Intraoperative handheld optical coherence
tomography forward-viewing probe: physical
performance and preliminary animal imaging
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Abstract: A prototype intraoperative hand-held optical coherence
tomography (OCT) imaging probe was developed to provide micron
resolution cross-sectional images of subsurface tissue during open surgery.
This new ergonomic probe was designed based on electrostatically driven
optical fibers, and packaged into a catheter probe in the form factor of
clinically accepted Bayonet shaped neurosurgical probes. Optical properties
of the probe were measured to have a ~20 pum spot size, 5 mm working
distance and 4 mm field of view. Feasibility of this probe for structural and
Doppler shift imaging was tested on porcine femoral blood vessel imaging.

© 2012 Optical Society of America

OCIS codes: (170.4500) Optical coherence tomography; (120.3890) Medical optics
instrumentation

References and links

1.

2.

K. Hemminki, A. Forsti, and J. G. Ji, “Incidence and familial risks in pituitary adenoma and associated tumors,”
Endocr. Relat. Cancer 14(1), 103-109 (2007).

A. F. Daly, M. Rixhon, C. Adam, A. Dempegioti, M. A. Tichomirowa, and A. Beckers, “High prevalence of
pituitary adenomas: a cross-sectional study in the province of Liege, Belgium,” J. Clin. Endocrinol. Metab.
91(12), 4769-4775 (2006).

W. G. Bradley, Neurology in Clinical Practice, 5th ed. (Butterworth-Heinemann/Elsevier, Philadelphia, PA,
2008), pp. 2, V, Xvi, 2488, Ixxx.

A. I. Qureshi, V. Janardhan, R. A. Hanel, and G. Lanzino, “Comparison of endovascular and surgical treatments
for intracranial aneurysms: an evidence-based review,” Lancet Neurol. 6(9), 816-825 (2007).

M. Buchfelder, “Treatment of pituitary tumors: surgery,” Endocrine 28(1), 67-75 (2005).

E. Z. Kapsalaki, G. P. Lee, J. S. Robinson 3rd, A. A. Grigorian, and K. N. Fountas, “The role of intraoperative
micro-Doppler ultrasound in verifying proper clip placement in intracranial aneurysm surgery,” J. Clin. Neurosci.
15(2), 153-157 (2008).

R. Stendel, T. Pietild, A. A. Al Hassan, A. Schilling, and M. Brock, “Intraoperative microvascular Doppler
ultrasonography in cerebral aneurysm surgery,” J. Neurol. Neurosurg. Psychiatry 68(1), 29-35 (2000).

P. Mortini and M. Giovanelli, “Transcranial approaches to pituitary tumors,” Operative Tech. Neurosur. 5(4),
239-251 (2002).

N. Fatemi, J. R. Dusick, M. A. de Paiva Neto, and D. F. Kelly, “The endonasal microscopic approach for
pituitary adenomas and other parasellar tumors: a 10-year experience,” Neurosurgery 63(4 Suppl 2), 244-256,
discussion 256 (2008).

#165607 - $15.00 USD  Received 3 Apr 2012; revised 7 May 2012; accepted 8 May 2012; published 16 May 2012
(C) 2012 OSA 1 June 2012/ Vol. 3, No. 6 / BIOMEDICAL OPTICS EXPRESS 1404

2
®)
=
)
=
Q
R
O
@
o
Q
wn
m
>
g
0
m
)
”




10. J. R. Dusick, F. Esposito, D. Malkasian, and D. F. Kelly, “Avoidance of carotid artery injuries in transsphenoidal
surgery with the Doppler probe and micro-hook blades,” Neurosurgery 60(4 Suppl 2), 322—328, discussion 328—
329 (2007).

11. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4),
1205-1215 (1999).

12. V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin,
“Micromachined array tip for multifocus fiber-based optical coherence tomography,” Opt. Lett. 29(15), 1754—
1756 (2004).

