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Abstract
The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied
to various convex optimization problems of interest in computed tomography (CT) image
reconstruction. This algorithm allows for rapid prototyping of optimization problems for the
purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm
is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly
deriving CP algorithm instances for many optimization problems relevant to CT. An example
application modeling breast CT with low-intensity X-ray illumination is presented.

I. Introduction
Optimization-based image reconstruction algorithms for CT have been investigated heavily
recently due to their potential to allow for reduced scanning effort while maintaining or
improving image quality [1], [2]. Such methods have been considered for many years, but
within the past five years computational barriers have been lowered enough such that
iterative image reconstruction can be considered for practical application in CT [3]. The
transition to practice has been taking place alongside further theoretical development
particularly with algorithms based on the sparsity-motivated ℓ1-norm [4], [5], [6], [7], [8],
[9], [10], [11], [12]. Despite the recent interest in sparsity, optimization-based image
reconstruction algorithm development continues to proceed along many fronts and there is
as of yet no consensus on a particular optimization problem for the CT system. In fact, it is
beginning to look like the optimization problem, upon which the iterative image
reconstruction algorithms are based, will themselves be subject to design depending on the
particular properties of each scanner type and imaging task.

Considering the possibility of tailoring optimization problems to a class of CT scanners,
makes design of iterative image reconstruction algorithms a daunting task. Optimization
formulations generally construct an objective function comprised of a data fidelity term and
possible penalty terms discouraging unphysical behavior in the reconstructed image, and
they possibly include hard constraints on the image. The image estimate is arrived at by
extremizing the objective subject to any constraints placed on the estimate. The optimization
problems for image reconstruction can take many forms depending on image representation,
projection model, and objective and constraint design. On top of this, it is difficult to solve
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many of the optimization problems of interest. A change in optimization problem
formulation can mean many weeks or months of algorithm development to account for the
modification.

Due to this complexity, it would be quite desirable to have an algorithmic tool to facilitate
design of optimization problems for CT image reconstruction. This tool would consist of a
well-defined set of mechanical steps that generate a convergent algorithm from a specific
optimization problem for CT image reconstruction. The goal of this tool would be to allow
for rapid prototyping of various optimization formulations; one could design the
optimization problem free of any restrictions imposed by a lack of an algorithm to solve it.
The resulting algorithm might not be the most efficient solver for the particular optimization
problem, but it would be guaranteed to give the answer.

In this article we consider convex optimization problems for CT image reconstruction,
including non-smooth objectives, unconstrained and constrained formulations. One general
algorithmic tool is to use steepest descent or projected steepest descent [13]. Such
algorithms, however, do not address non-smooth objective functions and they have difficulty
with constrained optimization, being applicable for only simple constraints such as non-
negativity. Another general strategy involves some form of evolving quadratic
approximation to the objective. The literature on this flavor of algorithm design is enormous,
including non-linear conjugate gradient methods [13], parabolic surrogates [10], [14], and
iteratively reweighted least-squares [15]. For the CT system these strategies often require
quite a bit of know-how due to the very large scale and ill-posedness of the imaging model.
Once the optimization formulation is established, however, these quadratic methods provide
a good option to gain in efficiency.

One of the main barriers to prototyping alternative optimization problems for CT image
reconstruction is the size of the imaging model; volumes can contain millions of voxels and
the sinogram data can correspondingly consist of millions of X-ray transmission
measurements. For large-scale systems there has been some resurgence of first-order
methods [16], [17], [18], [19], [20], [21] and recently there has been applications of first-
order methods specifically for optimization-based image reconstruction in CT [21], [22],
[23]. These methods are interesting because they can be adapted to a wide range of
optimization problems involving non-smooth functions such as those involving ℓ1-based
norms. In particular, the algorithm that we pursue further in this paper is a first-order primal-
dual algorithm for convex problems by Chambolle and Pock [20]. This algorithm goes a
long way toward the goal of optimization problem prototyping, because it covers a very
general class of optimization problems that contain many optimization formulations of
interest to the CT community.

For a selection of optimization problems of relevance to CT image reconstruction, we work
through the details of setting up the Chambolle-Pock algorithm. We refer to these dedicated
algorithms as algorithm instances. Our numerical results demonstrate that the algorithm
instances achieve the solution of difficult convex optimization problems under challenging
conditions in reasonable time and without parameter tuning. In Sec. II the CP methodology
and algorithm is summarized; in Sec. III various optimization problems for CT image
reconstruction are presented along with their corresponding CP algorithm instance; and Sec.
IV shows a limited study on a breast CT simulation that demonstrates the application of the
derived CP algorithm instances.

II. Summary of the generic Chambolle-Pock algorithm
The Chambolle-Pock (CP) algorithm [20] is primal-dual meaning that it solves an
optimization problem simultaneously with its dual. On the face of it, it would seem to
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involve extra work by solving two problems instead of one, but the algorithm comes with
convergence guarantees and solving both problems provides a robust, non-heuristic
convergence check – the duality gap.

The CP algorithm applies to a general form of the primal minimization:

(1)

and a dual maximization:

(2)

where x and y are finite dimensional vectors in the spaces X and Y; respectively; K is a
linear transform from X to Y; G and F are convex, possibly non-smooth, functions mapping
the respective X and Y spaces to non-negative real numbers; and the superscript “*” in the
dual maximization problem refers to convex conjugation, defined in Eqs. (3) and (4). We
note that the matrix K need not be square; X and Y will in general have different dimension.
Given a convex function H of a vector z ∈ Z, its conjugate can be computed by the Legendre
transform [24], and the original function can be recovered by applying conjugation again:

(3)

(4)

The notation 〈·, ·〉Z refers to the inner product in the vector space Z.

Formally, the primal and dual problems are connected in a generic saddle point optimization
problem:

(5)

By performing the maximization over y in Eq. (5), using Eq. (4) with Kx associated with y′,
the primal minimization Eq. (1) is derived. Similarly, performing the minimization over x in
Eq. (5), using Eq. (3) and the identity 〈K x, y〉 = 〈x, KT y〉, yields the dual maximization Eq.
(2), where the T superscript denotes matrix transposition.

