activity of local P cells, they strongly inhibit neighboring CB cells,
leading to a feedback disinhibition of the same P neurons.

Spatially Tuned Persistent Activity. In our model, cells and diverse
interneuron subtypes display distinct spike-firing patterns (Fig. 2a).
PV cells are fast-spiking (25), CB cells show spike-frequency
adaptation (26), and CR cells are characterized by irregular spiking
patterns (4). Fig. 2b shows a network model simulation of the
oculomotor delayed-response experiment (15). The network is
initially in a resting state, with P neurons firing at a low rate (0.5–2
Hz) due to background inputs. A transient spatial cue triggers an
increase of spike discharges in a subset of P cells (those for which
the cue is the preferred stimulus): this activity persists after the
stimulus offset due to excitatory reverberation in the recurrent
network. The elevated firing (typically 30 Hz) remains spatially

Fig. 1. Schematic architecture of the biophysically based cortical network model. Pyramidal (P) neurons are arranged according to their preferred cues (0–360°). There
are localized recurrent excitatory connections and broad inhibitory projections from perisoma-targeting (PV) fast-spiking neurons to P cells. Within a column, CB
interneurons target the dendrites of P neurons, whereas CR interneurons preferentially project to CB cells. Excitation of a group of P cells locally recruits CR neurons,
which sends enhanced inhibition to CB neurons, leading to dendritic disinhibition of the same P cells. STC, perisoma-targeting cell (PV); DTC, peridendrite-targeting
cell (CB); ITC, interneuron-targeting cell (CR).
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confined during the delay period. The visual cue is encoded and
maintained in active memory by the peak location of the spatially
tuned persistent activity pattern or bump attractor. At the end of the
delay, a transient excitation terminates delay-period activity and
switches the network back into the spontaneous-activity state.
Therefore, our biophysically based model captures the main firing
characteristics of PFC neurons described during a delayed oculo-
motor experiment.

To gain insight into how a spatially tuned mnemonic firing
pattern is generated, we examined the coordinated activity across
the four types of neurons (P, PV, CR, CB) (Fig. 3a). During the
resting state, all four neuronal populations exhibit untuned activity
with low firing rates. A cue stimulus produces a localized increase
of activity in a subset of P neurons, which in turn recruit CR neurons
with similar preferred cues (Fig. 3a). Activation of CR neurons then
increases inhibition transmitted to CB neurons likewise tuned to the
similar preferred cues, thereby reducing CB inhibition on P cells
during the delay period (Fig. 3a). On the other hand, on the flanks
of the bump, the enhanced activity of PV interneurons suppresses
CR cells, consequently CB neurons receive reduced inhibition from
CR cells (possibly also increased excitation from P neurons), hence
they fire at higher rates during the delay period (Fig. 3a). The end
result is that CB interneurons send enhanced inhibition to those P
cells that are selective to other stimuli. Lower delay activity of P cells
after a nonpreferred cue, compared to spontaneous activity, is
consistent with prefrontal recordings from behaving monkeys (15)
and in line with our network model of working memory (9, 13, 14).

On another trial, a different stimulus triggers a bump attractor of
the same shape but peaks at a new cue location. Using different
stimuli across trials, a given model neuron would display stimulus-

selective persistent activity, with a tuning curve that can be com-
pared with the experimental data (Fig. 3b). In conformity with a
previous model (13), fast-spiking PV cells typically show higher
spontaneous firing rates during the resting state (dashed horizontal
line, Fig. 3b) and broader tuning of delay-period activity (solid line,
Fig. 3b) compared with P cells. Moreover, CB interneurons (Fig.
3b) have relatively high spontaneous activity and inverted tuning
curve (defined by a lower firing rate during delay than spontaneous
activity, for some cues).

Inverted Tuning Curves. The model predicts inverted tuning curves
as an indication of the proposed disinhibition mechanism for tuned
persistent activity. Moreover, we expect only a small fraction of PFC
neurons to exhibit inverted tuning curves, because the overall
number of CB neurons is small in PFC (�5%) (12). To test this
prediction, we examined data from monkey PFC neurons recorded
during an oculomotor delayed response task. In the previous work

Fig. 2. Working memory behavior of the biophysically based network model.
(a) Single-cell firing patterns: distinct response to an injected current pulse for
each of the four neuron types, in agreement with physiological data. PV neurons
are fast-spiking, CB interneurons show spike-frequency adaptation, and CR in-
terneurons display irregular firing patterns. (b) Network simulation of the visuo-
spatial working memory task. (Upper) Rastergram for the P cell population. A tick
corresponds to an action potential from a P cell indexed by its preferred cue
(0–360°) (along the y axis) at time (along the x axis). C, cue; D, delay period; R,
response. A transient cue stimulus (0.5 �A�cm2, 250 ms) induces a spatially
localized persistent activity pattern during the delay period. At the end of the
trial, the network is switched back to the resting state, and the memory is erased
by a transient nonspecific current injection to neurons. (Lower) Sample voltage
traces from three P neurons.

