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Clostridium difficile infection is the leading cause of antibiotic-
and healthcare-associated diarrhea, and its containment and
treatment imposes a significant financial burden, estimated to
be over $3 billion in the USA alone. Since the year 2000, CDI
epidemics/outbreaks have occurred in North America, Europe
and Asia. These outbreaks have been variously associated
with, or attributed to, the emergence of Clostridium difficile
strains with increased virulence, an increase in resistance to
commonly used antimicrobials such as the fluoroquinolones,
or host susceptibilities, including the use of gastric acid
suppressants, to name a few. Efforts to elucidate C. difficile
pathogenic mechanisms have been hampered by a lack of
molecular tools, manipulatable animal models, and genetic
intractability of clinical C. difficile isolates. However, in the past
5 y, painstaking efforts have resulted in the unraveling of
multiple C. difficile virulence-associated pathways and
mechanisms. We have recently reviewed the disease, its
associated risk factors, transmission and interventions
(Viswanathan, Gut Microbes 2010). This article summarizes
genetics, non-toxin virulence factors, and host-cell biology
associated with C. difficile pathogenesis as of 2011, and
highlights those findings/factors that may be of interest as
future intervention targets.

Introduction

Clostridium difficile is a Gram-positive, spore-forming obligate
anaerobe, belonging to the phylum Firmicutes. Both toxin-
producing (toxigenic) and non-toxigenic strains exist naturally,
and both can colonize their hosts (humans and non-human
mammals), although only toxigenic strains are associated with
disease. Though not traditionally considered to be part of the
human microbiome, it is estimated that C. difficile may comprise
1–3% of commensal flora in adult humans.1 C. difficile spores are
ubiquitous in the environment, and widely distributed in
healthcare settings. Spores are ingested via contact with con-
taminated surfaces and, under favorable conditions (in susceptible
hosts), will germinate to a vegetative morphotype that can
produce toxins, if a toxigenic strain is involved (Fig. 1).

Antibiotic-mediated suppression of normal human gut microbiota
is strongly associated with colonization and proliferation of
C. difficile, and germination of spores is dependent on specific
bile salts produced in the small intestine.2 Toxigenic C. difficile
encode one or two glucosyltransferase toxins [Toxin A (TcdA) or
Toxin B (TcdB)] within a 19.6 kb genomic island known as the
Pathogenicity Locus (PaLoc). These toxins inactivate Rho, Rac or
Cdc42-family molecules in host epithelial cells to cause signaling
alterations and, ultimately, apoptosis. A third ADP-ribosylating
toxin [Binary toxin (CDT)] is also produced by some, but not all,
C. difficile strains. Understandably, much of the focus has been
placed on intoxication mechanisms, since TcdA/B and binary
toxin cause profound alterations in host-cell biology, and are
ultimately responsible for the diarrheagenic phenotype of CDI.
However, it is increasingly appreciated that non-toxin virulence
factors likely play equally important roles in C. difficile coloniza-
tion, proliferation and maintenance in the host GI tract. This is
underscored by the increased rates of recurrent disease in patients
infected with the newer epidemic-associated strains of C. difficile;
it is estimated that up to 33% of patients will recur after a first
episode of CDI, and 45% after a second episode.3 These observa-
tions argue that recently emerged strains of C. difficile have
evolved mechanisms to persist in the GI tract even after repeated
antimicrobial regimens; this long-term establishment is likely
mediated via newly-evolved colonization strategies. Functional
and mechanistic elucidation of the contribution of non-toxin
factors to CDI is therefore of paramount importance if a com-
prehensive view of C. difficile-induced disease is envisaged.

Epidemiology and Molecular Typing
of Clostridium difficile Clinical Isolates

C. difficile isolates are classified or typed using a number of
molecular methodologies.4 The most commonly used methods
classify strains on the basis of tcdA/tcdB sequence polymorphisms
(toxinotyping), 16s-23s rDNA intergenic spacer region patterns
(ribotyping), whole genome restriction pattern polymorphisms
[pulse-field typing and restriction endonuclease analysis (REA)
typing], multi-locus repeat- or non-repeat-based sequence varia-
tions (MLST, MLVA), and surface-protein variations (SLP
typing). The newer epidemic- and severe disease-associated
C. difficile strains that have emerged in the past 10 years in
North America and Europe are most frequently identified as

*Correspondence to: Gayatri Vedantam; Email: gayatri@email.arizona.edu
Submitted: 12/14/11; Revised: 01/16/12; Accepted: 01/18/12
http://dx.doi.org/10.4161/gmic.19399

REVIEW

Gut Microbes 3:2, 121–134; March/April 2012; G 2012 Landes Bioscience

www.landesbioscience.com Gut Microbes 121

http://dx.doi.org/10.4161/gmic.19399


© 2012 Landes Bioscience.

Do not distribute.belonging to ribotypes 001, 017, 027, 078 and 106 (toxinotypes
0, VIII, III, V and 0, and pulse-field types NAP2, NAP9, NAP1,
NAP7/8 and NAP11 respectively).5

Multiple phylogenetic studies have also revealed that most
epidemic-associated strains described above can be grouped into
specific clades (HY, HA1, A-B+, HA-2).6 However, intra- and
inter-clade variation does occur, and the analysis of scores of
C. difficile genomes has revealed a remarkable degree of chro-
mosomal plasticity as well as the propensity for horizontal DNA
transfer.7-10

Clostridium difficile Toxins

The diarrheagenic phenotype of CDI is attributed to toxins
produced by the organism. Toxigenic strains produce up to three
toxins (TcdA, TcdB and the binary toxin CDT). All naturally
occurring diarrheagenic strains of C. difficile produce TcdB, and
most strains also produce TcdA; there are no reports of naturally
occurring TcdA+TcdB- C. difficile strains.

