

Prevalence of *qnr*, *aac*(6')-*Ib-cr*, *qepA*, and *oqxAB* in *Escherichia coli* Isolates from Humans, Animals, and the Environment

Xiang Chen,^{a,b} Weiqiu Zhang,^a Weijuan Pan,^a Jiajun Yin,^a Zhiming Pan,^{a,b} Song Gao,^{a,b} and Xinan Jiao^{a,b}

Jiangsu Key Laboratory of Zoonosis^a and Ministry of Education Key Lab for Avian Preventive Medicine,^b Yangzhou University, Jiangsu, China

qnr, *aac*(6')-*Ib-cr*, *qepA*, and *oqxAB* genes were detected in 5.7%, 4.9%, 2.6%, and 20.2% of 1,022 *Escherichia coli* isolates from humans, animals, and the environment, respectively, collected between 1993 and 2010 in China. The prevalence of *oqxAB* in porcine isolates (51.0%) was significantly higher than that in other isolates. This is the first report of *oqxAB*-positive isolates from ducks and geese and as early as 1994 from chickens.

Quinolone resistance was thought to be acquired only by chromosomal mutations, until plasmid-mediated quinolone resistance (PMQR) was described in 1998 (9). Since then, five major groups of Qnr determinants (QnrA, QnrB, QnrC, QnrD, and QnrS) have been identified (14, 16). Two additional PMQR determinants, Aac(6')-Ib-cr (13) and quinolone extrusion by QepA or OqxAB (14, 16), have been also described. OqxAB, conferring resistance to quinoxaline-di-*N*-oxide olaquindox (a quinoxaline derivative used as a veterinary growth promoter) was originally identified in an *Escherichia coli* isolate from swine manure (6, 15). PMQR genes are increasingly being identified worldwide in clinical isolates of *Enterobacteriaceae*. However, OqxAB was not recognized as a PMQR determinant until recently. Thus, data on the prevalence and epidemiology of *oqxAB* are limited compared with data on other PMQR genes (16). Here, we report on the prevalence of PMQR genes, including *oqxAB*, in a collection of *E. coli* isolates from humans, animals, and the environment in China.

In total, 1,022 *E. coli* isolates were collected from China between 1993 and 2010. A total of 307 isolates were obtained from feces and urine samples from healthy volunteers or patients, 671

Received 19 November 2011 Returned for modification 8 January 2012 Accepted 19 February 2012 Published ahead of print 5 March 2012 Address correspondence to Xinan Jiao, jiao@yzu.edu.cn. X.C. and W.Z. contributed equally to this work. Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/AAC.06191-11

TABLE 1 PCR primers use	d to detect plasmid-mediated	quinolone resistance genes
-------------------------	------------------------------	----------------------------

Primer	Sequence (5'-3')	Target	$T_m (^{\circ}\mathrm{C})^a$	Size of product (bp)	Reference or source
qnrA-F qnrA-R	AGAGGATTTCTCACGCCAGG GCAGCACTATKACTCCCAAGG	qnrA	57	619	This study
qnrB-F qnrB-R	GGMATHGAAATTCGCCACTG TTTGCYGYYCGCCAGTCGAA	qnrB	57	264	Cattoir et al. (2)
qnrC-F qnrC-R	GGGTTGTACATTTATTGAATC TCCACTTTACGAGGTTCT	qnrC	57	447	Wang et al. (18)
qnrD-F qnrD-R	CGAGATCAATTTACGGGGAATA AACAAGCTGAAGCGCCTG	qnrD	57	582	Cavaco et al. (3)
qnrS-F qnrS-R	GCAAGTTCATTGAACAGGCT TCTAAACCGTCGAGTTCGGCG	qnrS	57	428	Cattoir et al. (2)
qepA-F qepA-R	CTGCAGGTACTGCGTCATG CGTGTTGCTGGAGTTCTTC	qepA	60	403	Cattior et al. (1)
oqxA-F oqxA-R	GACAGCGTCGCACAGAATG GGAGACGAGGTTGGTATGGA	oqxA	62	339	This study
oqxB-F oqxB-R	CGAAGAAAGACCTCCCTACCC CGCCGCCAATGAGATACA	oqxB	62	240	This study
aac-F aac-R	TTGCGATGCTCTATGAGTGGCTA CTCGAATGCCTGGCGTGTTT	aac(6')-Ib	57	482	Park et al. (12)

^a Melting temperature.