Fig. 3. Comparison between the model and recorded PFC neuronal tuning
curves. (a) Rastergrams for the P and the three (PV, CB, and CR) inhibitory neuron
populations during the cue and delay periods. Instantaneous firing rates are
color-coded. (b) Observed neuronal tuning curves (solid lines) during the delay
period in the model simulations. Eight different cue positions are used. Dashed
lines, spontaneous firing rate during the resting state. Parameter values that
differ from the reference parameter set are JE3PV

	 
 1.3, �E3PV 
 162°, and JE3E
�

� 4.9. (c) Three kinds of recorded tuning curves in dorsolateral PFC during an
oculomotor delayed response task, with the same conventions as in b. Solid line,
the best Gaussian fit; dotted line, average firing rate during the last second of
fixation. Note that the fast-spiking putative PV cell (Center) has a higher spon-
taneous firing rate and wider tuning than the regular-spiking putative P cell
(Left), similar to what is found in the network simulations (b). An example of the
inverted tuning curve is shown (Right). (Left and Center) Based on data from
ref. 17.
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(17), putative regular-spiking P cells and fast-spiking inhibitory
interneurons were differentiated according to the widths of their
action potentials and firing rates. The tuning curve of delay-period
activity is reproduced here for each of the two cell types (Fig. 3c Left
and Center). Note that interneurons show higher spontaneous
activity levels (horizontal line) and broader tuning curves, than P
cells (Fig. 3c), in agreement with model predictions [(13), Fig. 3b].
Motivated by the present modeling results, we reanalyzed our
database of 526 neurons that showed significant task-related activ-
ity. We found that 24 neurons (�4.5%) displayed an inverted tuning
curve of delay-period activity. An example is shown in Fig. 3c Right.
As is evident in the rasters of the same neuron (Fig. 4a), delay-
period activity is about the same as in (or slightly larger than) the
spontaneous state for some stimuli and much lower for other
stimuli. Fig. 4b shows the population poststimulus time histogram,
averaging responses from all 24 neurons with inverted tuning. These
neurons typically exhibit broad spatial tuning. The average baseline
fixation firing rate of neurons with inverted tuning curves was 20.5
spikes per second. This is virtually identical to the baseline firing of
fast-spiking (FS) neurons (19.9 spikes per second), as opposed to
the firing rate of regular-spiking (RS) neurons (4.0 spikes per
second). Interestingly, the spike widths of these cells fell between
the distributions of the FS and RS neurons. The mean spike width
of neurons with inverted tuning curves is 551 �s compared with the
average FS (460) and RS (658) spike widths (Fig. 4c). This
observation can be taken as evidence that they may be CB
interneurons, because intracellular recording in vitro showed that,
in rat frontal cortex, CB-containing interneurons have an average
spike width at half-amplitude (�1 msec) intermediate between
those of fast-spiking interneurons (0.6 ms) and P cells (1.3 ms) (26).
The existence of inverted tuning curves from putative CB cells in
the prefrontal cortex of monkeys performing working memory

tasks thus provides strong experimental support of a key prediction
of our model and the model itself.

Mexican Hat. Is this disinhibition mechanism important for the
generation of tuned persistent activity? We investigated this ques-
tion by focusing on the Mexican-hat-type network connectivity
(with local excitation and lateral inhibition) underlying the gener-
ation of spatially confined activity patterns (27). Specifically, we
calculated the average synaptic currents from different cell types
feeding into the P cell population (Fig. 5a). Recurrent collaterals
between P cells produce a Gaussian profile of excitatory current (P,
Fig. 5a), whereas CB neurons produce a spatial profile of inhibitory
current with a minimum at the peak of the bump state (CB, Fig. 5a).
Surprisingly, although the PV-to-P axonal projection is widespread,
the resulting inhibitory postsynaptic current on the P cell population
turns out to be narrowly tuned and maximal at the peak of the bump
(PV, Fig. 5a). As a result, the sum of IP and IPV yields an almost flat
spatial profile (Fig. 5b). However, when combined with ICB (which
shows a dip at the peak activity), the total recurrent synaptic input
does show localized excitation and more widespread inhibition, like
a Mexican hat (Fig. 5c). Therefore, dendritic disinhibition plays an
important role in the generation of bump-activity patterns in our
model.

The spatial tuning of the PV-to-P inhibition originates from the
tuned driving force of the inhibitory postsynaptic currents (IPSC).
Namely, if the PV-to-P IPSC is IPV � gPV(VP � EGABAA

), then
unstructured projection means that gPV is the same for all P cells.