TcdA and TcdB belong to the same family of large clostridial
glucosylating toxins, and harbor a receptor binding domain, a
transmembrane domain and a glucosyl-transferase domain. These
toxins glucosylate and inactivate host GTPases, including Rac,
Rho and Cdc42, leading to alterations in the actin cytoskeleton,
disruption of barrier function and apoptosis.11 Interestingly, some
variants of TcdB have altered substrate specificity, and target Rap
and Ras proteins instead of Rac.12

In addition to their direct cytotoxic effects, TcdA and TcdB
also provoke inflammatory responses that contribute to tissue

damage, and may lead to serious clinical sequelae such as pseudo-
membranous colitis. Both toxins induce production of the pro-
inflammatory cytokine IL-1β in tissue culture models. Ng et al.
recently demonstrated that this induction depends on intra-
cellular recognition of the toxins and subsequent assembly of a
multi-protein complex, the inflammasome, involved in activating
inflammation.13 Inhibiting inflammasome formation prevented
TcdA/TcdB-induced tissue damage in a mouse model of infec-
tion. In a different study, the two toxins were shown to induce
HIF-1a, a transcription factor that regulates genes involved in
immune function, inflammation and intestinal barrier function.
TcdA/TcdB-treated HIF-1a knockout mice display more severe
tissue damage, implicating a protective role for HIF-1a during
CDI.14

The actual contributions of the two toxins, particularly TcdA,
to disease progression remain a matter of debate. Two laboratories
have independently constructed C. difficile mutants deficient in
production of TcdA, TcdB or both toxins, and assessed their
virulence in the hamster model of infection.15,16 Both groups
found that TcdA-negative mutants remained virulent, and that
mutants lacking both toxins were avirulent. However, the results
for the TcdB-negative mutant were more varied, with one study
showing that these strains were nearly as virulent as the wild-type
parent, and the other study finding them to be significantly
less virulent. Several explanations have been proposed for the
apparent discrepancy between the two studies, including differ-
ences in the end points at which animals were euthanized, as
well as differences in the parent C. difficile strains used to create
the mutants.16

Figure 1. Schematic of human C. difficile infection. Spores, vegetative cells, bacterial factors and host factors that impact/modulate disease are depicted.
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Within the PaLoc is a gene, tcdC, that encodes an anti-sigma
factor speculated to play a role in TcdA/TcdB expression. Many
epidemic-associated C. difficile isolates of the 027 ribotype/HY
clade harbor a missense mutation in tcdC, and it has been
proposed that the consequent loss of function contributes to
the enhanced toxin production and virulence of 027 strains.
Consistent with this hypothesis, Carter et. al demonstrated that
an 027 strain complemented with full length tcdC (from a
non-027 strain VPI10463) produced less toxin, and was less
virulent, than the parental strain in a hamster model of infec-
tion.17 There are, however, many naturally-occurring C. difficile
strains harboring the tcdC mutation, but not associated with
severe disease,18 as well as strains that lack this mutation, but
produce copious amounts of toxin without being associated with
severe disease in hamsters (e.g., strain VPI10463).19 Therefore,
further exploration of specific mechanistic contribution(s) of
TcdC to C. difficile disease is warranted.

In addition to TcdA and TcdB, some C. difficile isolates,
notably 027 and 078 ribotype strains, produce a binary toxin,
also called Clostridium difficile transferase (CDT). A retrospective
study in Sweden concluded that human infection with CDT-
producing strains of C. difficile was associated with greater
mortality compared with infection with strains that did not
produce CDT, regardless of ribotype, suggesting a role for CDT
in virulence.20 CDT irreversibly ADP-ribosylates actin, leading
to disruption or rearrangement of the host cell cytoskeleton.
Schwan et al. showed that CDT-treated Caco-2 cells elaborate
long protrusions to which C. difficile can bind, suggesting that
this toxin may enhance bacterial attachment to host cells.21

Using a genetic screen in a haploid human cell line,
Papatheodorou et al. identified the receptor of CDT, a protein
called lipolysis-stimulated lipoprotein receptor.22 It has also
been demonstrated that entry of CDT into the host cell cytosol
requires endosome acidification, and that this process depends
on the host cell proteins Hsp90 and cyclophilin A, as is the case
for the C2 toxin of C. botulinum.23

Sporulation and Germination of C. difficile

Spores, the etiological agents of CDI, are easily spread between
healthcare workers and patients.24 Further, spores are metaboli-
cally dormant and highly resistant to standard disinfection
procedures, allowing them to persist for long periods in the
environment. Spores ingested by susceptible hosts can reactivate
(or germinate) in response to specific bile acids in the small
intestine, and return to an active lifestyle to produce toxins and
cause disease.3 Therefore, an increased ability to form spores in
the host or, perhaps, the ability to form more resilient spores
might account for a change in the ability of C. difficile to spread
more easily. Could the rapid spread of the recently-emerged
epidemic-associated strains be due to an increased efficiency of
sporulation, compared with the clinical isolates recovered prior
to the year 2000? Multiple studies suggest that some,25,26 but
not all,18,27,28 epidemic-associated, and ribotype 027 strains, do
produce more spores in vitro. However, the efficiency of sporula-
tion in vivo, and its contribution to the prevalence of specific

C. difficile strains, is still an open question. For these reasons,
spores produced by C. difficile, the process by which they are
formed (sporulation), their associated surface proteins and struc-
tures such as the exosporium (Fig. 2, Mallozzi M et al.,
unpublished), as well as their reactivation kinetics in the host,
are active areas of research.

