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We evaluated ceftobiprole against the well-characterized Enterococcus faecalis strain OG1RF (with and without the �-lactamase
[Bla] plasmid pBEM10) in a murine urinary tract infection (UTI) model. Ceftobiprole was equally effective for Bla� and Bla�

OG1 strains, while ampicillin was moderately to markedly (depending on the inoculum) less effective against Bla� than Bla�

OG1 strains. These data illustrate an in vivo effect on ampicillin of Bla production by E. faecalis and the stability and efficacy of
ceftobiprole in experimental UTI.

Enterococci cause various infections, most commonly urinary
tract infections (UTIs) (13, 16, 18, 20, 34). Ceftobiprole

(BAL9141) is a new cephalosporin with broad in vitro activity
against Gram-positive cocci, including Enterococcus faecalis (2, 4,
9, 15), and ceftobiprole medocaril (prodrug; BAL5788) has been
shown to be active against vancomycin-resistant and �-lactamase-
positive (Bla�) (penicillinase-producing) E. faecalis strains in a
mouse peritonitis model and against staphylococci in endocarditis
models (1, 7, 10, 11). Among pyrrolidinone-3-ylidenemethyl
cephems, ceftobiprole exhibits good affinities for E. faecalis PBPs,
which explains its in vivo and in vitro activity (1, 14). However, the
efficacy of ceftobiprole against E. faecalis infection in a mouse UTI
model has not been evaluated. The major goal of the present study
was to evaluate the efficacy of ceftobiprole compared to that of
ampicillin against strains of E. faecalis with and without a Bla-
encoding plasmid and to assess a possible in vivo inoculum effect
with ampicillin, which would suggest lower efficacy of ampicillin
in a high-bacterial-density infection sites against a Bla� strain and
large amounts of Bla at the same infection sites. We also sought to
determine if ceftobiprole would suffer an effect from large
amounts of Bla at the same site(s).

OG1RF (referred to herein as Bla� OG1) (6, 26) is a rifampin-
and fusidic acid-resistant strain of E. faecalis, and Bla� OG1 con-
tains the plasmid pBEM10 (25), encoding Bla and high-level gen-
tamicin resistance. These strains were used in order to compare
effect of Bla in the same E. faecalis host background. Ceftobiprole
(BAL 9141), used for in vitro MICs, and ceftobiprole medocaril,
used for in vivo experiments, were obtained from Johnson & John-
son (Raritan, NJ), and vancomycin and ampicillin were obtained
from Sigma (St. Louis, MO). MICs were determined by following
CLSI guidelines (8), with E. faecalis ATCC 29212 and Staphylococ-
cus aureus ATCC 29213 as controls. MICs of ampicillin and
ceftobiprole for a standard inoculum (105 CFU/ml) and a high
inoculum (107 CFU/ml) were also determined. All animal manip-
ulations and 50% infective dose (ID50) determinations were done
by our previously described methods (32, 33). For in vivo antibi-
otic testing, our standard inoculum of 105 CFU/mouse (�100
times the calculated ID50) was used for Bla� OG1 and Bla� OG1,
and in the case of Bla� OG1, a high inoculum of 107 CFU/mouse
(10,000 times the calculated ID50) was also used to determine an in
vivo “inoculum effect” against the beta-lactam antibiotics, i.e.,
ampicillin and ceftobiprole. Subcutaneous (s.c.) therapy com-

menced at 1 h postinoculation (1 hpi) based on reports showing
that 1 h postinoculation is sufficient for kidney colonization and
intracellular bacterial community formation in mouse bladders
(19). Single doses of ceftobiprole medocaril and vancomycin (2-
fold range from 6.25 to 50 mg/kg of body weight) were given 1 hpi,
i.e., equivalent to 4.3 to 34.2 mg/kg of ceftobiprole (parent drug);
this is similar to doses previously used for s.c. ceftobiprole in mice
(3, 12) and generates concentrations achievable in humans with
standard human dosing (31). Two doses of ampicillin (2-fold
range from 12.5 to 200 mg/kg, s.c., 1 hpi and 2 hpi) were used to
avoid any potential bias for ceftobiprole; levels achieved with 80
mg/kg, s.c., 1-h dosing interval has previously been shown (with
ampicillin-sulbactam) to simulate ampicillin human doses of 3 g
(24). An untreated but infected group of animals served as con-
trols for each test bacterium, and the numbers of CFU of bacteria
in kidneys and bladders obtained 48 h postinfection were com-
pared between untreated and treatment groups (5, 21). The min-
imum detection limit of bacteria in these experiments was 102