	No. of isolates	Jo. of % of PMQR genes (no. of isolates)								
Source		qnrA	qnrB	qnrS	aac(6')-Ib-cr	qepA	oqxAB	PMQR		
Humans										
Commensal isolates	52			3.8 (2)			3.8 (2)	7.7 (4)		
Diarrheal isolates	42			7.1 (3)		4.8 (2)	9.5 (4)	19.0 (8)		
Extraintestinal	213		0.5(1)	1.4 (3)	5.2 (11)	4.2 (9)	4.7 (10)	15.0 (32)		
isolates										
Total	307		0.3 (1)	2.6 (8)	3.6 (11)	3.6 (11)	5.2 (16)	14.3 (44)		
Chickens										
Commensal isolates	16		12.5 (2)	18.8 (3)	43.8 (7)		18.8 (3)	68.8 (11)		
Diarrheal isolates	7					57.1 (4)	28.6 (2)	57.1 (4)		
Extraintestinal	361		0.8 (3)	0.6 (2)	1.4 (5)	0.3 (1)	19.7 (71)	21.1 (76)		
isolates										
Total	384		1.3 (5)	1.3 (5)	3.1 (12)	1.3 (5)	19.8 (76)	23.7 (91)		
Pigs										
Commensal isolates	10			40.0 (4)	10.0(1)		50.0 (5)	70.0 (7)		
Diarrheal isolates	173	2.3 (4)		7.5 (13)	6.9 (12)	5.2 (9)	47.4 (82)	56.1 (97)		
Extraintestinal	15						93.3 (14)	93.3 (14)		
isolates										
Total	198	2.0 (4)		8.6 (17)	6.6 (13)	4.5 (9)	51.0 (101)	59.6 (118)		
Other animals ^a										
Commensal isolates	69		2.9 (2)	4.3 (3)	5.8 (4)		2.9 (2)	10.1 (7)		
Diarrheal isolates	8			12.5 (1)		25.0 (2)		37.5 (3)		
Extraintestinal	12						16.7 (2)	16.7 (2)		
isolates										
Total	89		2.2 (2)	4.5 (4)	4.5 (4)	2.2 (2)	4.5 (4)	13.5 (12)		
Environment	44		6.8 (3)	20.5 (9)	22.7 (10)		20.5 (9)	36.4 (16)		
Total	1,022	0.4 (4)	1.1 (11)	4.2 (43)	4.9 (50)	2.6 (27)	20.2 (206)	27.5 (281)		

TABLE 2 Distribution of PMQR genes in 1,022 E. coli isolates of human, animal, and environmental origins

^a Other animals include cattle (32 isolates), dogs (6 isolates), ducks (11 isolates), and geese (40 isolates).

isolates were obtained from heart, liver, spleen, blood, or feces samples of diseased or healthy animals (specifically, 384 chickens, 32 cattle, 6 dogs, 11 ducks, 40 geese, and 198 pigs), and 44 isolates were randomly collected from the environment on different farms, including surface soil, sewage, drinking water, and pond water. Each isolate was from a separate specimen.

All isolates were screened for oqxA and other PMQR genes [i.e., qnrA, qnrB, qnrC, qnrD, qnrS, aac(6')-*Ib*-cr, and qepA] by PCR (Table 1). All oqxA-positive isolates were also screened for oqxB (8). Both strands of the purified PCR products were sequenced, and qnr alleles were assigned by referring to the qnr gene nomenclature (7). All isolates PCR positive for aac(6')-*Ib* were further analyzed by digestion with FokI and/or direct sequencing to identify aac(6')-*Ib*-cr.