Sporulation in the Clostridia. Sporulation in all spore-forming
organisms is thought to occur in response to stress, especially
starvation. The genes and genetic regulation of spore formation
have been well studied in Bacillus subtilis (the archetypal organism
for sporulation studies).29 In their review, Paredes et al. used
genome sequence analyses to compare and contrast the putative
sporulation signaling pathways and regulatory proteins in Bacillus
spp. and the clostridia.30 While this analysis revealed that almost
all regulators and signaling molecules downstream of the master-
regulator of sporulation (SpoOA) were conserved, the signaling
molecules upstream of SpoOA (which contribute to SpoOA
phosphorylation and activation) were conspicuously absent from
clostridial genomes.30 Therefore, the factor(s) influencing the
sporulation checkpoint, and the corresponding signaling path-
ways, remain to be established for the clostridia. In contrast,
the view that the orthologous sigma factors known to control
sporulation in Bacillus sp likely function similarly in clostridia has
been buoyed by recent studies showing that mutants lacking
these sigma factors have an asporogeneous phenotype in multiple
clostridial species.31-35

Nevertheless, studies in other clostridia have shed light on
the signaling events that help initiate sporulation in C. difficile.
Steiner et al. showed that two orphan histidine kinases of
Clostridium acetobutylicum were responsible for the phosphoryla-
tion of SpoOA in vivo.36 Interestingly, Underwood et al. showed
that a mutation in the orthologous orphan histidine kinase in
C. difficile (CD2492) reduced the capacity to sporulate, suggest-
ing functional conservation with the identified C. acetobutylicum

Figure 2. Spore surface of C. difficile clinical isolates. High-resolution,
scanning electron micrograph overlayed with transmission-electron
micrograph data of spore morphology of C. difficile strain VPI10463
immobilized on a solid surface. The orderly arrangement of spore
protein complexes is clearly visible, as is an exosporial structure
(diffusely-shaped and surrounding the spore. Micrograph collection,
Vedantam laboratory.
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sporulation proteins.37 This work also revealed that another
C. difficile histidine kinase, CD1579, could phosphorylate
SpoOA in vitro; however, its function in vivo could not be
determined. While quorum sensing influences the decision to
sporulate in Bacillus sp,38 and plays a role in sporulation initiation
in C. botulinum and C. perfringens39,40 (via the AgrB quorum
sensing peptide), its role in C. difficile sporulation is currently
unknown. Understanding the signaling events involved in
C. difficile sporulation could potentially yield novel targets for
therapeutic intervention.

Germination. While the signaling and regulatory cascades
controlling sporulation have been well-elucidated in many
bacteria, events that lead to the reactivation of spores (germina-
tion) are much less clear. Here too, findings from Bacillus spp
have helped identify factors that activate and control germina-
tion in the clostridia. In Bacillus spp, germination begins when a
small molecule (usually a nutrient) binds to a cognate receptor
(homologs of the canonical GerA receptor in B. subtilis) in the
spore’s inner membrane. Detection of the germinant leads to
a metabolism-independent transformation of the spore, and
consequent release of stored mono- and di-valent cations, as well
as dipicolinic acid. This is followed by the degradation of the
spore peptidoglycan (via specific lytic enzymes), concomitant
spore rehydration, and the eventual reactivation of metabolism
in a process defined as outgrowth.41 In a recent comparative
analysis, Paredes-Sabja et al. noted the apparent conservation of
many critical protein components of germination between the
bacilli and clostridia.42 Further, several studies suggest that the

clostridial germination-protein orthologs function similarly to
their counterparts in Bacillus spp.43-48 The absence of a homolog
of known germination receptors in C. difficile suggests that
signaling events contributing to germination may differ in some
clostridia. Nevertheless, germinants for C. difficile have been
identified (the bile acid taurocholate and the amino acid
glycine),49 and they appear to act specifically in a sequential and
kinetically similar fashion to germinants with known cognate
receptors.50,51 These findings have led to a search for an antagonist
to block C. difficile germination and, thereby, prevent infection.
Indeed, chenodeoxycholic acid, a primary bile acid, as well as
stable chemical analogs of this molecule competitively inhibit
C. difficile spore germination in vitro.2,52 These studies suggest
that a therapeutic agent aimed at preventing C. difficile spore
germination in vivo may be an effective strategy for preventing
infections in health care settings. Clearly, many questions remain
regarding the biology of clostridial spores in general, and C.
difficile spores in particular, suggesting that spore-centered
investigations will be a major focus of CDI research for the
foreseeable future.

C. difficile Colonization

Colonization resistance. Following ingestion, C. difficile spores
germinate in the gut to produce vegetative cells that express
the toxins. While the toxins are responsible for the observed
pathologies, the requirement of antibiotic-mediated clearance
of the gut microbiota for CDI establishment suggests that

Figure 3. C. difficile spores and vegetative cells adhere to host intestinal epithelium. False-color, high resolution, scanning electron micrograph
of C. difficile spore (blue) and vegetative cell (red) adhering to human intestinal epithelial cells (green) grown in culture. Microvilli are clearly visible
(feather-like green protrusions). Micrograph collection, Vedantam laboratory.
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colonization of host mucosal surfaces is an essential first step
(CDI; Fig. 3). The collective mechanisms by which the
native flora help to prevent infection is known as colonization
resistance.53,54 Correspondingly, successful resolution of CDI
likely requires the concomitant reestablishment of a protective
flora. Failure to reestablish the protective flora is likely a
contributing factor to recurrent CDI, and the high success
rate of fecal transplantation in resolving these cases supports
this notion.55

In the case of CDI, colonization resistance is thought to
include the inactivation of germinant molecules that induce
C. difficile germination,52,56 the production of toxic or inhibitory
small molecules which prevent C. difficile growth and/or kill
vegetative cells,56-58 and competitive exclusion from a micro-
environment;59-61 other mechanisms, such as occlusion of host
receptors required for C. difficile colonization, and the stimulation
of host responses that prevent C. difficile establishment, may also
play a role. These processes likely act concomitantly and/or
synergistically to prevent CDI.

Due to the technical difficulty of culturing most gut bacteria,
attempts at identifying a single bacterial species, or a defined
subset of species, among the normal microbiota capable of
preventing CDI have largely been unsuccessful. Several recent
studies have used high-throughput technologies to probe the
antibiotic-mediated alterations in the gut microbial consortium, as
well as the replenished flora following fecal transplantation.62-65

Chang et al. performed 16S rRNA gene sequence analysis to
compare the gut microbiota of patients with initial CDI, recurrent
CDI and healthy controls.62 The fecal microbiome of patients
with recurrent CDI displayed a marked and consistent decrease in
diversity (phylotype richness) compared with healthy controls or
even those with initial CDI; a marked decrease in the phylum
Bacteroidetes was evident in the recurrent CDI patients.