CFU/gm. The 50% protective doses (PD50) were determined by
the method of Reed and Muench (29), and protection was defined
as no recovery of bacteria from kidney or bladder homogenates.
Randomly selected colonies recovered from organs were tested by
nitrocefin and/or by pulsed-field gel electrophoresis to confirm
that they were the inoculated strains. The log10 CFU per gram of
bacteria in tissues (kidneys and bladders) were analyzed for sig-
nificance by the unpaired t test using Graph Pad Prism version 4.0
(GraphPad Software, San Diego, CA). The guidelines stipulated
by the animal welfare committee of the University of Texas Health
Science Center at Houston were followed (protocol HSC-AWC-
09-023).

The MICs of ceftobiprole against Bla� OG1 and Bla� OG1
with 105 CFU/ml were 1 �g/ml and 0.5 �g/ml, while the ampicillin
MICs were 1 and 4 �g/ml with 105 CFU/ml, respectively (Table 1).
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The MICs of vancomycin against Bla� OG1 and Bla� OG1 with
105 CFU/ml were 1 �g/ml. At 107 CFU/ml, ampicillin MICs were
1 and �128 �g/ml against Bla� OG1 and Bla� OG1, respectively,
and the ceftobiprole MIC was 1 �g/ml against both strains (Table
1). Since vancomycin is not a substrate for Bla, we did not test it at
the higher inoculum.

In mice inoculated with Bla� OG1 (105 CFU), ampicillin (two
doses) and ceftobiprole (one dose) showed almost equal PD50s,
while vancomycin showed 3- to 4-times-higher PD50s for kidneys
(Table 1). In mice inoculated with Bla� OG1 (105 CFU), PD50s of
ampicillin (two doses) were 4 to 6 times higher than those of
ceftobiprole (Table 1) and those for Bla� OG1, while the PD50 for
vancomycin was the same. Data for bladder were generally in
agreement with those from kidneys but are not shown further
here, since we and others have observed greater variability in blad-
der colonization than kidney colonization (22, 23, 33). For mice
inoculated with Bla� OG1 (107 CFU), ampicillin (two doses)
PD50s were �6 times higher than those of ceftobiprole (Table 1).
While ceftobiprole and ampicillin were equally effective against
Bla� OG1 at 105 CFU, there was a 2- to 3-fold decrease in PD50

with ampicillin against 105 CFU of Bla� OG1 versus Bla� OG1
and a 10- to �20-fold difference with ampicillin against 107 CFU
versus 105 CFU of Bla� OG1.

The reduction in CFU in kidneys with ceftobiprole and ampi-
cillin is shown in Fig. 1A. In mice inoculated with Bla� OG1 (105

CFU), both ceftobiprole and ampicillin resulted in significantly
reduced CFU in kidneys versus untreated animals at doses of 12.5
mg/kg (data not shown) and 25 mg/kg (P � 0.001 for ceftobiprole
and ampicillin) (Fig. 1A) and were not significantly different from
each other (P � 0.9). An in vivo effect on ampicillin was seen in
Bla� OG1-inoculated mice (Fig. 1B). In mice inoculated with 105

CFU of Bla� OG1, ampicillin at 25 and 50 mg/kg showed nonsig-
nificant differences in the number of CFU/g (P � 0.3) in kidneys
versus untreated mice (Fig. 1B), while ceftobiprole showed a sig-
nificant CFU/g reduction (P � 0.0001 and � 0.002) at both doses
(Fig. 1B). Vancomycin showed significant CFU/g reduction (P �
0.002) in kidneys at 50 mg/kg versus untreated mice (Fig. 1B),
even though this dose is lower than the dose reported to simulate
concentrations achieved in humans (12, 30); data for 25 mg/kg