Among the 1,022 *E. coli* isolates, PMQR genes were present in 281 (27.5%) isolates; *qnr*, *aac*(6')-*Ib-cr*, *qepA*, and *oqxAB* were detected alone or in combination in 58 (5.7%), 50 (4.9%), 27 (2.6%), and 206 (20.2%) isolates, respectively. None of the isolates carried *qnrC* or *qnrD*. The detected *qnr* genes included 1 *qnrA1*, 3 *qnrA3*, 1 *qnrB2*, 1 *qnrB4*, 7 *qnrB9*, 2 *qnrB10*, 35 *qnrS1*, and 8 *qnrS2* genes. PMQR genes were detected in isolates from chickens (23.7%), ducks (27.3%), geese (15.0%), pigs (59.6%), humans (14.3%), dogs (50.0%), and the environment (36.4%). In this study, *oqxAB* was the most common PMQR gene and was found as early as 1994 from chickens, whereas *qnrA*, *qnrB*, *qnrS*, *aac*(6')-

Ib-cr, and *qepA* emerged in 2004 from pigs, in 2007 from humans, in 2003 from pigs, in 2003 from pigs, and in 2003 from chickens, respectively. Notably, 42 isolates in this study were positive for two PMQR genes, while 9 isolates were positive for three PMQR genes. Isolates with more than one PMQR gene were commonly isolated from the environment (25.0%; 11/44).

The prevalence of PMQR genes in animal intestinal isolates was 45.6% (129/283), which was significantly higher than those in the animal extraintestinal isolates (23.7%) and human isolates (14.3%) (P < 0.005). The prevalence of *oqxAB* in animal isolates was 27.0% (181/671), which was significantly higher than that in human isolates (5.2%) (P < 0.005). A surprisingly high prevalence of oqxAB (39.0%) was recently detected in E. coli isolates from animals, farmworkers, and the environment in Guangdong province during 2002 (19). The prevalence of oqxAB in China was significantly higher than those previously reported for Denmark, Sweden (1.8%), and South Korea (0.4%) (14). In this study, the prevalence of oqxAB in pigs (51.0%; 101/198) was significantly higher than those in chickens (19.8%; 76/384) and other animals (4.5%; 4/89) (*P* < 0.005) (Table 2). Olaquindox was commonly used as a therapeutic and preventive antibiotic in swine in China and was allowed at a concentration of 50 ppm in feed for pigs below 35 kg. However, olaquindox was forbidden in poultry and aquaculture since 2001 (10), which may explain the relatively low prevalence of *oqxAB* in chickens, ducks, geese, cattle, and dogs.

TABLE 3 Results on o	conjugative tra	nsfer experiment	s and QRDR status ^d
----------------------	-----------------	------------------	--------------------------------