Khoruts et al. used fecal transplantation to treat a 63 year-old
woman with C. difficile diarrhea, and concomitantly monitored
the restoration of the protective microbiota in this patient.64

CDI in this patient had initially resulted from cephalosporin/
quinolone treatment; prior to her admission for fecal transplanta-
tion, she had had 8 mo of diarrhea that was managed by repeated
administration of metronidazole and vancomycin. Prior to, and
after fecal transplantation, the fecal flora of the patient and
the donor were analyzed by restriction fragment length poly-
morphism and 16S rRNA gene sequence analyses. Before fecal
transplantation, the patient’s fecal/intestinal flora was dominated
by Clostridium spp and Veilonella sp, and also contained Strepto-
coccus sp and Lachnospiraceae incertae sedis; in contrast, these
organisms were not detected in the (“normal”) donor stool
sample. Importantly, the patient’s flora lacked Bacteriodes spp
prior to treatment. Fourteen days after treatment, the patient
showed a dramatic improvement, and her fecal flora, dominated
by Bacteroides spp, was very similar to that of the donor.

What predisposes a subset of the patient population to
recurrent CDI? A recent study (not involving CDI) showed that
antibiotic treatment has distinct effects on different subjects.
While exploring the shift in the gut microbial population induced
by the experimental administration of ciprofloxacin, Dethelefsen

and Relman observed rapid and pronounced alterations, with a
reduction in diversity, and a shift in community composition.66

While cessation of antibiotic treatment gradually restored the
microbiota, the community structure stabilized to a state that
was distinct from the initial composition. Moreover, the dyn-
amics of these changes, as well as the reestablishment of a stable
community after antibiotic cessation, was distinct between the
different subjects. By extension, the starting flora of CDI patients,
as well as the (precipitating) antibiotic regimen and other
factors, may dictate the dynamics of flora recovery during the
treatment phase. The effectiveness of fecal transplantation against
recurrent CDI suggests that the host itself is not resistant to the
establishment of a protective flora.

C. difficile Colonization Factors

Relatively little is known about the factors that contribute to
C. difficile colonization, and the following sections provide an
overview of the forays that have been made to understand this
process.

Fibronectin-binding proteins. Many bacterial species use
surface proteins, usually bound to the cell wall either by a
sortase-dependent, or non-covalent mechanisms, to recognize
adhesive matrix molecules of host cells. Receptors include host
cell surface proteins such as fibronectin, laminin, collagen and
fibrinogen.67 A search of C. difficile published genome sequences
identified multiple proteins with putative and demonstrated
abilities to bind host extracellular matrix components (Table 1).

The C-terminus of C. difficile Fbp68, a 68kD magnesium-
containing protein, interacts with fibronectin.73 A peptide
consisting of the fibronectin-binding domain of Fbp68 partially
blocked C. difficile adhesion to Caco-2 cells, supporting a role
for Fbp68 in C. difficile intestinal colonization.72 Curiously,
deletion of another fibronectin-binding protein, FbpA, resulted
in increased adherence to Caco-2 cells. Interestingly, the FbpA-
deficient strains were impaired for colonization of cecal tissues in
a monoxenic mouse model; overall bacterial shedding, however,
was not significantly different from the isogenic parent strain
in both monoxenic and dixenic mouse model systems.71 The
contribution of fibronectin binding to colonization, therefore,
requires further evaluation.

Surface layer and cell-wall proteins (SLPs and CWPs).
Various structures and proteins on Gram-positive cell surfaces
contribute to pathogenic mechanisms such as adhesion, tissue
invasion, regulation of bacterial growth and metabolism, and
stimulation of the host immune response. Some Gram-positive
organisms, including C. difficile, possess a proteinaceous cell
surface layer, or S-layer, which has been implicated in bacterial
adhesion to host tissues.79 The C. difficile S-layer is composed of
numerous proteins arranged in a crystalline lattice, with surface-
layer protein A (SlpA) being the predominant species. Additional
surface layer proteins have been identified within the C. difficile
S-layer, and may have unique functions with respect to protein
processing, adhesion, and cell wall regulation. SlpA and other
surface-layer proteins (SLPs) are also a subset of a larger class of
molecules referred to as cell-wall proteins (CWPs). SlpA has been
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aiding in bacterial attachment to intestinal epithelial cells. We
have recently demonstrated that SlpA is indeed the major
contributor to C. difficile attachment in vitro, as pre-treatment
of host cells with purified SlpA, or SlpA subunits, abrogates
C. difficile attachment in a dose-dependent manner. Conversely,
pre-treatment of viable C. difficile bacteria with anti-SlpA
antibodies also abrogates adherence.25

Two cysteine proteases, Cwp84 and Cwp13, are involved in
assembling the S-layer of C. difficile.75,80 Both Cwp84 and Cwp13
are pro-enzymes that are activated by proteolytic cleavage (Cwp13
undergoes autocatalytic cleavage). Cwp84 is a dynamic molecule
that not only functions at the cell surface to process proteins for
incorporation into the cell wall and S-layer, but also has enzymatic
activity against host proteins and may function as an exo-enzyme
facilitating pathogenesis. Two forms of Cwp84 are produced by
C. difficile, a secreted 80kD high molecular weight (HMW) form
and a 47kD low molecular weight (LWM) form, considered to be
the active form of the enzyme, which is maintained at the cell
wall.80 Cwp84 cleaves and processes SlpA and plays an essential
role in S-layer assembly. Mutants lacking Cwp84 secrete full-
length SlpA, resulting in an aberrant S-layer architecture. This,
and the inability to retain proteins normally localized to the cell
wall and S-layer, results in altered colony morphology. Incorrect
processing of the S-layer may also limit the ability of C. difficile to
compete with other gut bacteria. Cwp13 has sequence similarity
to Cwp84, but different activities; in fact Cwp13 is responsible for
the cleavage and correct processing of Cwp84. Therefore, both

proteins are important in the correct assembly of the S-layer. An
in-depth discussion of SLP/CWP processing and display on the
C. difficile cell surface is beyond the scope of this article, but has
been elegantly reviewed elsewhere.74,81-83