The minimization problem in Eq. (1), though compact, covers many minimization problems
of interest to tomographic image reconstruction. Solving the dual problem, Eq. (2),
simultaneously allows for assessment of algorithm convergence. For intermediate estimates
x and y of the primal minimization and the dual maximization, respectively, the primal
objective will be greater than or equal to the dual objective. The difference between these
objectives is referred to as the duality gap, and convergence is achieved when this gap is
zero. Plenty of examples of useful optimization problems for tomographic image
reconstruction will be described in detail in Sec. III, but first we summarize Algorithm 1
from Ref. [20].
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Algorithm 1

Pseudocode for N-steps of the basic Chambolle-Pock algorithm. The constant L is the ℓ2-
norm of the matrix K; τ and σ are non-negative CP algorithm parameters, which are both set
to 1/L in the present application; θ ∈ [0, 1] is another CP algorithm parameter, which is set
to 1; and n is the iteration index. The proximal operators proxσ and proxτ are defined in Eq.
(6).

1: L ← ‖K‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize x0 and y0 to zero values

3: x̄0 ← x0

4: repeat

5:     yn+1 ← proxσ[F*](yn + σKx̄n)

6:     xn+1 ← proxτ [G](xn − τKT yn+1)

7:     x̄n+1 ← xn+1 + θ(xn+1 − xn)

8:     n ← n + 1

9: untiln ≥ N

A. Chambolle-Pock: Algorithm 1
The CP algorithm simultaneously solves Eqs. (1) and (2). As presented in Ref. [20] the
algorithm is simple, yet extremely effective. We repeat the steps here in Listing 1 for
completeness, providing the parameters that we use for all results shown below. The
parameter descriptions are provided in Ref. [20], but note that in our usage specified above
there are no free parameters. This is an extremely important feature for our purpose of
optimization prototyping. One caveat is that technically the proof of convergence for the CP
algorithm assumes L2στ < 1, but in practice we have never encountered a case where the
choice σ = τ = 1/L failed to tend to convergence. We stress that in Eq. (6) the matrix KT

needs to be the transpose of the matrix K; this point can sometimes be confusing because K
for imaging applications is often intended to be an approximation to some continuous
operator such as projection or differentiation and often KT is taken to mean the
approximation to the continuous operator’s adjoint, which may or may not be the matrix
transpose of K. The constant L is the magnitude of the matrix K, its largest singular value.
Appendix A gives the details on computing L via the power method. Key to deriving the
particular algorithm instances are the proximal mappings proxσ[F*] and proxτ[G] (called
resolvent operators in Ref. [20]).

The proximal mapping is used to generate a descent direction for the convex function H and
it is obtained by the following minimization:

(6)

This operation does admit non-smooth convex functions, but H does need to be simple
enough that the above minimization can be solved in closed form. For CT applications the
ability to handle non-smooth F and G allows the study of many optimization problems of
recent interest, and the simplicity limitation is not that restrictive as will be seen.
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B. The CP algorithm for prototyping of convex optimization problems
To prototype a particular convex optimization problem for CT image reconstruction with the
CP algorithm, there are five basic steps:

1. Map the optimization problem to the generic minimization problem in Eq. (1).

2. Derive the dual maximization problem, Eq. (2), by computing the convex
conjugates of F and G using the Legendre transform Eq. (3).

3. Derive the proximal mappings of F and G using Eq. (6).

4. Substitute the results of (3) into the generic CP algorithm in Listing 1 to obtain a
CP algorithm instance.

5. Run the algorithm, monitoring the primal-dual gap for convergence.

As will be seen below, a great variety of constrained and unconstrained optimization
problems can be written in the form of Eq. (1). Specifically, using the algebra of convex
functions [24], that the sum of two convex functions is convex and that the composition of a
convex function with a linear transform is a convex function, many interesting optimization
formulations can be put in the form of Eq. (1). We will also make use of convex functions
which are not smooth – notably ℓ1 based norms and indicator functions δS(x):

(7)

where S is a convex set. The indicator function is particularly handy for imposing
constraints. In computing the convex conjugate and proximal mapping of convex functions,
we make much use of the standard calculus rule for extremization, ∇f = 0, but such
computations are augmented also with geometric reasoning, which may be unfamiliar.
Accordingly, we have included appendices to show some of these computation steps. With
this quick introduction, we are now in a position to derive various algorithm instances for
CT image reconstruction from different convex optimization problems.

III. Chambolle-Pock algorithm instances for CT
For this article, we only consider optimization problems involving the linear imaging model
for X-ray projection, where the data are considered as line integrals over the object’s X-ray
attenuation coefficient. Generically, maintaining consistent notation with Ref. [20], the
discrete-to-discrete CT system model [25] can be written as:

(8)

where A is the projection matrix taking an object represented by expansion coefficients u
and generating a set of line-integration values g. This model covers a multitude of expansion
functions and CT configurations, including both 2D fan-beam and 3D cone-beam projection
data models.

A few notes on notation are in order. In the following, we largely avoid indexing of the
various vector spaces in order that the equations and pseudocode listings are brief and clear.
Any of the standard algebraic operations between vectors is to be interpreted in a
component-wise manner unless explicitly stated. Also, an algebraic operation between a
scalar and a vector is to be distributed among all components of the vector; e.g., 1 + v adds
one to all components of v. For the optimization problems below, we employ three vector
spaces: I the space of discrete images in either 2 or 3 dimensions; D the space of the CT
sinograms (or projection data); and V the space of spatial-vector-valued image arrays, V = Id
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where d = 2 or 3 for 2D and 3D-space, respectively. For the CT system model Eq. (8), u ∈ I,
and g ∈ D, but we note that the space D can also include sinograms which are not consistent
with the linear system matrix A. The vector space V will be used below for forming the total
variation (TV) semi-norm; an example of such a vector v ∈ V is the spatial-gradient of an
image u. Although the pixel representation is used, much of the following can be applied to
other image expansion functions. As we will be making much use of certain indicator
functions, we define two important sets, Box(a) and Ball(a), through their indicator function:

(9)

and

(10)

Recall that the ‖ · ‖∞ norm selects the largest component of the argument, thus Box(a)
comprises vectors with no component larger than a (in 2D Box(a) is a square centered on the
origin with width 2a). We also employ 0X and 1X to mean a vector from the space X with all
components set to 0 and 1, respectively.

A. Image reconstruction by least-squares
Perhaps the simplest optimization method for performing image reconstruction is to
minimize the the quadratic data error function. We present this familiar case in order to gain
some experience with the mechanics of deriving CP algorithm instances, and because the
quadratic data error term will play a role in other optimization problems below. The primal
problem of interest is:

(11)

To derive the CP algorithm instance, we make the following mechanical associations with
the primal problem Eq. (1):

(12)

(13)

(14)

(15)

Applying Eq. 3, we obtain the convex conjugates of F and G:

(16)
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(17)

where p ∈ D and q ∈ I. While obtaining F* in this case involves elementary calculus for
extremization of Eq. (3), finding G* needs some comment for those unfamiliar with convex
analysis. Using the definition of the Legendre transform for G(x) = 0, we have:

(18)

There are two possibilities: (1) q = 0I, in which case the maximum value of 〈q, x〉I is 0, and
(2) q ≠ 0I, in which case this inner product can increase without bound, resulting in a
maximum value of ∞. Putting these two cases together yields the indicator function in Eq.
(16). With F, G, and their conjugates, the optimization problem dual to Eq. (11) can be
written down from Eq. (2):

(19)

For deriving the CP algorithm instance, it is not strictly necessary to have this dual problem,
but it is useful for evaluating convergence.