		MIC (µg	g/ml) ^a						QRDR ^c mutat in:	tion(s)	
Strain PMQR determinant(s)	Specimen	NAL	OLA	CIP	NOR	OFX	LVX	MDR phenotype ^b	gyrA	parC	
U027	aac(6')-Ib-cr	Human urine	512	8	0.25	1	0.5	0.25	AMP, TET, SXT, CHL, GEN, CEF,	S83L	WT
T-U027	aac(6')-Ib-cr		4	8	0.016	0.06	0.03	0.03	AMK AMP, TET, SXT, CHL, GEN		
U054	aac(6')-Ib-cr	Human urine	>1024	4	64	256	32	16	AMP, TET, SXT, CHL, GEN, CEF, CAZ, ATM	\$83L, D87N	S80I
T-U054	aac(6')-Ib-cr		4	8	0.016	0.06	0.03	0.03	AMP		
U072 T-U072	aac(6')-Ib-cr aac(6')-Ib-cr	Human urine	>1024 8	4 4	1 0.016	8 0.06	2 0.03	0.5 0.03	AMP, TET, SXT, GEN, STR, CEF AMP, TET, SXT, STR, CEF	S83L	S80I
U175	aac(6')-Ib-cr	Human urine	>1024	16	128	256	32	32	AMP, TET, SXT, CHL, STR, CEF, CAZ, ATM, AMK	\$83L, D87N	S80I
T-U175	aac(6')-Ib-cr		4	4	0.008	0.06	0.03	0.03	AMP, TET, SXT, CHL, STR, CEF		
U220 T-U220	aac(6')-Ib-cr aac(6')-Ib-cr	Human urine	>1024 4	8 8	256 0.016	256 0.06	32 0.03	16 0.03	AMP, TET, SXT, GEN, STR, CEF, CAZ AMP, TET, SXT, STR, CEF	S83L, D87N	S80I
U242 T-U242	aac(6')-Ib-cr aac(6')-Ib-cr	Human urine	>1024 4	16 8	128 0.016	256 0.06	32 0.06	16 0.03	AMP, TET, CEF AMP, TET	\$83L, D87N	S80I
U015	qepA	Human urine	>1024	16	128	>256	32	16	AMP, TET, SXT, GEN, STR, CEF, CAZ,	\$83L, D87N	S80I
T-U015	qepA		4	8	0.03	0.25	0.03	0.016	CTX, ATM, AMK AMP, TET, SXT, GEN, CEF, CTX, ATM , AMK		
U155	qepA	Human urine	>1024	4	128	256	16	16	AMP, TET, SXT, CHL, GEN, STR, CEF, CAZ, CTX, ATM	\$83L, D87N	S80I
T-U155	qepA		4	8	0.06	0.25	0.06	0.03	AMP, GEN, CEF, CAZ, CTX, ATM		
U222	qepA	Human urine	>1024	8	>256	>256	64	32	AMP, TET, SXT, CHL, GEN, STR, PIP, CEF, CTX, AMK	S80L, D87N	S80I
T-U222	qepA		4	8	0.016	0.125	0.03	0.016	AMP, SXT, CHL, GEN, PIP, CEF, AMK		
C023	qnrA1, oqxAB, aac(6')- Ib-cr	Pig feces	>1024	128	8	32	16	8	AMP, TET, SXT, GEN, STR	S83L	S80I
T-C023	qnrA1, aac(6')-Ib-cr		16	8	0.25	1	0.5	0.25	AMP, GEN		
C040 T-C040	qnrA3, aac(6')-Ib-cr qnrA3, aac(6')-Ib-cr	Pig feces	32 16	2 4	≤0.125 0.125	0.5 0.5	0.25 0.25	0.25 0.125	AMP, TET, SXT, GEN, STR AMP, TET, SXT	WT	WT
C041 T-C041	qnrA3, aac(6')-Ib-cr qnrA3, aac(6')-Ib-cr	Pig feces	16 16	2 4	≤0.125 0.25	0.5 0.5	0.25 0.25	0.25 0.125	AMP, TET, SXT, GEN, STR AMP, TET, SXT	WT	WT
C042 T-C042	qnrA3, aac(6')-Ib-cr qnrA3, aac(6')-Ib-cr	Pig feces	16 16	2 4	≤0.125 0.125	0.5 0.5	0.5 0.25	0.25 0.125	AMP, TET, SXT, GEN, STR AMP, TET, SXT	WT	WT
C053 T-C053	qnrS1 qnrS1	Pig feces	8 32	8 4	≤0.125 0.25	0.25 0.5	0.5 1	0.25 0.5	AMP, CHL AMP, CHL	WT	WT
C058 T-C058	qnrS1 qnrS1	Pig feces	16 32	32 4	≤0.125 0.25	0.25 0.5	0.5 1	0.25 0.5	AMP, TET, SXT AMP	WT	WT
C111 T-C111	qnrS1 qnrS1	Pig feces	256 32	8 4	0.5 0.25	1 0.5	4 1	2 0.5	AMP, TET, SXT, CHL, STR, PIP AMP, TET, SXT, CHL, PIP	S83L	WT
C112 T-C112	qnrS1 qnrS1	Pig feces	256 32	8 4	0.5 0.25	1 0.5	8 1	2 0.5	AMP, TET, SXT, CHL, STR, PIP AMP, TET, SXT, CHL, PIP	S83L	WT
C113 T-C113	qnrS1 qnrS1	Pig feces	256 32	16 4	0.5 0.25	1 0.5	4 1	4 0.5	AMP, TET, SXT, CHL, STR, PIP AMP, TET, SXT, CHL, PIP	S83L	WT
C194 T-C194	qnrS1 qnrS1	Pig feces	16 32	32 4	≤0.125 0.125	0.25 0.5	0.5 1	0.25 0.5	AMP, TET, GEN, STR, FOF AMP	WT	A567
C261 T-C261	qnrS1 qnrS1	Human feces	32 32	4 4	≤0.125 0.25	0.25 0.5	0.5 1	0.25 0.5	AMP, TET, SXT TET, SXT	WT	WT
C263 T-C263	qnrS1 qnrS1	Dog feces	16 16	8 4	≤0.125 0.125	0.5 0.5	0.5 1	0.5 0.5	AMP, TET, SXT, GEN, STR, PIP AMP	WT	WT