13. B. A. Standish, V. X. D. Yang, N. R. Munce, L. M. Wong Kee Song, G. Gardiner, A. Lin, Y. I. Mao, A. Vitkin,
N. E. Marcon, and B. C. Wilson, “Doppler optical coherence tomography monitoring of microvascular tissue
response during photodynamic therapy in an animal model of Barrett’s esophagus,” Gastrointest. Endosc. 66(2),
326-333 (2007).

14. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable,
B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-
source optical coherence tomography,” Opt. Lett. 33(13), 1530-1532 (2008).

15. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging
instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618-1620 (1997).

16. X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature
endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763-1765 (2004).

17. Y. L. Wang, M. Bachman, G. P. Li, S. G. Guo, B. J. F. Wong, and Z. P. Chen, “Low-voltage polymer-based
scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53-55 (2005).

18. X. D. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-
resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery,” Arthritis
Res. Ther. 7(2), R318-R323 (2005).

19. C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-
imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283-26294
(2011).

20. B. A Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin,
and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in
photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987-9995 (2008).

21. N. R. Munce, G. A. Wright, A. Mariampillai, B. A. Standish, M. K. K. Leung, L. Tan, K. Lee, B. K. Courtney,
A. A. Teitelbaum, B. H. Strauss, I. A. Vitkin, and V. X. D. Yang, “Doppler optical coherence tomography for
interventional cardiovascular guidance: in vivo feasibility and forward-viewing probe flow phantom
demonstration,” J. Biomed. Opt. 15(1), 011103 (2010).

22. D. Overbay and L. Criddle, “Mastering temporary invasive cardiac pacing,” Crit. Care Nurse 24(3), 25-32
(2004).

23. C. Pizzanelli, R. Galli, F. S. Giorgi, A. ludice, E. Bonanni, V. Pelliccia, S. Jensen, L. Manca, B. Lenzi, L.
Lutzemberger, G. Parenti, F. Fornai, and L. Murri, “Vagus nerve stimulation as a treatment for refractory
epilepsy: a 15-year experience in an Italian tertiary-care epilepsy center,” Lett. Drug Des. Discov. 8, 321-329
(2011).

24. ). D. Carlson, D. R. Cleary, J. S. Cetas, M. M. Heinricher, and K. J. Burchiel, “Deep brain stimulation does not
silence neurons in subthalamic nucleus in Parkinson’s patients,” J. Neurophysiol. 103(2), 962-967 (2010).

25. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A.
Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical
coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657-659 (2008).

26. C. Sun, K. K. C. Lee, B. Vuong, M. Cusimano, A. Brukson, A. Mariampillai, B. A. Standish, and V. X. D. Yang,
“Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe,” Proc. SPIE 8207,
82074V (2012).

27. V. X.D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin,
“Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram
segmentation,” Opt. Commun. 208(4-6), 209-214 (2002).

28. S. Oyre, S. Ringgaard, S. Kozerke, W. P. Paaske, M. Erlandsen, P. Boesiger, and E. M. Pedersen, “Accurate
noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-
dimensional paraboloid modeling of magnetic resonance imaging velocity data,” J. Am. Coll. Cardiol. 32(1),
128-134 (1998).

1. Introduction

Pituitary adenomas account for 10%-15% of all diagnosed intracranial tumors and the
diagnosed cases are suggested to be increasing with the use of modern imaging techniques [1].
A mean prevalence of 94 cases per 100,000 population has been reported [2]. Subarachnoid
hemorrhage (SAH) caused by a cerebral aneurysm that ruptures occurs in about 40-50 per
100,000 people over age 30 [3]. Both pituitary tumor and aneurysm can be operated on using
modern microsurgical techniques through open craniotomy and minimally invasive surgeries
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such as endovascular aneurysm treatment and transsphenoidal pituitary removal [4,5]. A
significant number of aneurysms are surgically clipped, where small metallic clips are placed
along the neck of the aneurysm to prevent blood from entering the aneurysm sac.
Intraoperative micro-Doppler ultrasonography (MDU) probes are used to verify proper clip
[6,7]. Pituitary tumors are commonly treated via endonasal transsphenoidal surgery, which
goes directly through the back of the nose to reach the pituitary tumor [8,9]. Similar
ultrasound Doppler probe are also used for pituitary removal guidance [10]. Although the
Doppler ultrasound probes have been proven to physically fit the surgical environment and are
able to reduce the surgical complications, they can only provide acoustic signal and lack
structural imaging capabilities and visual feedback mechanisms to guide the surgical
procedure. Furthermore, Doppler signal alone cannot precisely determine the depth of the
internal carotid artery (ICA) that is completely encased by the pituitary tumor. If the ICA or
its branches are not clearly identified during an open craniotomy or transsphenoidal
procedure, there is a risk for catastrophic surgical related complications. During these surgical
procedures, a probe that can provide detailed information of the microstructure and local
hemodynamics could further reduce surgical complications.