The CP algorithm solves Eqs. (11) and (19) simultaneously. In principle, the values of the
primal and dual objective functions provide a test of convergence. During the iteration the
objective of the primal problem will by greater than the objective of the dual problem, and
when the solutions of the respective problems are reached, these objectives will be equal.
Comparing the duality gap, i.e. the difference between the primal objective and the dual
objective, with 0 thus provides a test of convergence. The presence of the indicator function
in the dual problem, however, complicates this test. Due to the negative sign in front of the
indicator, when the argument is not the zero vector, this term and therefore the whole dual
objective is assigned to a value of −∞. The dual objective achieves a finite, testable value
only when the indicator function attains the value of 0, when AT p = 0I. Effectively, the
indicator function becomes a way to write down a constraint in the form of a convex
function, in this case an equality constraint. The dual optimization problem can thus
alternately be written as a conventional constrained maximization:

(20)

The convergence check is a bit problematic, because the equality constraint will not likely
be strictly satisfied in numerical computation. Instead, we introduce a conditional primal-
dual gap (the difference between the primal and dual objectives ignoring the indicator
function) given the estimates u′ and p′:

(21)

and separately monitor AT p′ to see if it is tending to 0I. Note that the conditional primal-
dual gap need not be positive, but it should tend to zero.

Sidky et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To finally attain the CP algorithm instance for image reconstruction by least-squares, we
derive lines 5 and 6 in Alg. 1. The proximal mapping proxσ[F*](y), y ∈ D, for this problem
results from a quadratic minimization:

(22)

and as G(x) = 0, x ∈ I, the corresponding proximal mapping is

(23)

Substituting in the arguments from the generic algorithm, leads to the update steps in Listing
2. The constant L = ‖A‖2 is the largest singular value of A (see Appendix A for details on the
power method). Crucial to the implementation of the CP algorithm instance is that AT be the
exact transpose of A, which is a non-trivial matter for tomographic applications, because the
projection matrix A is usually computed on-the-fly [26], [27], [28]. Convergence of the CP
algorithm is only guaranteed when AT is the exact transpose of A, although it may be
possible to extend the CP algorithm to mismatched projector/back-projector pairs by
employing the analysis in Ref. [29].

Algorithm 2

Pseudocode for N-steps of the least-squares Chambolle-Pock algorithm instance.

1: L ← ‖A‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize u0 and p0 to zero values

3: ū0 ← u0

4: repeat

5:     pn+1 ← (pn + σ(Aūn − g))/(1 + σ)

6:     un+1 ← un − τAT pn+1

7:     ūn+1 ← un+1 + θ(un+1 − un)

8:     n ← n + 1

9: untiln ≥ N

This derivation of the CP least-squares algorithm instance illustrates the method on a
familiar optimization problem, and it provides a point of comparison with standard
algorithms; this quadratic minimization problem can be solved straight-forwardly with the
basic, linear conjugate gradients (CG) algorithm. Another important point for this particular
algorithm instance, where limited projection data can lead to an underdetermined system, is

that the CP algorithm will yield a minimizer of the objective  which depends on the
initial image u0. In this case, it is recommended to take advantage of the prototyping
capability of the CP framework to augment the optimization problem so that it selects a
unique image independent of initialization. For example, one often seeks an image closest to

either 0I or a prior image, which can be formulated by adding a quadratic term  or

 with a small combination coefficient.

1) Adding in non-negativity constraints—One of the flexibilities of the CP method
becomes apparent in adding bound constraints. While CG is also flexible tool for dealing
with large and small quadratic optimization, modification to include constraints, such as
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non-negativity, considerably complicates the CG algorithm. For CP, adding in bound
constraints is simply a matter of introducing the appropriate indicator function into the
primal problem:

(24)

where the set P is all u with non-negative components. Again, we make the mechanical
associations with the primal problem Eq. (1):

(25)

(26)

(27)

(28)

The difference from the unconstrained problem is the function G(x). It turns out that the
convex conjugate of δP (x) is:

(29)

see Appendix B for insight on convex conjugate of indicator functions. Straight substitution
of G* and F* into Eq. (2), yields the dual problem:

(30)

As a result the conditional primal-dual gap is the same as before. The difference now is that
the constraint checks are that AT p and u should be non-negative.

To derive the algorithm instance, we need the proximal mapping proxτ[G], which by
definition is:

(31)

The indicator in the objective prevents consideration of negative components of x′. The ℓ2
term can be regarded as a sum over the square difference between components of x and x′;
thus the objective is separable and can be minimized by constructing x′ such that 

when xi > 0 and  when xi ≤ 0. Thus this proximal mapping becomes a non-negativity
thresholding on each component of x:

(32)
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Substituting into the generic pseudocode yields Listing 3. Again, we have L = ‖A‖2. The
indicator function δP leads to the intuitive modification that non-negativity thresholding is
introduced in line 6 of Listing 3. In this case the non-negativity constraint in u will be
automatically satisfied by all iterates un. Upper bound constraints are equally simple to
include.

Algorithm 3

Pseudocode for N-steps of the least-squares with non-negativity constraint, CP algorithm
instance.

1: L ← ‖A‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize u0 and p0 to zero values

3: ū0 ← u0

4: repeat

5:     pn+1 ← (pn + σ(Aūn − g))/(1 + σ)

6:     un+1 ← pos(un − τAT pn+1)

7:     ūn+1 ← un+1 + θ(un+1 − un)

8:     n ← n + 1

9: untiln ≥ N

B. Optimization problems based on the Total Variation (TV) semi-norm
Optimization problems with the TV semi-norm have received much attention for CT image
reconstruction lately because of their potential to provide high quality images from sparse
view sampling [8], [30], [22], [9], [31], [32], [33]. The TV semi-norm has been known to be
useful for performing edge-preserving regularization, and recent developments in
compressive sensing have sparked even greater interest in the use of this semi-norm.
Algorithm-wise the TV semi-norm is difficult to handle. Although it is convex, it is not
linear, quadratic or even everywhere-differentiable, and the lack of differentiability
precludes the use of standard gradient-based optimization algorithms. In this sub-section we
go through, in detail, the derivation of a CP algorithm instance for a TV-regularized least
squares data error norm. We then consider the Kullback-Leibler (KL) data divergence,
which is implicitly employed by many iterative algorithms based on maximum likelihood
expectation maximization (MLEM). We also consider a data error norm based on ℓ1 which
can have some advantage in reducing the impact of image discretization error, which
generally leads to a highly non-uniform error in the data domain. Finally, we derive a CP
algorithm instance for constrained TV-minimization, which is mathematically equivalent to
the least-squares-plus-TV problem [34], but whose data-error constraint parameter has more
physical meaning than the parameter used in the corresponding unconstrained minimization.
While the previous CP instances solve optimization problems, which can be solved
efficiently by well-known algorithms, the following CP instances are new for the application
of CT image reconstruction.