C. difficile cell wall proteins may have additional functions
that facilitate bacterial establishment in the gut. CwpV harbors
a C-terminal repeat-containing domain that is variable in the
number of repeats, as well as antigenicity.78 Interestingly, the
repetitive domain, although divergent in sequence between
C. difficile strains, has been demonstrated to be uniformly
important in bacterial aggregation. This auto-aggregation pheno-
type likely has implications for host colonization, since bacteria
that are able to precipitate out of solution could adhere more
robustly to gut epithelial tissues that are normally covered by
mucus.84,85 CwpV expression is controlled in a phase-dependent
manner by the site-specific recombinase, RecV. Site-specific
recombination in the cwpV promoter region regulates the trans-
cription of the gene via a DNA sequence inversion event.
Sequence inversion to the “phase-OFF” state results in the
formation of a transcriptional terminator that prevents CwpV
expression.78 The relevance of phase-regulated CwpV expression
to C. difficile adhesion dynamics is currently unknown.

Flagella. The enteric environment can be both an accom-
modating and/or harsh landscape for many colonizing bacteria.
Since the microbial content of the gut is so high, many innate
defenses against opportunistic pathogens are in place to prevent
overgrowth of the microbiota and protect against disease. Mucus
production by goblet cells in the gut is one mechanism by which

Table 1. Non-toxin virulence factors of C. difficile and their putative or experimentally-determined functions.

Function Gene Identifiers Description References

Motility and Secretion

Putative Type IV pilus CD3505–3513 Putative type IV pilus biosynthesis and function 68

Capsule CD3253, CD0775, CD2769 Poly-gamma-glutamate biosynthesis 54

Flagella CD0226–0271 Flagellar biosynthesis operon and flagellin glycosylation 69 8

Adhesion and Immune Evasion

Collagen-binding proteins CD2831, CD3392, CD0386 Putative recognition of extracellular matrix collagen 70

Fibronectin-binding proteins FbpA, CD2797 Putative recognition of extracellular matrix fibronectin 71-73

Thrombospondin-domain containing protein CD3145 Putative recognition of extracellular matrix fibrinogen 70

von-Willebrand Factor binding proteins CD3038 CD2248 CD0323 Putative von-Willebrand Factor binding 70

Sortase CD2718 Class B sortase 70

Major surface layer protein slpA
Cleaved into high and low molecular weight

S-layer proteins, phase variable
74

Cysteine protease cwp84
Cleaves SlpA, possible degradation of host

extracellular matrix proteins
75,76

Adhesin cwp66 Putative adherence to host cells 77

Hemagglutinin/Adhesin CD0514 Putative hemagglutinin 70

Phase-variable cell wall protein cwpV Bacterial aggregation, putative immune evasion 78

Other Proteins

Cell Lysis CD1546 Putative hemolysin-like protein 70

Collagen-specific protease CD1228 Putative degredation of collagen 70
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intestinal epithelial cells are protected, and the constant turnover
of chemical and proteinaceous constituents of mucus prevent
potentially pathogenic microbes from gaining a foothold. Not
surprisingly, many bacterial pathogens have developed strategies
to circumvent these innate defenses, including the expression of
flagella for enhanced motility in mucus-rich environments.

Flagella are important colonization factors for a number of
enteropathogenic species including Escherichia coli, Salmonella sp
and Listeria monocytogenes.86-89 C. difficile strains express peritri-
chous flagella (Fig. 4; Clark A et al., unpublished), although
flagellar expression and its associated motility phenotype is
variable among different strains.90 C. difficile flagella were utilized
in early attempts at classifying C. difficile isolates based on slide
agglutination assays.91,92 Much of the preliminary molecular
characterization of the C. difficile flagellar locus was performed
by Tasteyre and colleagues who identified the genes encoding
the flagellin monomer (fliC), and the flagellar cap protein (fliD)
examined the genetic diversity within these loci and used
molecular techniques to examine relationships between gene
sequence and serological classifications.93-95 Tasteyre et al. also
completed one of the first phenotypic studies examining the
FliD cap protein and presented preliminary evidence that the FliD
cap protein may play a role in adhesion to mucus, as is reported in
other organisms,96 and that both FliC and FliD are implicated in
C. difficile binding to cecal tissue.97

The C. difficile flagellin has been analyzed by mass spectro-
metry to examine structural elements which may potentially
influence both flagellar function and immune activation.69 A
discrepancy between the predicted mass of C. difficile flagellin
based on gene sequence and the mass observed in top-down

proteomic analysis prompted further investigation by Twine
et al. C. difficile flagellin was found to be glycosylated at multi-
ple locations accounting for the discrepancy in mass calculations
of FliC protein. Moreover, it was determined that FliC is
differentially glycosylated in different strains of C. difficile and
that the FliC glycosylation is dependent on the composition of
genes immediately downstream from the fliC locus. Flagellar
glycosylation has been reported in other organisms98,99 and may
play a yet undermined role in the adherence and colonization of
C. difficile vegetative cells.

A recent study examined the effects of inactivation of both
the C. difficile 630DErm fliC and fliD genes in the hamster
model of infection and adhesion to cultured epithelial cells.
Insertional inactivation of fliC and fliD genes, respectively, using
ClosTron-based methods resulted in aflagellate mutants.100 The
authors reported an enhanced ability of both mutants to adhere
to cultured Caco-2 cells in vitro and suggested that flagella may
not play a role in adhesion, contradictory to previous reports.93

C. difficile fliC and fliD mutant strains were reported to be more
virulent in hamsters, causing the authors to conclude that flagella
were either unnecessary for virulence or were downregulated
during the course of CDI in the hamster model.100 However, the
parent 630DErm strain exhibits reduced motility,8 and differs
greatly in genetic content when compared with other (especially
epidemic-associated) C. difficile isolates,69,101 suggesting that this
strain may not be ideal for drawing comprehensive conclusions
about the role of flagella in C. difficile pathogenesis.