(Continued on following page)

TABLE 3 (Continued)

			MIC $(\mu g/ml)^a$							QRDR ^c mutation(s) in:	
Strain	PMQR determinant(s)	Specimen	NAL	OLA	CIP	NOR	OFX	LVX	MDR phenotype ^b	gyrA	par
C389	qnrS1	Chicken feces	32	8	≤0.125	0.25	0.5	0.5	AMP, TET, SXT, FOF	WT	WT
Г-С389	qnrS1		32	4	0.25	0.5	1	0.5	TET, SXT		
J033	qnrS1	Human urine	>1024	4	16	128	64	32	AMP, TET, GEN, PIP	S83L, D87N	S80
Г-U033	qnrS1		16	8	0.5	1	1	0.5	AMP, TET, GEN, PIP		
U116	qnrS1	Human urine	>1024	16	32	128	64	64	AMP, TET, GEN, PIP	S83L, D87N	S80]
T-U116	qnrS1		32	8	0.25	0.5	1	0.5	AMP, TET, GEN, PIP	,	
U145	qnrS1	Human urine	>1024	32	64	256	128	64	AMP, TET, GEN, CEF	S83L, D87N	S801
T-U145	qnrS1		32	4	0.25	0.5	1	0.5	AMP, TET		
C193	qnrS1, oqxAB	Pig feces	64	64	0.25	0.5	2	1	AMP, TET, SXT, GEN, STR, FOF	WT	A56
T-C193	qnrS1, bqxAB qnrS1	I ig ieces	32	4	0.25	0.5	1	0.5	AMP, TET, SXT, GEN, STR, FOF	VV 1	A30
0544	01 (P		~	120	0.05		2	0.5	AND THE OVE ON OF NO	1 A 1771	1.175
C544	qnrS1, oqxAB	Chicken feces	64	128	0.25	1	2	0.5	AMP, TET, SXT, CHL, GEN, STR, PIP, CEF, CTX, AMK, FOF	WT	WT
T-C544	qnrS1		32	4	0.125	0.5	1	0.5	AMP, TET, SXT, CHL, STR		
C052	qnrS1, oqxAB	Pig feces	32	128	0.25	0.5	1	0.5	AMP, TET, SXT, CHL, GEN, STR, PIP	WT	WT
T-C052	qnrS1	8	32	4	0.125	0.5	1	0.5	AMP, CHL		
C054	qnrS1, oqxAB	Pig feces	32	64	0.25	0.5	1	0.5	AMP, TET, SXT, CHL, GEN, STR	WT	WT
T-C054	qnrS1	T Ig feees	32	8	0.125	0.5	1	0.5	AMP, CHL	W 1	** 1
C055	- Classic AD	Diafana	20	64	~0.125	0.5	1	0.5	AMD TET OVT CHI CENI CTD	WT	WT
C055 T-C055	qnrS1, oqxAB qnrS1	Pig feces	32 16	64 4	≤0.125 0.125	0.5 0.5	1 1	0.5 0.5	AMP, TET, SXT, CHL, GEN, STR AMP, CHL	VV 1	VV I
	*	5								* . ***	
C594 T-C594	qnrS1, oqxAB qnrS1, oqxAB	Dust	32 64	128 32	≤0.125 0.25	0.5 1	1 1	0.5 0.5	TET, SXT, CHL TET, SXT, CHL	WT	WT
	q11101, 0q21D		01	52	0.25		1				
C709 T-C709	qnrS1, oqxAB	Dust	32 64	128 32	0.25 0.25	0.5 1	1 2	0.5 0.5	AMP, TET, AMK, SXT, CHL	WT	WT