The optimization problem of interest is

(33)

where the last term, the ℓ1-norm of the gradient-magnitude image, is the isotropic TV semi-
norm. The spatial-vector image ∇u represents a discrete approximation to the image gradient
which is in the vector space V, i.e., the space of spatial-vector-valued image arrays. The

Sidky et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



expression |∇u| is the gradient-magnitude image, an image array whose pixel values are the
gradient magnitude at the pixel location. Thus, ∇u ∈ V and |∇u| ∈ I. Because ∇ is defined in
terms of finite differencing, it is a linear transform from an image array to a vector-valued
image array, the precise form of which is covered in Appendix D. This problem was not
explicitly covered in Ref. [20], and we fill in the details here. For this case, matching the
primal problem to Eq. (1) is not as obvious as the previous examples. We recognize in Eq.
(33) that both terms involve a linear transform, thus the whole objective function can be
written in the form F(Kx) with the following assignments:

(34)

(35)

(36)

(37)

where u ∈ I, y ∈ D, and z ∈ V. Note that F(y, z) is convex because it is the sum of two
convex functions. Also the linear transform K takes an image vector x and gives a data
vector y and an image gradient vector z. The transpose of K, KT = (AT, −div), will produce
an image vector from a data vector y and an image gradient vector z:

(38)

where we use the same convention as in Ref. [20] that −div ≡ ∇T, see Appendix D.

In order to get the convex conjugate of F we need . For readers unfamiliar with the
Legendre transform of indicator functions Appendix B illustrates the transform of some
common cases. By definition,

(39)

where q ∈ V, like z, is a vector-valued image array. There are two cases to consider: (1) the
magnitude image |q| at all pixels is less than or equal to λ, i.e. |q| ∈ Box(λ) and (2) the
magnitude image |q| has at least one pixel greater than λ, i.e. |q| ∉ Box(λ). It turns out that
for the former case the maximization in Eq. (39) yields 0, while the latter cause yields ∞.
Putting these two cases together, we have

(40)

The conjugates of F and G are:

(41)

(42)
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where p ∈ D, q ∈ V, and r ∈ I.

The problem dual to Eq. (33) becomes:

(43)

The resulting conditional primal-dual gap is

(44)

with additional constraints |q′| ∈ Box(λ) and AT p′ − div q′ = 0I. The final piece needed for
putting together the CP algorithm instance for Eq. (33) is the proximal mapping:

(45)

The proximal mapping of the data term was covered previously, and that of the TV term is
explained in Appendix C. With the necessary pieces in place, the CP algorithm instance for

the -TV objective can be written down in Listing 4. Line 6, and the corresponding
expression in Eq. (45), require some explanation, because the division operation is non-
standard as the numerator is in V and the denominator is in I. The effect of this line is to
threshold the magnitude of the spatial-vectors at each pixel in qn + σ∇ūn to the value λ:
spatial-vectors larger than λ have their magnitude rescaled to λ. The resulting thresholded,
spatial-vector image is then assigned to qn+1. Recall that 1I at line 6 is an image with all
pixels set to 1. The operator |·| in this line converts a vector-valued image in V to a
magnitude image in I, and the max(λ1I, ·) operation thresholds the lower bound of the
magnitude image to λ pixel-wise. Operationally, the division is performed by dividing the
spatial-vector at each pixel of the numerator by the scalar in the corresponding pixel of the
denominator. Another potential source of confusion is computing the magnitude ‖(A, ∇)‖2.
The power method for doing this is covered explicitly in Appendix A. If it is desired to
enforce the positivity constraint, the indicator δP(u) can be added to the primal objective,
and the effect of this is indicator is the same as for Listing 3; namely the right hand side of
line 7 goes inside the pos(·) operator.

Algorithm 4

Pseudocode for N-steps of the -TV CP algorithm instance.

1: L ← ‖(A, ∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize u0, p0, and q0 to zero values

3: ū0 ← u0

4: repeat

5:     pn+1 ← (pn + σ(Aūn − g))/(1 + σ)

6:     qn+1 ← λ(qn + σ∇ūn)/max(λ1I, |qn + σ∇ūn|)

7:     un+1 ← un − τAT pn+1 + τdiv qn+1

8:     ūn+1 ← un+1 + θ(un+1 − un)

9:     n ← n + 1
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10: untiln ≥ N

1) Alternate data divergences—For a number of reasons motivated by the physical
model of imaging systems, it may be of use to formulate optimization problems for CT
image reconstruction with alternate data-error terms. A natural extension of the quadratic
data divergence is to include a diagonal weighting matrix. The corresponding CP algorithm
instance can be easily derived following the steps mentioned above. As pointed out above,
the CP method is not limited to quadratic objective functions and other important convex
functions can be used. We derive, here, three additional CP algorithm instances. For
alternate data divergences we consider the oft-used KL divergence, and one not so
commonly used, ℓ1 data-error norm. For the following, we need only analyze the function F1,

as everything else remains the same as for the -TV objective in Eq. (33).