Thus there are still a number of unanswered questions
regarding the function of C. difficile flagella. Although it has
been suggested that flagella may not be necessary for virulence in

hamster CDI, what of other animal models? The
hamster model is exquisitely sensitive to C. difficile
toxin, with death from C. difficile challenge often
coming as soon as 2–3 d post infection, perhaps
not allowing enough time for the observation of
phenotypic differences between flagellated and non-
flagellated strains. Additionally, since different
C. difficile strain backgrounds exhibit variations in
flagellar expression levels and motility phenotypes,90

findings regarding C. difficile flagella may need to
be evaluated on a strain-to-strain basis in multiple
C. difficile backgrounds. Finally, with the availability
of techniques to generate isogenic mutants in C.
difficile now widely available, mutagenic analyses
of additional genes responsible for flagellar glyco-
sylation, flagellar gene expression and regulation
and chemotaxis are warranted in order to better
understand flagellar function and its contribution
to C. difficile pathogenesis.

Cell-surface polysaccharides. Two cell-surface
polysaccharides, PS-I and PS-II, have been charac-
terized in C. difficile. Of the three strains analyzed
so far, one was from the ribotype 027 (NAP1) clade
and two from a non-027 strain. PS-I was found only
on the NAP1 strain, whereas PS-II was found on all
strains tested.102-104 This suggests that PS-II is a

Figure 4. C. difficile clinical isolates produce flagella. False-color, high-resolution,
scanning electron micrograph of a C. difficile ribotype 001 strain. Flagella (red) are clearly
visible on vegetative cells (purple) after growth to exponential phase (OD600 = 0.6)
in Brain-Heart infusion medium supplemented with yeast and cysteine. Biophysical
measurements indicate that flagella have a diameter of 17–22 nm, consistent with those
described on other enteric bacteria. Micrograph collection, Vedantam laboratory.
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conserved antigen among different clades of C. difficile. Recently,
both PS-I and PS-II have been chemically synthesized, and both
now serve as potential candidates for vaccination against CDI.
Though the exact function of these exopolysaccharides in CDI
development/establishment is currently unknown, the contri-
bution of similar molecules to bacterial infection is well
described.105,106

Another important polysaccharide, peptidoglycan, represents
an important virulence factor in many pathogenic bacteria
including C. difficile. Variations in peptidoglycan structure can
provide resistance to β-lactam antibiotics and lysozyme.107

C. difficile is known to be highly-resistant to lysozyme,108 and
the structural analysis of its peptidoglycan revealed a high level
of N-deacetylated GlcNAc residues in the glycan strand.109

N-deacetylation of the peptidoglycan has been shown to mediate
lysozyme resistance in pathogenic Listeria and Streptococcus
species,110,111 suggesting it may also play an important role in
the resistance of C. difficile to host innate immunity.

Host Immune Response(s)
to C. difficile Surface Molecules

The host innate and adaptive responses to C. difficile attachment
remain largely uncharacterized. C. difficile SLPs are immuno-
dominant antigens, and anti-SLP antibodies are readily recovered
from CDI patient serum.112 SLPs from different strains of
C. difficile induced the production of immunomodulatory
cytokines IL-1β, IL-6 and IL-10 in cultured monocytes and
stimulated the maturation of monocyte-derived dendritic cells.113

SLPs from epidemic-associated 027 and 001 and non-epidemic
associated 012 ribotypes did not reveal any differences in their
ability to activate monocytes and monocyte-derived dendritic
cells.113 Since SLPs have been identified in all C. difficile isolates
to date, and since SlpA plays a critical role in C. difficile
adherence, it is not surprising that these proteins modulate the
inflammatory response during CDI.

SLPs have also been recently investigated for their ability to
activate pro-inflammatory signaling, including those utilizing
toll-like receptor (TLR) signaling. TLR recognition of microbe-
associated molecular patterns results in the engagement of adaptor
molecules and subsequent signaling to activate inflammatory
responses. TLR4, for instance, plays a role in the recognition of
lipopolysaccharide from Gram-negative organisms, as well as
lipoteichoic acid from Gram-positive bacteria.114 TLR4 engage-
ment results in signaling through the adaptor molecule MyD88,
leading to NFkB and IRF3 activation and subsequent pro-
duction of inflammatory cytokines and interferon. In mice, SLPs
induced dendritic cell maturation, as well as the production of
inflammatory cytokines and cell surface markers. SLPs were
also found to activate NFkB signaling in a TLR4-dependent
manner, but IRF-3 was not activated. Correspondingly, TLR4-/-

and MyD88-/- mice were more susceptible to CDI, confirming a
role for TLR-dependent protection against C. difficile.115 Flagellin,
the structural component of the flagellar shaft, is also a potent
activator of the innate immune response. Flagellin engages
TLR5 on host cells, resulting in NFkB activation and the

production of pro-inflammatory cytokines. Stimulation of the
mouse innate immune system with peritoneally-administered
Salmonella Typhimurium flagellin inhibited subsequent (antibiotic-
precipitated) C. difficile infection by slowing bacterial growth and
toxin production and protected the animals from colitis and
death.116

Other Host Response(s) to C. difficile Infection:
Antimicrobial Peptides, Stress-response Factors

and S-Nitrosylation

Antimicrobial peptides and stress-response factors. In order to
establish infection, C. difficile must withstand a variety of host
innate immune defenses, including the presence of antimicrobial
peptides produced by host tissues in the gut. McBride et al.
recently demonstrated that C. difficile employs a well-characterized
antimicrobial peptide resistance mechanism, d-alanylation of
teichoic acid, in response to antimicrobial peptide exposure.117

This group also identified a set of genes, encoding a histidine
kinase and an ABC transporter, that confer resistance to multiple
antimicrobial peptides in C. difficile.118 Extracytoplasmic function
(ECF) sigma factors that sense and respond to antimicrobial
peptides may also play a role in resistance.108 ECF sigma factors
in other gram-positive bacteria are known to alter transcription in
response to extracellular stresses, including antimicrobial peptide
treatment. Compared with the isogenic parental strains, C. difficile
mutants depleted for the ECF sigma factors CsfT and CsfU are
more susceptible to antimicrobial peptides and are significantly
reduced in virulence in the hamster CDI model. While the ECF
sigma factor-induced transcriptional alterations contributing to
antimicrobial peptide resistance have not been identified, these
studies suggest that innate immune invasion likely plays a role in
C. difficile pathogenesis.