1-0709	qnrS1, oqxAB		04	52	0.23	1	2	0.5	TET, SXT, CHL		
C056	qnrS1, oqxAB, aac(6')-Ib-cr	Pig feces	128	128	1	2	2	0.5	AMP, TET, SXT, CHL, GEN, STR, FOF	WT	WT
T-C056	oqxAB, aac(6')-Ib-cr		32	256	0.03	0.125	0.06	0.03	AMP, TET, SXT, CHL, GEN		
0570		Duchform	22	22	0.5	1	1	0.5	AMD TET OVT	3 A 7715	1477
C578 T-C578	qnrS1, aac(6')-Ib-cr qnrS1, aac(6')-Ib-cr	Duck feces	32 32	32 8	0.5 0.5	1 1	1 1	0.5 0.5	AMP, TET, SXT AMP, TET, SXT	WT	WT
	*										
C197 T-C197	qnrS2, aac(6')-Ib-cr qnrS2, aac(6')-Ib-cr	Pig feces	32 32	4 4	0.25 0.5	1 1	0.5 1	0.25 0.5	AMP, TET, SXT, STR AMP, TET, SXT	WT	WT
	*										
C265 T-C265	oqxAB, aac(6')-Ib-cr	Chicken liver	>1024 32	128 64	8 0.03	32 0.125	8 0.06	4 0.03	AMP, TET, SXT, CHL, GEN, CEF AMP, TET, SXT, CHL	\$83L, D87N	S801
1-0205	oqxAB, aac(6')-Ib-cr		52	04	0.03	0.125	0.06	0.05	AMP, IEI, SAI, CHL		
C324	oqxAB, aac(6')-Ib-cr	Chicken liver	>1024	256	32	64	16	8	AMP, TET, SXT, CHL, GEN, CEF, CAZ	S83L, D87N	S801
T-C324	oqxAB, aac(6')-Ib-cr		16	128	0.016	0.125	0.06	0.03	AMP, TET, SXT, CHL		
C327	oqxAB, aac(6')-Ib-cr	Chicken liver	>1024	512	64	128	32	16	AMP, TET, SXT, CHL, GEN, CEF,	S83L, D87G	S801
T-C327	oqxAB, aac(6')-Ib-cr		16	128	0.016	0.125	0.06	0.03	ATM, AMK, FOF, NIT AMP, TET, SXT, CHL		
	6qx1D, uuc(0)-10-cr			120					Awit, TET, OAT, CHE		
C034	oqxAB	Pig feces	>1024	128	8	32	16	8	AMP, TET, SXT, PIP, GEN, STR	S83L, D87Y	S801
T-C034	oqxAB		32	64	0.016	0.125	0.06	0.03	TET, GEN		
C671	oqxAB	Chicken feces	>1024	128	16	32	16	8	AMP, TET, SXT, CHL, STR, CEF	\$83L, D87N	S801
Г-С671	oqxAB		32	64	0.03	0.125	0.06	0.03	AMP, TET, SXT, PIP, CEF		
U080	oqxAB	Human urine	>1024	256	64	128	32	16	AMP, TET, SXT, CHL, STR	S83L, D87N	S801
T-U080	oqxAB		32	64	0.03	0.125	0.06	0.03	AMP, TET, SXT, CHL		
J53 Az ^r			4	8	0.008	0.016	0.03	0.016			

^{*a*} CIP, ciprofloxacin; LVX, levofloxacin; NAL, nalidixic acid; NOR, norfloxacin; OFX, ofloxacin; OLA, olaquindox.