TV plus KL data divergence: One data divergence of particular interest for tomographic
image reconstruction is KL. Objectives based on KL are what is being optimized in the
various forms of MLEM, and it is used often when data noise is a significant physical factor
and the data are modeled as being drawn from a multivariate Poisson probability distribution
[25]. For the situation where the view-sampling is also sparse, it might be of interest to
combine a KL data error term with the TV semi-norm in the following primal optimization:

(46)

where ∑i[·]i performs summation over all components of the vector argument. This example
proceeds as above except that the F1 function is different:

(47)

where y ∈ D, and the function ln operates on the components of its argument. Use of the KL
data divergence makes sense only with positive linear systems A and non-negative pixel
values u and data g. However, by defining the function over the whole space and using an
indicator function to restrict the domain [24], a wide variety of optimization problems can be
treated in a uniform manner. Accordingly, δP is introduced into the F1 objective and the pos
operator is used just so that this objective is defined in the real numbers. The derivation of

, though mechanical, is a little bit too long to be included here. We simply state the
resulting conjugate function:

(48)

The resulting dual problem to Eq. (46) is thus:

(49)

To form the algorithm instance, we need the proximal mapping 
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(50)

An interesting point in the derivation, shown partially in Appendix C, of  is that

the quadratic equation is needed, and the support function in  is used to select the
correct (in this case negative) root of the discriminant in the quadratic formula. With the
new function F1, its conjugate, and the conjugate’s proximal mapping, we can write down
the CP algorithm instance. Listing 5 gives the CP algorithm instance minimizing a KL plus
TV semi-norm objective. The difference between this algorithm instance and the previous

-TV case comes only at the update at line 5. This algorithm instance has the interesting
property that the intermediate image estimates un can have negative values even though the
converged solution will be non-negative. If it is desirable to have the intermediate image
estimates be non-negative, the non-negativity constraint can be easily introduced by adding
the indicator δP (u) to the primal objective, resulting in the addition of the pos(·) operator at
line 7 as was shown in Listing 3.

Algorithm 5

Pseudocode for N-steps of the KL-TV CP algorithm instance.

1: L ← ‖(A, ∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize u0, p0, and q0 to zero values

3: ū0 ← u0

4: repeat

5:

    

6:     qn+1 ← λ(qn + σ∇ūn)/max(λ1I, |qn + σ∇ūn|)

7:     un+1 ← un − τAT pn+1 + τdiv qn+1

8:     ūn+1 ← un+1 + θ(un+1 − un)

9:     n ← n + 1

10: untiln ≥ N

TV plus ℓ1 data-error norm: The combination of TV semi-norm regularization and ℓ1 data-
error norm has been proposed for image denoising and it has some interesting properties for
that purpose [35]. This objective is also presented in Ref. [20]. For tomography, this
combination may be of interest because the ℓ1 data-error term is an example of a robust fit to
the data. The idea of robust approximation is to weakly penalize data that are outliers [36].
Fitting with the commonly used quadratic error function, clearly puts heavy weight on
outlying measurements which in some situations can lead to streak artifacts in the images. In
particular, for tomographic image reconstruction with a pixel basis, discretization error and
metal objects can lead to highly non-uniform error in the data model. Use of the ℓ1 data-error
term may allow for large errors for measurements along the tangent rays to internal
structures, where discretization can have a large effect. The ℓ1 data-error term also puts
greater emphasis on fitting the data that lie close to the model. The primal problem of
interest is:
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(51)

For this objective, the function F1 is:

(52)

Computing the convex conjugate  yields

(53)

and the resulting dual problem is:

(54)

The proximal mapping necessary for completing the algorithm instance is

(55)

where 1D is a data array with each component set to one and the max operation is performed
component-wise. The corresponding pseudo-code for minimizing Eq. (51) is given in
Listing 6, where the only difference between this code and the previous two occurs at line 5.
The ability to deal with non-smooth objectives uncomplicates this particular problem
substantially. If smoothness were required, there would have to be smoothing parameters on
both the ℓ1 and TV terms, adding two more parameters than necessary to a study of the
image properties as a function of the optimization-problem parameters.

Algorithm 6

Pseudocode for N-steps of the ℓ1-TV CP algorithm instance.

1: L ← ‖(A, ∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize u0, p0, and q0 to zero values

3: ū0 ← u0

4: repeat

5:     pn+1 ← (pn + σ(Aūn − g))/max(1D, |pn + σ(Aūn − g)|)

6:     qn+1 ← λ(qn + σ∇ūn)/max(λ1I, |qn + σ∇ūn|)

7:     un+1 ← un − τAT pn+1 + τdiv qn+1

8:     ūn+1 ← un+1 + θ(un+1 − un)

9:     n ← n + 1

10: untiln ≥ N

2) Constrained, TV-minimization—The previous three optimization problems combine
a data fidelity term with a TV-penalty, and the balance of the two terms is controlled by the
parameter λ. An inconvenience of such optimization problems is that it is difficult to
physically interpret λ. Focusing on combining an ℓ2 data-error norm with TV, reformulating
Eq. (33) as a constrained, TV-minimization leads to the following primal problem:
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(56)

where δBall(ε)(Au − g) is zero for ‖Au − g‖2 ≤ ε. When ε > 0, this problem is equivalent to
the unconstrained optimization Eq. (33), see e.g. Ref. [34], in the sense that for each positive
ε there is a corresponding λ yielding the same solution. For this constrained, TV-
minimization, the function F1 is

(57)

The corresponding conjugate is

(58)

leading to the dual problem:

(59)

Again, for the algorithm instance we need the proximal mapping :

(60)

The main points in deriving this proximal mapping are discussed in Appendix C, and it is an
example where geometric/symmetry arguments play a large role. Listing 7 shows the
algorithm instance solving Eq. (56), where once again only line 5 is modified. This
algorithm instance essentially achieves the same goal as Listing 4, the only difference is that
the parameter ε has an actual physical interpretation, being the data-error bound.

Algorithm 7

Pseudocode for N-steps of the ℓ2-constrained, TV-minimization CP algorithm instance.

1: L ← ‖(A, ∇)‖2; τ ← 1/L; σ ← 1/L; θ ← 1; n ← 0

2: initialize u0, p0, and q0 to zero values

3: ū0 ← u0

4: repeat

5:     pn+1 ← max(‖pn + σ(Aūn − g)‖2 − σε, 0) (pn + σ(Aūn − g))

6:     qn+1 ← (qn + σ∇ūn)/max(1I, |qn + σ∇ūn|)

7:     un+1 ← un − τAT pn+1 + τdiv qn+1

8:     ūn+1 ← un+1 + θ(un+1 − un)

9:     n ← n + 1

10: untiln ≥ N

IV. Demonstration of CP algorithm instances for tomographic image
reconstruction

In the previous section, we have derived CP algorithm instances covering many optimization
problems of interest to CT image reconstruction. Not only are there the seven optimization
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problems, but within each case the system model/matrix A, the data g, and optimization
problem parameters can vary. For each of these, practically infinite number of optimization
problems, the corresponding CP algorithm instances are guaranteed to converge [20]. The
purpose of this results section is not to advocate one optimization problem over another;
rather to demonstrate the utility of the CP algorithm for optimization problem prototyping.
For this purpose, we present example image reconstructions that could be performed in a
study for investigating the impact of matching the data-divergence with data noise model for
image reconstruction in breast CT.