FIG 1 Dose and inoculum effect in a mouse UTI model. (A) Bla� OG1 at an
inoculum of 105 CFU. Bacterial counts from kidneys of mice treated with ceftobi-
prole (single 25-mg/kg dose) and ampicillin (two 25-mg/kg doses) and untreated
controls are shown. Horizontal bars represent the geometric means (P � 0.001 for
ceftobiprole and ampicillin at 25 mg/kg for all treated versus untreated control
mice). (B) Bla� OG1 at an inoculum of 105 CFU. Bacterial counts from kidneys of
mice treated with ceftobiprole (single doses of 25 and 50 mg/kg), ampicillin (two
doses of 25 and 50 mg/kg each), and vancomycin (single dose of 50 mg/kg) and
untreated controls are shown. Horizontal bars represent the geometric means
(P � 0.0001 and � 0.002 for ceftobiprole at 25 and 50 mg/kg, respectively, P � 0.3
for ampicillin at 25 and 50 mg/kg, and P � 0.002 for vancomycin at 50 mg/kg for
all treated versus untreated control mice). (C) Bla� OG1 at an inoculum of 107

CFU. Bacterial counts from kidneys of mice treated with ceftobiprole (single doses
of 25 mg and 50 mg/kg) and ampicillin (two doses of 100 and 200 mg/kg each) and
untreated controls are shown. Horizontal bars represent the geometric means
(P � 0.005 for ceftobiprole at 25 mg/kg versus ampicillin at 100 mg/kg and P �
0.005 and 0.006 for ceftobiprole at 50 mg/kg versus ampicillin at 100 mg/kg and
200 mg/kg, respectively).

TABLE 1 PD50s of ceftobiprole and other antibiotics against E. faecalis
strains �la� OG1 and �la� OG1 in a mouse UTI model

Strain
Inoculum
(CFU) Antibiotic

MIC
(�g/ml)

No. of doses
(time [h]
postinoculation)

PD50 (mg/kg
body wt)

Kidney Bladder

�la� OG1 105 Ceftobiprolea 1 1 (1) 10 18
Ampicillin 1 2 (1, 2) 7 19
Vancomycin 1 1 (1) 31 36

�la� OG1 105 Ceftobiprole 0.5 1 (1) 7 15
Ampicillin 4 2 (1, 2) 44 66
Vancomycin 1 1 (1) 27 38

�la� OG1 107 Ceftobiprole 1 1 (1) 33 31
Ampicillin �128 2 (1, 2) �200 �200
Vancomycinb

a Ceftobiprole (BAL 9141) was used for in vitro MIC determinations, and ceftobiprole
medocaril (prodrug; BAL5788) was used for in vivo experiments.
b Vancomycin was not tested at the higher inoculum, since it is not known to be
affected by E. faecalis Bla and the purpose was to evaluate an in vivo effect of Bla on
ampicillin and test the stability of ceftobiprole.
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vancomycin are not shown, since this is lower than the PD50. With
107 of Bla� OG1, 100 and 200 mg/kg ampicillin showed nonsig-
nificant differences in numbers of CFU/g (P � 0.1 and � 0.6,
respectively) in kidneys versus untreated mice (Fig. 1C), while
ceftobiprole showed significant CFU/g reduction versus ampicil-
lin (P � 0.005 for 25 mg/kg ceftobiprole versus 100 mg/kg ampi-
cillin; P � 0.005 and 0.006 for 50 mg/kg ceftobiprole versus 100
mg/kg and 200 mg/kg ampicillin, respectively) (Fig. 1C).

We previously showed that the �-lactamase enzyme in E. faeca-
lis is identical to the type A staphylococcal enzyme (25, 35), and
ceftobiprole has been reported to be a poor substrate for type A S.
aureus enzyme (PC1) (28). Our recently published study using
ceftobiprole and various cephalosporins against 98 clinical meth-
icillin-susceptible S. aureus strains, representing four types of Bla,
showed lower high- and standard-inoculum MICs of ceftobiprole
than of other cephalosporins (27), reflective of the stability of
ceftobiprole to staphylococcal �-lactamases, including type A.
The failure of ampicillin against high inocula of Bla� OG1 is sim-
ilar to an observation made in a rat endocarditis model, where
high Bla� E. faecalis density in vegetations showed a biological
effect with ampicillin therapy, even though the bacteria were sus-
ceptible in vitro at a standard inoculum (17).

In conclusion, we observed an in vivo effect of the E. faecalis
�-lactamase and ampicillin treatment failure in the mouse UTI
model, while ceftobiprole was efficacious in animals even when a
high inoculum of Bla� E. faecalis was used. Our findings suggest
that ceftobiprole may have potential against urinary tract infec-
tions caused by antibiotic-resistant E. faecalis strains and support
its further investigation against such infections.
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