^b Multidrug resistance (MDR) phenotype abbreviations are as follows: AMK, amikacin; AMP, ampicillin; ATM, aztreonam; CAZ, ceftazidime; CEF, cephalothin; CHL,

chloramphenicol; CTX, cefotaxime; FOF, fosfomycin; GEN, gentamicin; NIT, nitrofurantoin; PIP, piperacillin; STR, streptomycin; SXT, trimethoprim-sulfamethoxazole; TET,

tetracycline. ^c QRDR, quinolone resistance-determining region; S83L, mutation of the amino acid at codon 83 from S to L (etc.); WT, wild type (i.e., no mutation).

^d The "T-" prefix indicates a transconjugant.

In these 281 PMQR-positive isolates, 89 isolates with distinct PMQR genes or sources (specifically, 27 humans, 24 chickens, 24 pigs, 9 environmental sources, and 5 other animals) were selected for conjugation experiments using J53 Az^r (i.e., azide resistant) as the recipient strain (17). Transconjugants were selected on tryptic soy agar plates containing sodium azide (100 µg/ml) and tetracycline (20 µg/ml), chloramphenicol (50 µg/ml), gentamicin (8 µg/ ml), or amoxicillin (100 $\mu g/ml).$ A total of 41 transconjugants were successfully obtained at a frequency of 10^{-7} to 10^{-3} cells per recipient. Nine (22.5%) transconjugants carrying oqxAB were successfully obtained from 40 OqxAB-producing isolates. Cotransfer of resistance to ampicillin, tetracycline, trimethoprimsulfamethoxazole, and chloramphenicol was observed in 36 (87.8%), 30 (73.2%), 26 (63.4%), and 20 (48.8%) of the 41 transconjugants, respectively. MICs of 41 E. coli isolates (including 15 oqxAB-positive and 26 oqxAB-negative isolates) were determined by the broth microdilution method according to CLSI guidelines (4, 5). The isolates with oqxAB had olaquindox MICs of $\geq 64 \ \mu g/ml$. Transconjugants carrying *oqxAB* showed 4- to 32fold increases in olaquindox MICs compared with those of the recipient. This is consistent with the oqxAB genotype, suggesting that *oqxAB* has a role in olaquindox resistance, as reported by other studies (6, 19). Transfer of the *qnr* gene can elevate ciprofloxacin MICs by 16- to 64-fold relative to those of the recipient, which is greater than the effects of qepA and aac(6')-Ib-cr (Table 3).

The quinolone resistance-determining regions (QRDRs) of the *gyrA* and *parC* genes in PMQR-positive isolates were sequenced to confirm the mutations as previously described (11). Of the 41 *E. coli* isolates, 17 (41.5%) had wild-type *gyrA* and *parC* genes, and these isolates had ciprofloxacin MICs ranging from ≤ 0.125 to 1 µg/ml. Mutations in both *gyrA* (S83 and D87) and *parC* (S80) were detected in 16 (39.0%) isolates, with ciprofloxacin MICs of 8 to ≥ 256 µg/ml. In the absence of *oqxAB*, olaquindox MICs in the isolates without QRDRs mutations were similar to those of isolates with up to three mutations (4 to 32 µg/ml), suggesting that the QRDR mutations do not affect olaquindox susceptibility (Table 3).

In conclusion, *oqxAB* was prevalent and widespread in *E. coli* isolates from humans, animals, and the environment in China. This study is the first report on the occurrence of *oqxAB* in isolates from ducks and geese and as early as 1994 from chickens.

Nucleotide sequence accession numbers. The sequences of the *qnr* genes found in this study were deposited in GenBank under accession numbers JF773308 to JF773350.