C. difficile may stimulate chemoattractant cytokine production
by intestinal epithelial cells. Sibartie et al. found that treatment
of cultured intestinal epithelial cells with C. difficile supernatants
increases the production of both CCL20, which recruits various
immune effector cells and IL-1β.119 Interestingly, pre-exposure of
intestinal epithelial cells to the gut commensal Bifidobacterium
infantis blocks C.difficile-induced cytokine production. This
suggests that the presence of the normal flora in a healthy gut
prevents inappropriate inflammation in response to a low burden
of potential pathogens.

S-nitrosylation. While the mechanism of action of the large
C. difficile toxins on intestinal epithelial cells has been rigorously
elucidated, relatively little is known about the host response to
C. difficile toxins. C. difficile toxins are immunogenic, since
antibodies against both TcdA and TcdB have been recovered in
patient sera,120,121 and it is now recognized that both TcdA and
TcdB inflammatory effects are mediated through inflammasome
activation.13 Injection of TcdA in a rabbit ileal loop model
stimulates an inflammatory response, including the upregulation
of interlukin-1β (IL-1β), nitric oxide synthase (Nos2) and tumor
necrosis factor a (TNFa).13,122 Interestingly, Nos2 has been
implicated as a limiting factor during C. difficile intoxication,
blocking the intestinal secretory effects of TcdA in the ileal loop
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model of infection.123 Many of the effects of nitric oxide,
including its role in innate immunity, are mediated via
S-nitrosylation of proteins. Savidge et al. demonstrated the
presence of high levels of S-nitrosylated proteins in TcdA-exposed
sections of ileal loops and in human biopsies from patients with
active intestinal inflammation.122 Curiously, global proteomic
analysis of TcdA-treated ileal mucosal extracts revealed TcdA itself
to be among the proteins displaying increased S-nitrosylation.
Further, Nos3-transfected epithelial cells were protected against
TcdA-mediated intoxication, and TcdA isolated from these
samples was S-nitrosylated. In vitro-nitrosylation of TcdA reduced
its cytotoxicity relative to the native toxin. Mapping studies
revealed that the catalytic cysteine residues involved in self-
cleavage of TcdA and TcdB, respectively, were targets for
S-nitrosylation; the modification prevented toxin self-processing
and host entry. Finally, recovery of S-nitrosylated TcdA from
patient stool specimens confirmed that this modification
occurred in vivo.122

Recent Advances in Treatment for Single-Episode
and Recurrent CDI

Since the year 2000, the incidence of severe, recurrent and/or
intransigent CDI has confounded acceptable standards of care
for the disease, since there is still a reliance on broad-spectrum
antibiotics that further suppresses the normal microbiota,
leaving patients susceptible to future (re-)infection. A variety of
therapeutic strategies are therefore being investigated to either
prevent CDI and/or to treat CDI in a manner that does not
leave patients as susceptible to re-infection or recurrent disease.
These strategies have included the use of both toxin and non-
toxin based vaccines, bacteriotherapy and “designer” antibiotics
which are more highly targeted and, therefore, reduce collateral
damage to normal (protective) microbiota.

Immunotherapy: Active and passive vaccination targeting
C. difficile toxins. A major focus of preventing recurrent CDI is
the development of a vaccine that will stimulate a mucosal
immune response and protect against C. difficile colonization.
Past studies explored the toxins as antigens for vaccination
against CDI, but their ability to prevent bacterial colonization
was uncertain.124 However, a variety of vaccines strategies are
being investigated, including those that target toxins. Recently,
Permpoonpattana et al. assessed the C-terminal repeat domains
of TcdA and TcdB (associated with host-cell binding), using
B. subtilis spores as a delivery vehicle, as possible protective
antigens.125 Hamsters immunized with B. subtilis spores expres-
sing the TcdA repeat domain were protected from infection.
Hamsters immunized with spores expressing the repeat domains
of both C. difficile TcdA and TcdB produced high titers of
IgG and secretory IgA antibodies against the toxins, and these
antibodies neutralized TcdA and TcdB in vitro. Interestingly,
surviving hamsters (immunized with B. subtilis spores express-
ing the A26–39 domain of TcdA) were fully protected from
re-challenge with C. difficile.

A recent double-blind placebo-controlled phase II study
explored the efficacy and safety of a monoclonal antibody against

C. difficile TcdA (CDA1).126 Forty-six patients were evaluated;
29 patients received CDA1, and 17 received a placebo. Both
groups had a similar number of recurrences [17.2% in the
CDA1 group (5 recurrences) and 17.7% in the placebo group
(3 recurrences)]. Further, since patients were only given mono-
clonal antibodies to TcdA, there were low levels of anti-TcdB
antibodies in the serum. Thus it was concluded that lower serum
levels of anti-TcdB antibodies are associated with, and may be
predictive of, CDI recurrence. Antibodies to both toxins would
then likely prevent CDI recurrence. One human monoclonal
antibody (mAb) combination, MDX-066 (MBL CDA-1) and
MDX-1388 (MBL CDA-2), has recently been licensed to Merck,
Inc. MDX-066 and MDX-1388 target and neutralize toxins A
and B respectively.127 In a phase II clinical trial involving 200
patients, an intravenous treatment of a combination of MDX-066
and MDX-1388 reduced CDI recurrence by 70%.