Optical coherence tomography (OCT) [11,12] has been successfully used in pre-clinical
and clinical applications due to its ability to resolve high-resolution structural and
microvascular in real time [13,14]. Various probes have been developed to perform OCT
imaging where the scanning mechanisms have been based on piezoelectric cantilever scanning
through a GRIN lens [15,16], electroactive polymer cantilever [17] and scanning mirrors
[18,19]. These designs may be optimal for applications such as mouth and skin imaging, and
open knee surgery guidance. However, they are not suitable in the field of neurosurgery due to
large distal-end (>3 mm), small field of view (<1 mm) or short length to reach pituitary
tumors and cerebral aneurysms, which occur near the center of the head, at the skull base. In
this paper, a handheld OCT imaging probe with the identical bayonet form factor of the
clinically accepted non-imaging Doppler ultrasound probe is developed based on our previous
successful development of blood flow detection image processing techniques [20] and
forward-viewing OCT imaging mechanisms [21]. With the handheld bayonet form factor,
OCT can be used to image internal tissue microstructures that was previously unavailable to
surgeons, thus it may become a powerful imaging technology for surgery guidance.

2. Probe design and technical performance
2.1. Design

The OCT probe was developed for the conditions of intraoperative use. Its electrical source
has extremely low current output, which is approximately 3 orders of magnitude less than
typical current encountered during invasive cardiac pacing (~10 mA) [22], vagal nerve
stimulation (~3 mA) [23], or deep brain stimulation (3~5 mA) [24]. In addition, it is relatively
easy to sterilize and maintains a small instrument diameter for insertion through small
incisions during minimally invasive surgical procedures. The probe incorporates an
electrostatic forward viewing OCT scanner [21,25] into the familiar form factor of the
Bayonet shape as shown in Fig. 1. (a). The internal scanning components at the distal end of
the probe are displayed in Fig. 1(b), showing the geometries of the components and
highlighting the scanning mechanism. GRIN lens with diameter of 1.8 mm (GRINTECH,
Germany) is fit in a 2 mm outer diameter rigid tube. The outer diameter of the outer tube is
2.8 mm to fit with the Bayonet handle. The scanning section includes the GRIN lens, two
wires, and a platinum coil going over an optical fiber. Mineral oil is filled in the tube to
matchthe refractive index between the fiber and the GRIN lens. The two wires are connected
to a DC high voltage (HV) power supply. When a certain voltage is applied (normally
between 1200 V and 2500V), the fiber carried by the coil oscillates between the two wires,
which enables 2D scan. Although the voltage is high, the current output is limited to a
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b) Outer tube  3-lumen catheter  wires  Mineral oil

Fig. 1. (a) A photograph of the OCT handheld probe (scale bar represents: 100 mm). (b) A
schematic drawing of the distal section of the probe showing the main parts for optical
scanning (scale bar represents: 2mm).

maximum of 2 pA. Furthermore, the two electrical wires are insulated except the ~8 mm
section extruding from the 3-lumen catheter, which are safely enclosed with nonconductive
mineral oil and rigid tube. It is key to stress that the use of nonconductive material constitutes
crucial principle of this device’s operation based on electrostatic forces. Prior to in-vivo
testing with human patients, it would be reasonable to subject the probe to further destructive
tests to confirm the failure mode of the device will not involve sudden surge of output current,
transient or permanent, and fully limited by the upper bound of the power source driving the
probe.