A. Sparse-view experiments for image reconstruction from simulated CT data
We briefly describe the significance of the experiments, but we point out that the main goal
here is to demonstrate the CP algorithm instances. Much of the recent interest in employing
the TV semi-norm in optimization problems for CT image reconstruction has been generated
by compressive sensing (CS). CS seeks to relate sampling conditions on a sensing device
with sparsity in the object being scanned. So far, mathematical results have been limited to
various types of random sampling [37]. System matrices such as those representing CT
projection fall outside of the scope of mathematical results for CS [8]. As a result, the only
current option for investigating CS in CT is through numerical experiments with computer
phantoms.

A next logical step for bridging theoretical results for CS to actual application is to consider
physical factors in the data model. One such factor is a noise model, which can be quite
important for low-dose CT applications such as breast CT. While much work has been
performed on iterative image reconstruction with various noise models under conditions of
full sampling, little is known about the impact of noise on sparse-view image reconstruction.
In the following limited study, we set up a breast CT simulation to investigate the impact of
correct modeling of data noise with the purpose of demonstrating that the CP algorithm
instances can be applied to the CT system.

B. Sparse-view reconstruction with a Poisson noise model
For the following study, we employ a digital 256 × 256 breast phantom, described in Ref.
[23], [38], and used in our previous study on investigating sufficient sampling conditions for
TV-based CT image reconstruction [12]. The phantom models for tissue types: the
background fat tissue is a assigned a value of 1.0, the modeled fibro-glandular tissue takes a
value of 1.1, the outer skin layer is set to 1.15, and the micro-calcifications are assigned
values in the range [1.8,2.3].

For the present case, we focus on circular, fan-beam scanning with 60 projections equally
distributed over a full 360° angular range. The simulated radius of the X-ray source
trajectory is 40cm with a source-detector distance of 80cm. The detector sampling consists
of 512 bins of size 200 microns. The system matrix for the X-ray projection is computed by
the line-intersection method where the matrix elements of A are determined by the length of
traversal in each image pixel of each source/detector-bin ray. For this phantom under ideal
conditions, we have found that accurate recovery is possible with constrained, TV-
minimization with as few as 50 projections. In the present study, we add Poisson noise to the
data model at a level consistent with what might be expect in a typical breast CT scan. The
Poisson noise model is chosen in order to investigate the impact of matching the data-error
term to the noise model. For reference, the phantom is shown in Fig. 1. To have a sense of
the noise level, a standard fan-beam filtered back-projection reconstruction is shown
alongside the phantom for simulated Poisson noise.
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For this noise model, the maximum likelihood method prescribes minimizing the KL data
divergence between the available and estimated data. To gauge the importance of selecting a
maximum likelihood image, we compare the results from two optimization problems: a KL
data divergence plus a TV-penalty, Eq. (46) above; and a least-squares data error norm plus
a TV-penalty, Eq. (33) above. With the CP framework, these two optimization problems can
be easily prototyped: the solutions to both problems can be obtained without worrying about
smoothing the TV semi-norm, setting algorithm parameters, or proving convergence.

For the phantom and data conditions, described above, the images for different values of the
TV-penalty parameter λ are shown in Fig. 2. An ROI of the micro-calcification cluster is
also shown. The overall and ROI images give an impression of two different visual tasks
important for breast imaging: discerning the fibro-glandular tissue morphology and
detection/classification of micro-calcifications. The images show some difference between
the two optimization problems; most notably there is a perceptible reduction in noise in the
ROIs from the KL-TV images. A firm conclusion, however, awaits a more complete study
with multiple noise realizations.

The most critical feature of the CP algorithm that we wish to promote is the rapid
prototyping of a convex optimization problem for CT image reconstruction. The above study
is aimed at a combination of using a data divergence based on maximum likelihood
estimation with a TV-penalty, which takes advantage of sparsity in the gradient magnitude
of the underlying object. The CP framework facilitates the use of many other convex
optimization problems, particularly those based on some form of sparsity, which often entail
some form of the non-smooth ℓ1-norm. For example, in Ref. [8] we have found it useful for
sparse-view X-ray phase-contrast imaging to perform image reconstruction with a
combination of a least-squares data fidelity term, an ℓ1-penalty promoting object sparseness,
and an image TV constraint to further reduce streak artifacts from angular under-sampling.
Under the CP framework, prototyping various combinations of these terms as constrained or
unconstrained optimization problems becomes possible and the corresponding derivation of
CP algorithm instances follows from the steps described in Sec. II-B. Alternative, convex
data fidelity terms and image constraints motivated by various physical models may also be
prototyped.

As a practical matter, though, it is important to have some sense of the convergence of the
CP algorithm instances. To this end, we take an in depth look at individual runs for the KL-
TV algorithm instance for CT image reconstruction.

C. Iteration dependence of the CP algorithm
Through the methods described above, many useful algorithm instances can be derived for
CT image reconstruction. It is obviously important that the resulting algorithm instance
reaches the solution of the prescribed optimization problem. To illustrate the convergence of
a resulting algorithm instance we focus on the TV-penalized KL data divergence, Eq. (46),
and plot the conditional primal-dual gap for the different runs with varying λ in Fig. 3.
Included in this figure is a plot indicating the convergence to agreement with the most
challenging condition set by the indicator functions in Eq. (49). For the present results we
terminated the iteration at a conditional primal-dual gap of 10−5, which appears to happen
on the scale of thousands of iterations with smaller λ requiring more iterations.
Interestingly, a simple pre-conditioned form of the CP algorithm was proposed in Ref. [39],
which appears to perform efficiently for small λ. The pre-conditioned CP algorithm instance
for this problem is reported in Appendix E.
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V. DISCUSSION
This article has presented the application of the Chambolle-Pock algorithm to prototyping of
optimization problems for CT image reconstruction. The algorithm covers many
optimization problems of interest allowing for non-smooth functions. It also comes with
solid convergence criteria to check the image estimates.

The use of the CP algorithm we are promoting here is for prototyping; namely, when the
image reconstruction algorithm development is at the early stage of determining important
factors in formulating the optimization problem. As an example, we illustrated a scenario for
sparse-view breast CT considering two different data-error terms. In this stage of
development it is helpful to not have to bother with algorithm parameters, and questions of
whether or not the algorithm will converge. After the final optimization problem is
determined, then the focus shifts from prototyping to efficiency.