Fig. 4. Inverted tuning of monkey prefrontal neurons recorded during spatial
working memory. (a) An example of a neuron (same as in Fig. 3c) with inverted
tuning during the delay period. Rasters represent responses for the eight cue
locations, arranged to indicate the location of the corresponding cue. The polar
plot in the center depicts the average delay period firing rate for each location;
the dotted circle represents the average firing rate during the last second of
fixation. (b) Population poststimulus time histogram, averaging responses from
24 of 526 (4.5%) neurons with inverted tuning curves. (Left) Responses for the
location with the lowest (most-inhibited) delay period activity for each neuron.
(Right) Responses for the location with the highest delay-period activity. (c)
Spike-width distribution of neurons with inverted tuning curves during the delay
period. The solid line represents the average spike width; dotted lines represent
the average spike widths of the fast- and regular-spiking neuron distributions in
our database.

Fig. 5. Mexican-hat-type connectivity depends on dendritic disinhibition of P
cells. (a) Average synaptic currents of different types to P neurons in a bell-shaped
persistent activity pattern. Recurrent excitation from P cells is localized; recurrent
inhibition from PV neurons is maximal, whereas inhibition from CB neurons
shows a dip at the center of the bump. (b) Summation of synaptic currents from
P and PV cells is almost flat. (c) When the synaptic contribution from CB neurons
is also included, the total synaptic current shows a Mexican-hat-type shape, with
local excitation and lateral inhibition. (d) The average membrane potential of a
conductance-basedPcell increaseswith itsfiringrate.Therefore, thedrivingforce
(VP � Einh) of the inhibitory synaptic current mediated by PV cells and the current
itself (as shown in a) is about twice as large at the peak of the bump (where
neurons fire at �30 Hz) than on the sides (where neurons are inactive).
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However, the membrane potential VP of a P cell increases with its
firing rate (28). In the example of Fig. 5a, �VP� � �56 mV at the
peak of the bump, whereas �VP� � �64 mV on the flanks (Fig. 5d).
As a result, for a shunting inhibition, VP � EGABAA

is about twice
as large at the peak of the bump as on the flanks. Interestingly, this
driving-force effect is not present in a network model of integrate-
and-fire neurons (13). In that model, the average voltage actually
decreases with increasing firing rate of a postsynaptic cell, due to the
voltage reset after a spike, leading to minimum (rather than
maximum) inhibition at the peak of the bump. Disinhibition,
through the other (CB and CR) interneuron types, helps to produce
stable bump states in a network model of Hodgkin–Huxley-type
neurons.

Dendritic Inhibition and Resistance Against Distractors. For a neural
network to maintain memory storage, it should not be easily
interrupted by behaviorally irrelevant stimuli (distractors). We
examined the network’s ability to filter out distractor stimuli, a
characteristic of robust working memory in PFC (29). We analyzed
how resistance against distractors depends on the relative inhibitory
contributions from the CB and PV populations to P cells. A
distractor stimulus was introduced during the delay period at a
location different from the initial cue (13, 30). We fixed its location

and determined the intensity threshold above which it is powerful
enough to distract the network from the stored initial cue (Fig. 6 a
and b). We found that dendritic inhibition mediated by CB cells is
more efficient than perisomatic inhibition mediated by PV cells in
filtering out distractor stimuli. For the simulations shown in Fig. 6,
when dendritic inhibition is insignificant (as in the classical two-
population model), a bump state can be activated but is not stable
and shows systematic drifts over time (14). In this case, a distractor
of a strength comparable to that of the initial cue is able to disrupt
the working memory (Fig. 6c). Increasing the relative inhibition
from the CB population increases dramatically the threshold above
which a distractor can disrupt the memory of the initial cue,
therefore the network’s ability to filter out distractors is greatly
enhanced (Fig. 6c).

CB cells enhance resistance against distractors, because their
inputs target the same dendritic sites as the external stimuli (such
as a distractor) hence are well positioned to reduce the efficacy of
external inputs. Furthermore, away from the bump’s peak activity,
CB interneurons show higher firing rates during the delay period
than in the spontaneous state, therefore they provide stronger
dendritic inhibition to those P cells not storing the initial cue. To
quantitatively show this effect, we considered a single P cell whose
preferred cue is opposite to the initial cue. As shown in Fig. 6 d–f,