2.2. Technical performance

For an OCT imaging probe, the optical characteristics, i.e. working distance (focal distance
from the surface of the GRIN lens), depth of field (twice of the Raleigh range), and spot size
(waist diameter), directly determine the properties of imaging such as image location, depth,
and resolution [26]. The lateral scanning rate and linearity of the scanning determine the
imaging stability. These parameters of the probe are described below.

2.2.1. spot size, working distance and field of view (FOV)

There is a tradeoff between the spot size, the working distance and FOV. ZEMAX simulation
was used to optimize the design based upon these parameters. When the spot size is defined as
the parameter to be optimized in ZEMAX simulation, the results demonstrate a minimum spot
size of 13.8 um, a working distance of 2.8 mm and a FOV radius of 2 mm when the distance
between the fiber and the GRIN is 0.74 mm. A greater working distance and FOV is often
desired. As a result, a series of simulations were conducted by changing the distance between
the fiber tip and the GRIN surface from 0.05 mm to 0.8 mm. The simulation results are listed
in Table 1. The spot size, working distance and the radius of FOV changes with respect to the
distance between the fiber tip and the GRIN lens are plotted in Fig. 2(a). For each of the three
plots, the vertical axis represents spot size, working distance and the radius of FOV,
respectively, with the specific unit shown on the graph. During fabrication, the fiber tip was
arranged at ~0.3-0.4 mm to the GRIN lens such that the probe had an approximately 20 pum
spot size. Due to variance in the manual fabrication process, these parameters may have a

Table 1. ZEMAX simulation [20]

Distance (fiber to GRIN, mm) | Spot size (um) | Working distance (mm) | FOV (mm)
0.05 55.9 12.9 8.4
0.1 43.2 10.4 6.8
0.2 294 74 5
0.3 224 5.7 3.8
04 18.4 4.6 32
05 16.1 3.9 2.6
0.6 14.7 3.3 24
0.7 14.1 2.9 2
0.8 13.8 2.6 1.8
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Fig. 2. Optical performance of the probe. (a) Probe imaging parameters vs. distance between
fiber and GRIN. (b) Beam profile of the probe showing ~22 um beam width [20].

slight tolerance for each individual probe. The beam profiles of probes were captured with a
beam profiler (BP109-IR, Thorlabs). The beam profile of one of the probes is shown in Fig. 2
(b), which measured a 1/e® spot size of ~22 um. Based on Gaussian beam theory, the depth of
focus is equal to twice of the Rayleigh range, which is ~1.16 mm with a wavelength of 1310
nm.

2.2.2. Scanning frequency

The scanning of the fiber in air was first tested with an applied voltage of 2000 V. A high-
speed camera was used to record the motion of the fiber between the two wires and, software
written in Labview 2009 was used to track the movement of the tip of the fiber. A video of the
optical fiber oscillating between the two wires in air is shown in Fig. 3(a). The wire on the top
is connected to the high voltage (HV) and the wire on the bottom is connected to the ground
(GND) leads of a power supply. A plot of the displacement of the fiber tip versus time is
shown in Fig. 3(b), with a scanning frequency of 130 Hz and a nearly linear scanning pattern.
When the probe was immersed in mineral oil and a GRIN lens is attached to the distal end, the
scanning frequency was decreased due to the viscosity of the mineral oil. The scanning
frequency of the probe working at 2000 V was evaluated using an image correlation method
described in section 3.1. The scanning frequency of the probe is determined by the length of
the optical fiber, the mass of the optical fiber and platinum coiled wire surrounding the fiber,
the viscosity of the mineral oil and the applied voltage. Nigel et al. [25] have given frequency
response as a function of applied voltage of our previous prototype of electrostatic driven
intravascular probe. For a spot size of 22 mm, the simulated working distance would be 5.7
mm and the FOV would be 3.8 mm. These are consistent with the measured values of 5 mm
and 4 mm, respectively, as demonstrated in Fig. 3(c), a video of the probe scanning a ruler
(Media 2). This corresponds to the 0.3 mm distance between the fiber tip and the GRIN from
the simulation results. Small variations between the simulated and the measured values could

c

&

displcement (mm

086 lnwwn, 130Hz

0 20 40 60 B0 100
Time (ms)