Optimization problem prototyping for CT image reconstruction does have its limitations.
For example, in the breast CT simulation presented above, a more complete conclusion
requires reconstruction from multiple realizations of the data under the Poisson noise model.
Additional important dimensions of the study are generation of an ensemble of breast
phantoms and considering alternate image representations/projector models. Considering the
size of CT image reconstruction systems and huge parameter space of possible optimization
problems, it is not yet realistic to completely characterize a particular CT system. But at
least we are assured of solving isolated setups and it is conceivable to perform a study along
one aspect of the system, i.e. consider multiple realizations of the random data model. Given
the current state of affairs for optimization-based image reconstruction, it is crucial that
simulations be as realistic as possible. There is great need for realistic phantoms, and data
simulation software.

We point out that it is likely at least within the immediate future, that optimization-based
image reconstruction will have to operate at severely truncated iteration numbers. Current
clinical applications of iterative image reconstruction often operate in the range of one to ten
iterations, which is likely far too few for claiming that the image estimate is an accurate
solution to the designed optimization problem. But at least the ability to prototype an
optimization problem can potentially simplify the design phase by separating optimization
parameters from algorithm parameters.
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APPENDIX A

Computing the norm of K
The matrix norm used for the parameter L in the CP algorithm instances is the largest
singular value of K. This singular value can be obtained by the standard power method
specified in Listing 8. When K represents the discrete X-ray transform, our experience has
been that the power method converges to numerical precision in twenty iterations or less. In
implementing the CP algorithm instance for TV-penalized minimization, the norm of the
combined linear transform ‖(A, ∇)‖2 is needed. For this case, the program is the same as
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Listing 8 where KT Kxn becomes AT Axn − div∇xn; recall that −div = ∇T. Furthermore, to

obtain s, the explicit computation is .

Algorithm 8

Pseudocode for N-steps of the generic power method. The scalar s tends to ‖K‖2 as N
increases.

1: initialize x0 ∈ I to a non-zero image

2: n ← 0

3: repeat

4:     xn+1 ← KTKxn

5:     xn+1 ← xn+1/‖xn+1‖2

6:     s ← ‖Kxn+1‖2

7:     n ← n + 1

8: untiln ≥ N

APPENDIX B

The convex conjugate of certain indicator functions of interest illustrated in
one-dimension

This appendix covers the convex conjugate of a couple of indicator functions in one
dimension, serving to illustrate how geometry plays a role in the computation and to provide
a mental picture on the conjugate of higher dimensional indicator functions.

Consider first the indicator δP(x), which is zero for x ≥ 0. The conjugate of this indicator is
computed from:

(61)

To perform this maximization, we analyze the cases, x ≤ 0 and x > 0, separately. As a visual
aid, we plot the objective for these two cases in Fig. 4. From this figure it is clear that when
x ≤ 0, the objective’s maximum is attained at x′ = 0 and this maximum value is 0 (note that
this is true even for x = 0). When x > 0, the objective can increase without bound as x′ tends
to ∞, resulting in a maximum value of ∞. Putting these two cases together yields:

Generalizing this argument to multi-dimensional x, yields Eq. (29).

Next we consider δBox(1) (x), which in one dimension is the same as δBall(1)(x). This
functions is zero only for −1 ≤ x ≤ 1. Its conjugate is computed from:

(62)
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Again, we have two cases, x ≤ 0 and x > 0, illustrated in Fig. 5. In the former case the
maximum value of the objective is attained at x′ = −1, and this maximum value is −x. In the
latter case the maximum value is x, and it is attained at x′ = 1. Hence, we have:

For multi-dimensional x, δBox(1)(x) ≠ δBall(1)(x), and this is also reflected in the conjugates:

It is also interesting to verify that  is indeed δBox(1)(x) by showing, again in one
dimension, that |x|* = δBox(1)(x). Illustrating this example helps in understanding the convex
conjugate of multi-dimensional ℓ1-based semi-norms. The relevant conjugate is computed
from:

(63)

Here, we need to analyze three cases: x < −1, −1 ≤ x ≤ 1, and x > 1. The corresponding
sketch is in Fig. 6. The −|x| term in the objective makes an upside-down wedge, and the x′x
term serves to tip this wedge. In the second case, the wedge is tipped, but still opens up
downward so that the objective is maximized at x′ = 0, attaining there the value of 0. In the
first and third cases, the wedge is tipped so much that part of it points upward and the
objective can increase without bound, attaining the value of ∞. Putting these cases together
does indeed yield:

Similar reasoning is used to obtain Eq. (40) from Eq. (39).

APPENDIX C

Computation of important proximal mappings
This appendix fills in important steps in computing some of the proximal mappings in the
text, where it is necessary to use geometrical reasoning in addition to setting the gradient of
the objective to zero.

The conjugate of the TV semi-norm in Eq. (40) leads to the following proximal mapping
computation:

where z, z′ ∈ V, and absolute value, |·|, of a spatial-vector image V yields an image, in I, of
the spatial-vector-magnitude. The quadratic term is minimized when z = z′, but the indicator
function excludes this minimizer when z ∉ Box(λ). To solve this problem, we write the
quadratic as a sum over pixels:
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where i indexes the image pixels and each zi and  is a spatial-vector. The indicator function

places an upper bound on the magnitude of each spatial-vector . The proximal
mapping is built pixel-by-pixel considering two cases: if |zi| ≤ λ, then proxσ[F*](z)i = zi; if |

zi| > λ, then  is chosen to be closest to zi while respecting  which leads to a scaling
of the magnitude of zi and proxσ[F*](z)i = λzi/|zi|. Note that the constant σ does not enter
into this calculation. Putting the cases and components all together yields the second part of
the proximal mapping in Eq. (45).

For the KL-TV problem the proximal mapping for the data term is computed from Eq. (48):

We note that the objective is a smooth function in the positive orthant of p′ ∈ D.
Accordingly, we differentiate the objective with respect to p′ ignoring the pos(·) and
indicator functions, keeping in mind that we have to check that the minimizer p′ is non-
negative. Performing the differentiation and setting to zero yields the following quadratic
equation:

and substituting into the quadratic equation yields:

We have two possible solutions, but it turns out that applying the restriction 1D − p′ ≥ 0
selects the negative root. To see this, we evaluate 1D − p′ at both roots:

Using the fact that the data are non-negative, we have

the positive root clearly leads to possible negative values for 1D −p′ while the negative root
respects 1D −p′ ≥ 0 and yields Eq. (50).