Immunotherapy: Vaccines targeting C. difficile non-toxin
molecules. The Cwp84 protease may represent a promising non-
toxin protein candidate for the development of a C. difficile
vaccine.128 In their study, Pechine et al. delivered the protein to
hamsters via three routes: rectal (mucosal), intragastric (mucosal)
and subcutaneous (parenteral) immunization. Immunized
hamsters were treated with clindamycin and then challenged
with C. difficile spores. Subcutaneous immunization generated
the highest serum antibody titer, although rectal immunization
provided the greatest protection. To further assess the post-
challenge survival of hamsters, and to measure C. difficile
colonization, a second experiment was performed with a larger
number of hamsters immunized through the rectal route.
Hamsters immunized with Cwp84 survived longer; 90% of
hamsters (15 of 16) died in the control group, while 33% of the
Cwp84-immunized hamsters (6 of 18) survived the challenge.
C. difficile colonization was evident only in 66% of the rectally-
immunized hamsters, in contrast to 90% of the non-immunized
control animals.

In a related study on a Cwp84-based vaccine, Sandolo et al.
explored the use of pectin bead-encapsulation as an alternate
mechanism to deliver the protein to the colon and confer pro-
tective immunity.124 While hamsters immunized with unloaded
beads died in two days, 40% of the hamsters given Cwp84-loaded
bead survived 10 d post-infection. Thus oral administration of
Cwp84 via pectin-encapsulated beads was partially protective.
However, this study did not address whether Cwp84 was able
to stimulate a secretory IgA response. Taken together, Pechine
et al. and Sandolo et al., have demonstrated that vaccination
with Cwp84 in the colon (either through the rectal route or
oral administration of pectin beads) provides a higher level of
protection from CDI compared with more traditional routes of
immunization. Given these promising initial results, additional
work to explore the use of Cwp84 as a vaccine candidate is
warranted.

The recently characterized surface polysaccharide, PS-II, is
another possible non-toxin candidate for vaccination against
C. difficile. The antigenic and immunogenic properties of PS-II
were assessed in a recent study involving the chemical synthesis
of a PS-II hapten.129 The chemically synthesized PS-II, denoted as

www.landesbioscience.com Gut Microbes 129



© 2012 Landes Bioscience.

Do not distribute.

hexasaccharide 2, was conjugated to the diphtheria toxoid
CRM197 (as a protein carrier) and used to immunize female
C57BL/6 mice to test its immunogenicity. Glycan microarray
analysis was used to monitor the antibody titers to the PS-II
hapten. Immunized mice produced IgG specific to the PS-II
hapten. It was also shown that some patients infected with
C. difficile make antibodies against the native glycopolymer,
since 3/10 C. difficile-infected patients had high titers of IgA in
their stool which recognized the hexasaccharide 2 hapten.

Bacterio-therapy: The fecal transplant. Recurrent CDI has
been reported to occur in 15–30% of patients after initial
infection with CDI. Up to 65% of those patients who have one
recurrence will continue to have recurrences after each round
of antibiotic therapy.3 Until recently, antibiotics have been a
standard treatment option for CDI; however, because they
invariably have a broad spectrum of anti-bacterial activity, they
(irrevocably) alter the intestinal flora. Thus fecal transplantation
has been proposed as an alternative method to treat recurrent
CDI, with the major goal of reconstituting lost gut microbiota
in patients.130

In a meta-analysis of 27 studies involving a total of 317
patients, intestinal microbiota transplantation (IMT) was shown
to be successful when other commonly used treatments failed,
with CDI resolution in 92% of cases.55 A similar analysis of
published studies of patients receiving fecal transplants (n = 239),
also revealed that the treatment was effective in 145 out of 166
patients.131 Although further studies are necessary to demonstrate
the kinetics and efficiency of microbiota restoration (or a lack
thereof in those patients who did not respond), this approach
holds promise as biologically robust and non-drug based
intervention for recalcitrant CDI.

Chemotherapy: Fidaxomicin. Fidaxomicin is a new macro-
cycle antibiotic approved to treat CDI in 2011.132 This drug
appears to be more active than vancomycin against clinical iso-
lates of ribotype 027/NAP1 strains of C. difficile in vitro.133 It
has narrow spectrum antibiotic activity against C. difficile and is
not effective against gram-negative bacteria, fungi or protozoa and
may, therefore, help preserve the normal microbiota.132,134

Fidaxomicin may also be more effective at clearing the infection
since it is bacteriocidal, whereas vancomycin is bacteriostatic.
In a study done by Louie et al.,133 596 CDI patients were

evaluated; 287 patients received fidaxomicin, with 253 patients
experiencing diarrhea resolution, and 309 patients received
vancomycin, with 265 patients experiencing cessation of diarrhea.
A significantly reduced rate of CDI recurrence in fidaxomicin-
treated patients was also observed (15.4%), compared with those
on vancomycin (25.3%). Fidaxomicin may be more efficacious
than vancomycin in treating CDI patients who are also taking
other antibiotics for concomitant infections (90% of patients
receiving fidaxomicin had a resolution of diarrhea vs. 79.4% for
those receiving vancomycin.135

Future Perspectives

It is clear that advances in C. difficile biology and C. difficile-
host interactions have exponentially increased in just the past
two years, leading to a much more refined and mechanistically-
oriented approach to dissecting C. difficile pathogenesis. The
ability to rapidly genetically manipulate this once intractable
pathogen will necessarily focus attention on traditional and non-
traditional virulence factors, including those associated with the
spore, colonization factors and immune evasion mechanisms.
Explorations in the areas of C. difficile-host innate immunity,
host gut mucosal biology and C. difficile spore germination
dynamics, will continue to further our understanding of how
C. difficile rapidly and robustly colonizes a susceptible host.
Such studies will also identify bacterial and host-specific mole-
cules and processes that, along with vaccine development, can
serve as appropriate intervention targets for the future manage-
ment of CDI.
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