Fig. 3. (a) Motion of the optical fiber in air (scale bar represents 1 mm) (Media 1). (b) The
displacement of the fiber tip in 100 ms. (c) A video of the probe scanning a ruler (Media 2),
which shows ~5 mm working distance and ~4 mm FOV (scale bar represents 5 mm).
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be attributed to discrepancies in the refractive indices used in the simulation and the actual
value.

During scanning motion, the coil comes into contact with the ground wire resulting in an
electrical discharge. This electrical pulse is then used to generate a frame trigger signal by an
in-house built custom circuit. With the frame trigger, the frame rate of imaging can be
controlled together with adjusting the line density of OCT scanning. If the frame rate of the
OCT system is set exactly the same as the probe scanning frequency, both the forward (from
GND to HV) and reverse scans (from HV to GND) will be recorded in each frame of OCT
image. If the frame rate of the OCT system is twice of the probe scanning rate, only the
forward scan will be included in the OCT images while the reverse scans are omitted, which is
the imaging condition that we employed. This is described in more detail in section 3.1.
Overall, if the frame rate of the OCT system is set faster than the probe scanning frequency,
only a portion of the scanned region will be imaged.

3. Feasibility testing of the handheld probe for OCT imaging

The probe has been designed to be independent from OCT system, where the probe itself is
simply connected to the sample arm. A schematic diagram of the probe connected to an OCT
system is demonstrated in Fig. 4. The interference signal is measured by a balanced
photodetector along with the clock signal and frame trigger signal, which are connected to
data acquisition hardware (National Instruments).

Trigger

circuit
Probe
CIR Pe
FC
CIR PC BD
by
o '
computer

Fig. 4. Schematic diagram of a handheld probe with an OCT system. SS laser: swept source
laser, FC: fiber coupler, CIR: circulator, PC: polarization controller, BD: balanced
photodetector, M: mirror [20].

3.1. Imaging consistency test

In this test, the swept source laser utilized, in combination with the probe, was the Thorlabs
SSOCT system (Thorlabs, USA) with an A-line scanning rate of 16 kHz (bidirectional)
centered at 1310 nm. To evaluate the scanning frequency and imaging consistency, the probe
was held steadily and repeated scans were captured in this one location. These repeated
patterns are then analyzed by cross correlation- An image of an IR card taken by the probe at a
frame rate of 2 frames/s and 2000V is shown in Fig. 5(a). A small region shown in the red
rectangle was then chosen as the reference for correlation analysis. 26 correlation peaks were
obtained from the correlation result shown in Fig. 5(b). The 26 repeated scans occurred in half
a second, resulting in a scanning rate of 52 Hz. The distances between adjacent correlation
peaks were constant with a variance of less than 5 pixels, which demonstrates the imaging
consistency of the probe. When the forward and reverse scans follow the same trajectory,
mirror images will be captured. However, imperfections during fabrication, coupled with the
vibrations encountered (see Fig. 3), contribute to the hysteresis of the scanning motion since
the two electrodes may not remain parallel at all times. Such deviation from symmetry and
higher order frequency vibrations can introduce non-linear artifacts to the forward and
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Fig. 5. Scanning frequency and imaging consistency evaluation. (a) part of a frame of an OCT
image of an IR card taken at 2 frams/s. (b) Plot of the correlation coefficient showing 26
correlation peaks. The correlation was conducted between the small red rectangular area shown
in (a) and the whole image.

backward scans. Thus, in Fig. 5(a), the forward scanning labeled as ‘F’ and reverse scanning
labeled as ‘R’ show different patterns. At this situation, consistent B-mode imaging can be
achieved by recording only the forward scans or reverse scans through the frame trigger
control. Forward scans for image formation was elected in the following applications, and
software signal processing was accomplished during the backward scan time.