For the final computation of a proximal mapping, we take a look at the data term of the
constrained, TV-minimization problem. From Eq. (58), the proximal mapping of interest is
evaluated by:
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Note the first term in the objective is spherically symmetric about p and increasing with
distance from p, and the second term is also spherically symmetric about 0D and increasing
with distance from 0D. If just these two terms were present the minimum would lie on the
line segment between 0D and p. The third term, however, complicates the situation a little.
We note that this term is linear in p′, and it can be combined with the first term by
completing the square. Performing this manipulation and ignoring constant terms
(independent of p′) yields:

By the geometric considerations discussed above, the minimizer lies on the line segment
between 0D and p − σg. Analyzing this one-dimensional minimization leads to Eq. (60).

APPENDIX D

The finite differencing form of the image gradient and divergence
In this appendix we write down the explicit forms of the finite differencing approximations
of ∇ and −div in two dimensions used in this article. We use x ∈ I to represent an M × M
image and xi,j to refer to the (i, j)th pixel of x. To specify the linear transform ∇, we
introduce the differencing images Δsx ∈ I and Δtx ∈ I:

Using these definitions, ∇ can be written as:

With this form of ∇, its transpose −div becomes:

where the elements referred to outside the image border are set to zero: Δsx0,j = Δsxi,0 =
Δtx0,j = Δtxi,0 = 0. What the particular form of ∇ is in its discrete form is not that important,
but it is critical that the discrete forms of −div and ∇ are the transposes of each other.
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APPENDIX E

Preconditioned chambolle-pock algorithm demonstrated on the kl-tv
optimization problem

Chambolle and Pock followed their article, Ref. [20], with a pre-conditioned version of their
algorithm that suits our purpose of optimization problem proto-typing while potentially

improving algorithm efficiency substantially for the -TV and KL-TV optimization
problems with small λ. The new algorithm replaces the constants σ and τ with vector
quantities that are computed directly from the system matrix K, which yields a vector in
space Y from a vector in space X. One form of the suggested, diagonal pre-conditioners uses
the following weights:

(64)

(65)

where Σ ∈ Y, T ∈ X, and |K| is the matrix formed by taking the absolute value of each
element of K. In order to generate the CP algorithm instance incorporating pre-conditioning,
the proximal mapping needs to be modified:

(66)

The second term in this minimization is still quadratic but no longer spherically symmetric.
The difficulty in deriving the pre-conditioned CP algorithm instances is similar to that of the
original algorithm. On the one hand there is no need for finding ‖K‖2, but on the other hand

deriving the proximal mapping may become more involved. For the -TV and the KL-TV
optimization problems, the proximal mapping is simple to derive and it turns out that the
mappings can be arrived at by replacing σ by Σ and τ by T.

The gain in efficiency for small λ comes from being able to absorb this parameter into the
TV term and allowing Σ to account for the mismatch between TV and data agreement terms.
We modify the definitions of ∇ and −div matrices from Appendix D:

and

where again the elements referred to outside the image border are set to zero: Δsx0,j = Δsxi,0
= Δtx0,j = Δtxi,0 = 0.
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For a complete example, we write the pre-conditioned CP algorithm instance for KL-TV in
Listing 9 To illustrate the potential gain in efficiency, we show the condition primal-dual
gap as a function of iteration number for the KL-TV problem with λ = 2 × 10−5 in Fig. 7.
While we have presented the pre-conditioned CP algorithm as a patch for the small λ case, it
really provides an alternative prototyping algorithm and it can be used instead of the original
CP algorithm.

Algorithm 9

Pseudocode for N-steps of the KL-TV pre-conditioned CP algorithm instance.

1: Σ1 ← 1D/(|A|1I); Σ2 ← 1V/(|∇λ|1I); T ← 1I/(|AT |1D + |divλ|1V)

2: θ ← 1; n ← 0

3: initialize u0, p0, and q0 to zero values

4: ū0 ← u0

5: repeat

6:

    

7:     qn+1 ← (qn + Σ2∇λūn)/max(1I, |qn + Σ2∇λūn|)

8:     un+1 ← un − TAT pn+1 + Tdivλqn+1

9:     ūn+1 ← un+1 + θ(un+1 − un)

10:     n ← n + 1

11: untiln ≥ N
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Fig. 1.
Breast phantom for CT and FBP reconstructed image for a 512-view data set with Poisson
distributed noise. Left is the phantom in the gray scale window [0.95,1.15]; middle is the
same phantom with a blow-up on the micro-calcification ROI displayed in the gray scale
window [0.9,1.8]; and right is the FBP image reconstructed from the noisy data. The middle
panel is the reference for all image reconstruction algorithm results. The FBP image is
shown only to provide a sense of the noise level.

Sidky et al. Page 28

Phys Med Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Images reconstructed from 60-view projection data with a Poisson distributed noise model.

The top row of images result from minimizing the -TV objective in Eq. (33) for λ = 1 ×
10−4, 5 × 10−5, and 2 × 10−5, going from left to right. The bottom row of images result from
minimizing the KL-TV objective in Eq. (46) for the same values of λ. Note that λ does not
necessarily have the same impact on each of these optimization problems. Nevertheless, we
see similar trends for the chosen values of λ.
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Fig. 3.
(Left) Convergence of the partial primal-dual gap for the CP algorithm instance solving Eq.
(46) for different values of λ. (Right) Plot indicating agreement with condition 1: ‖div q −
AT p‖∞, the magnitude of the largest component of the argument of the last indicator
function of Eq. (49). Collecting all the indicator functions of the primal, Eq. (46), and dual,
Eq. (49), KL-TV optimization problems, we have four conditions to check in addition to the
conditional primal-dual gap: (1) div q − AT p = 0I, (2) Au ≥ 0D, (3) p ≤ 1D, and (4) |q| < λ.
The agreement with condition 1 is illustrated in the plot; agreement with condition 2 has a
similar dependence; condition 3 is satisfied early on in the iteration; and condition 4 is
automatically enforced by the CP algorithm instance for KL-TV. Because the curves are
bunched together in the condition 1 plot, they are differentiated in color.
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Fig. 4.
Illustration of the objective function, labeled ϕ(x′), in the maximization described by Eq.
(61). Shown are the two cases discussed in the text.
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Fig. 5.
Illustration of the objective function, labeled ϕ(x′), in the maximization described by Eq.
(62). Shown are the two cases discussed in the text.

Sidky et al. Page 32

Phys Med Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Illustration of the objective function, labeled ϕ(x′), in the maximization described by Eq.
(63). Shown are the three cases discussed in the text.
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Fig. 7.
(Left) Convergence of the partial primal-dual gap for the CP algorithm instance solving Eq.
(46) for λ = 2 × 10−5 for the original and pre-conditioned CP algorithm. (Right) Plot
indicating agreement with condition 1 for the KL-TV optimization problem. See Fig. 3 for
explanation.
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