Fig. 6. Robustness against distracting stimuli is enhanced by an increased ratio of the dendritic�somatic inhibition. (a and b) Simulation protocol. A transient cue (0.8
�A�cm2, 250 ms) elicits a spatially localized persistent activity pattern, which is resistant (a) to a weak distractor (1.125 �A�cm2, 250 ms) but not (b) when the distractor
(2.25 �A�cm2), is stronger than a distraction threshold. ICB�(ICB 	 IPV) is 8%. (c) Increased resistance against distractors with a larger dendritic�somatic inhibition ratio
(ICB�(ICB 	 IPV)). (d) Input–output relation for an isolated P neuron, in response to current inputs to distal dendrite and in the presence of dendritic inhibition mediated
by CB interneurons. The amount of inhibition from CB neurons was estimated from the network simulation, when the remembered stimulus is opposite from the
preferredcueof thecell, either for the restingstate (upper curve) (�0.529 �A�cm2 tobothdendritic compartments,d1andd2)or thedelayperiod (lowercurve) (�0.845
�A�cm2). Two examples with the same input current intensity but two different levels of dendritic inhibition are shown in e and f. The P cell’s responsiveness is greatly
reduced during the delay period because of enhanced dendritic inhibition, which provides a mechanism for filtering out distractor stimuli.
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given the same external input, the cell’s response is significantly
reduced, with a higher level of dendritic inhibition (as in the delay
period) compared to the case with a lower dendritic inhibition (in
the resting state). Therefore, our results show that a working
memory network endowed with synaptic inhibition is more robust
against distractors when compared with a conventional two-
population model.

Discussion
Widespread lateral inhibition is a general assumption in recurrent
neural models with a Mexican-hat architecture (13, 16, 27, 31, 32).
However, whether, in a cortical microcircuit, inhibition is broader
than excitation is still a matter of debate (33). Moreover, here we
showed that, even if axonal projection from interneurons is broad,
the resulting distribution of inhibitory current in P cells can be
narrowly tuned due to the driving force effect. Most previous
models used the leaky integrate-and-fire neuron, for which this
effect is absent. In a Hodgkin–Huxley model of spatial working
memory, persistent activity generally shows systematic drifts in
time, thus appears to be dynamically unstable (14). In a recent paper
(34), bump attractors were reported in a two-population model of
Hodgkin–Huxley-type neurons. However, in that study, the average
membrane potential of a model neuron is basically independent of
the firing rate, unlike real P cells (28). Further analysis will be
worthwhile to clarify under what conditions, or whether, bump
attractors can be generated with only one inhibitory population in
a biologically realistic model. Regardless, we propose that, in
addition to broad inhibition, local disinhibition contributes critically
to the robust realization of Mexican-hat input distribution, thus
stable spatially tuned persistent activity.

We emphasize that the three interneuron types in our model
should be more appropriately interpreted according to their syn-
aptic targets rather than calcium-binding protein expressions. For
example, PV cells display a variety of axonal arbors, among which
the large basket cells (20) are likely candidates for our widely
projecting cells. Similarly, CB interneurons show a high degree of
heterogeneity, but some of them (such as double-bouquet cells) are
known to act locally and preferentially target dendritic spines and
shafts of P cells (2, 5). Finally, although many CR interneurons do
project to P cells (2), a subset of CR cells appear to avoid P cells
(22), at least in the same cortical layer (23), and preferentially target
CB interneurons (21). Electrophysiological evidence is presently
lacking of the preferred innervations of CR interneurons on-

to GABAergic cells; progress in this direction would be most
desirable.

Because Mexican-hat connectivity is an architecture widely used
in recurrent cortical microcircuit models (13, 16, 27, 31, 32), our
four-population model is of general relevance. At the same time,
there could also be significant differences among cortical areas
serving different functions. It would be interesting to compare
quantitatively the distributions of interneuron subtypes in associa-
tion vs. sensory cortices (21, 35–38). In particular, experiments are
needed to test the hypothesis that our proposed disinhibition
mechanism is especially prominent in those cortical regions capable
of persistent activity.

According to the disinhibition mechanism, dendritic inhibition is
reduced locally in activated P cells and increased in those P cells not
engaged in encoding the shown stimulus. Our results suggest that,
in a working memory network, this mechanism mediated by CB
interneurons could serve to filter out distracting stimuli, thereby
rendering memory storage robust. We showed that this mechanism
is enhanced with a larger dendritic/somatic inhibition ratio (Fig. 6),
which could be hard-wired or dynamically controlled by neuro-
modulation. Interestingly, recent work suggests that dopamine D1
receptor activation precisely increases the ratio of dendritic/somatic
inhibition onto P cells in the prefrontal cortex (39). Dopamine was
found to reduce the efficacy of inhibitory synapses onto the
perisomatic domains of a P cell, mediated by fast-spiking interneu-
rons, whereas it enhances inhibition at synapses from accommo-
dating or low-threshold spiking interneurons that target the den-
dritic domains of a P cell (39). Our model predicts a specific
function for such a dual dopamine action, namely it could boost the
ability of a working memory network to filter out behaviorally
irrelevant distracting stimuli. By the same token, the model also
suggests one possible scenario for how impaired dopamine modu-
lation of PFC could lead to working memory deficits and abnormal
distractability in schizophrenia (8).
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