ACKNOWLEDGMENTS

We are grateful to M. Wang for kindly providing *E. coli* strain J53 Az^r and *qnrC*-positive plasmid, to Y. Jiang for kindly donating the control strains positive for *qnrA*, *qnrB*, *qnrS*, and *aac*(6')-*Ib*-*cr*, to K. Yamane for the gift of the *qepA*-positive control strain, and to L. Cavaco for providing the *qnrD*-positive plasmid.

This work was supported in part by grant 31001079 from NSFC, grants 09KJB230002 and 2009KJA230001 from NSF of Jiangsu Higher Education Institutions, grant KZCX2-EW-QN411 from the Knowledge Innovation Program of CAS, grant IRT0978 from the Program for Changjiang Scholars and Innovative Research Team in University, and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

REFERENCES

- Cattoir V, Poirel L, Nordmann P. 2008. Plasmid-mediated quinolone resistance pump QepA2 in an *Escherichia coli* isolate from France. Antimicrob. Agents Chemother. 52:3801–3804.
- Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. 2007. Multiplex PCR for detection of plasmid-mediated quinolone resistance *qnr* genes in ESBL-producing *enterobacterial* isolates. J. Antimicrob. Chemother. 60: 394–397.
- Cavaco LM, Hasman H, Xia S, Aarestrup FM. 2009. *qnrD*, a novel gene conferring transferable quinolone resistance in *Salmonella enterica* serovars Kentucky and Bovismorbificans of human origin. Antimicrob. Agents Chemother. 53:603–608.
- Clinical and Laboratory Standards Institute. 2008. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard, 3rd ed, document M31–A3. CLSI, Wayne, PA.
- Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing; 22nd informational supplement (M100–S22). CLSI, Wayne, PA.
- Hansen LH, Johannesen E, Burmolle M, Sørensen AH, Sørensen SJ. 2004. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in *Escherichia coli*. Antimicrob. Agents Chemother. 48:3332– 3337.
- Jacoby G, et al. 2008. *qnr* gene nomenclature. Antimicrob. Agents Chemother. 52:2297–2299.
- Kim HB, et al. 2009. *oqxAB* encoding a multidrug efflux pump in human clinical isolates of *Enterobacteriaceae*. Antimicrob. Agents Chemother. 53: 3582–3584.
- 9. Martínez-Martínez L, Pascual A, Jacoby GA. 1998. Quinolone resistance from a transferable plasmid. Lancet 351:797–799.
- 10. Ministry of Agriculture of the People's Republic of China. 2001. Feed drug additives safe use specification. Announcement no. 168 of the Ministry of Agriculture of the People's Republic of China. Ministry of Agriculture, Beijing, China.
- Morgan-Linnell SK, Becnel Boyd L, Steffen D, Zechiedrich L. 2009. Mechanisms accounting for fluoroquinolone resistance in *Escherichia coli* clinical isolates. Antimicrob. Agents Chemother. 53:235–241.
- Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. 2006. Prevalence in the United States of *aac(6')-Ib-cr* encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50:3953–3955.
- Robicsek A, et al. 2006. Fluoroquinolone modifying enzyme: a novel adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12: 83–88.
- Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual A. 2011. Plasmid-mediated quinolone resistance: an update. J. Infect. Chemother. 17:149–182.
- Sørensen AH, Hansen LH, Johannesen E, Sørensen SJ. 2003. Conjugative plasmid conferring resistance to olaquindox. Antimicrob. Agents Chemother. 47:798–799.
- Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. 2009. Plasmidmediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22:664–689.
- Wang M, et al. 2003. Plasmid-mediated quinolone resistance in clinical isolates of *Escherichia coli* from Shanghai, China. Antimicrob. Agents Chemother. 47:2242–2248.
- Wang M, et al. 2009. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of *Proteus mirabilis*. Antimicrob. Agents Chemother. 53:1892–1897.
- 19. Zhao JJ, et al. 2010. Prevalence and dissemination of *oqxAB* in *Escherichia coli* isolates from animals, farmworkers, and the environment. Antimicrob. Agents Chemother. 54:4219–4224.