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Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly convert-
ing cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain, AD2, played pivotal
roles in describing the original cellulosome concept. We present their draft genome sequences.

Clostridium thermocellum was characterized over 50 years ago
(31), and its ability for efficient degradation and utilization of

cellulose for ethanol production was recognized early on (1, 2, 21,
26, 33, 34, 36, 37, 39). It is an obligate anaerobic microorganism
that has one of the highest growth rates on cellulose. The bacte-
rium possesses productivity advantages associated with thermo-
philic growth and is capable of producing its own enzymes for
lignocellulosic biomass breakdown (see reviews in references 4,
11, 28, and 29). Recently, important progress has been made in
understanding C. thermocellum ethanol tolerance (10), a targeted
deletion system has been developed (38), and four C. thermocel-
lum genome sequences have been determined (16, 19) (GenBank
accession no. CP000568.1).

C. thermocellum strain YS was purified from samples derived
from hot springs at Yellowstone National Park in the United
States, and it was characterized as a potent cellulolytic strain.
Strain YS and a derived cellulose adhesion-defective mutant
(AD2) played pivotal roles in describing the original cellulosome
concept that recognized that C. thermocellum cellulases and asso-
ciated polysaccharide-degrading enzymes are packaged in orga-
nized, high-molecular-weight, cellulolytic enzyme complexes (5,
23, 24). Strain YS was used in a number of subsequent studies (e.g.,
references 6, 8, 13–15, 17, 18, 25, 27, 32, and 35), and the cellulo-
some concept has served as a model for different clostridia and
other related anaerobic bacteria, e.g., Clostridium cellulovorans,
Clostridium cellulolyticum, Clostridium josui, Clostridium papyro-
solvens, Acetivibrio cellulolyticus, Bacteroides cellulosolvens, and
Ruminococcus flavefaciens (3, 7, 12, 22).

Draft genome data for strain YS were generated using a com-
bination of 454 (30) and Illumina (9) HiSeq2000 technologies
from 3-kb and 500-bp paired-end libraries, respectively. The 454
data consisted of 650,450 reads and generated 207,578,580 bp.
After trimming and filtering of Illumina data (CLC Genomics
Workbench version 4.9.1), there were 16,806,784,095 and
15,259,925,308 bp of sequence data for strains YS and AD2 from
174,965,956 and 159,631,515 reads, respectively, with an average
length of 96 bp. Trimmed Illumina reads were assembled using the
CLC Genomics Workbench. The consensus Illumina sequences
for strain YS were processed further by generating 1.5-kb overlap-
ping fake reads using the fb_dice.pl script, which is part of the

FragBlast module (http://www.clarkfrancis.com/codes/fb_dice.pl).
The Newbler application (version 2.6; 454 Life Sciences) was
then used to assemble the YS Illumina consensus sequences and
the 454 reads into 100 large (�500-bp) contiguous DNA elements
of approximately 3.46 Mb. The average YS contig size was 34,644 bp,
the N50 contig size was 126,840 bp, and the largest contig was 330,620
bp. The genome had an overall estimated G�C content of �39%.
Strain AD2 had 132 large contigs with an average size of 26,020 bp, the
N50 contig size was 76,137 bp, and the largest contig was 269,895 bp.
Draft genome sequences were annotated at Oak Ridge National
Laboratory using an automated annotation pipeline, based on the
Prodigal gene prediction algorithm (20). Sequence data for DNA
contigs, coding and translation models, annotations, and meta-
bolic reconstructions are available online (http://genome.ornl.gov
/microbial/guest/YSORG_Nov2011_Hybrid and http://genome.ornl
.gov/microbial/guest/AD2_NovRerun).

This study reveals the C. thermocellum YS and AD2 genome
sequences for the first time. Access to these genome sequences,
which are linked to important prior observations, will facilitate
further studies with this genus and species.

Nucleotide sequence accession numbers. The C. thermocel-
lum YS and AD2 nucleotide sequences have been deposited in
DDBJ/EMBL/GenBank under accession numbers AJGT00000000
and AJGS00000000, respectively, and the versions described in
this paper are the first versions. The entire data set has been de-
posited in the National Center for Biotechnology Information
(NCBI) Sequence-Read Archive (SRA) database under accession
number SRA049437.
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