3.2. Porcine femoral blood vessel imaging

To test the ability of the probe for both structural and blood flow in vivo imaging, a femoral
blood vessel in the thigh of a hind leg of a Yorkshire pig (~50 Kg) was imaged by the
handheld probe (protocol ACC307, approved by St. Michael’s Hospital Animal Care and Use
Committee, Toronto Canada). The probe was connected to a polygon-based SS-OCT system
with sweeping frequency of 36kHz. During the procedure, the blood vessel was surgically
exposed and the probe was held steadily to scan a cross-section of the blood vessel as shown
in Figs. 6(a) and 6(b). In order to improve phase correlation for Doppler imaging, the probe
was set at a slow scanning speed of ~20 Hz at a given voltage of 1600V. B-mode structural
and Doppler images were recorded. A histogram-based velocity segmentation algorithm [27]
was used to remove the artifacts induced by bulk motion including motion of the hand,
vibration of the probe and the motion of the blood vessel. Figure 6(c) demonstrate a B-mode
structural image of the blood vessel. The bulk motion is much slower compared to the
imaging speed; therefore, its affect to structural imaging is trivial. Figure 6 =(d) (Media 3)
shows the periodic Doppler shift induced by the blood flow over 5 seconds of imaging. A
region of interest (ROI) was chosen, as shown in the white rectangle box in Fig. 6 =(d) and the
average value within the ROI is calculated and plotted with time in Fig. 6 =(e). This plot
clearly demonstrated the velocity change of the blood flow within a few cardiac cycles. Each
frame of Fig. 6 =(d) (Media 3) further shows the hemodynamic pattern during the measured
cardiac cycles, where the blood flow has greater velocity (Doppler shift) in the center of the
vessel than along the vessel wall. The velocity profiles along a horizontal and a vertical line
(dashed lines shown in Fig. 6 =(d)) are plotted in Figs. 6 =(f) and 6(g), where the dashed lines
represent the Doppler shift obtained from OCT. The solid lines represent quadratic fittings,
where it can be seen that the velocity profile takes on the shape of a parabola demonstrating a
laminar flow mode [28]. Figure 6(g) shows a half parabola because only the top half of the
cross-section of the blood vessel was imaged due to limited imaging penetration. Based on the
velocity profile, vessel wall shear stress can be calculated.
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Fig. 6. Femoral artery imaging using the handheld probe. (a) A photograph of probe held for
imaging. (b) The probe tip pointed to the exposed blood vessel. (c) A structural image of the
blood vessel. (d) Doppler shift over ~5 s demonstrating the blood flow dynamics (Media 3).
The white rectangle is the ROI. (Scale bars represent 1 mm) (e) The Doppler shift changes in 5
s calculated by averaging the values in the ROI. (f) Plot of the blood flow profile along the
horizontal line shown in (d) at a certain time and its quadratic fitting curve (g) Plot of the blood
flow profile along the vertical line in (d) its fitting curve.

4. Discussion and conclusion

A prototype OCT handheld probe was developed to obtain forward viewing images capable of
both structural and Doppler images without the use of a complex lens and actuating system.
For microsurgical use during the intended neurosurgery applications (e.g., cerebral aneurysms
or pituitary tumors), we anticipate the probe will be used in a non-contact format. Considering
one of the major complications of cerebral aneurysm surgery is rupture of the aneurysm, it
may be ideal for the probe to be non-contact with the imaging target, which may have a thin
wall. This is also one of the advantages of optical imaging over ultrasonic techniques, which
necessitates liquid coupling agent. Furthermore, the ZEMAX simulation also indicates that if
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the probe is in contact with tissue (index of refraction of approximately 1.38 or coupling agent
such as water, 1.33), the effective scanning angle will be smaller given the same GRIN lens
index profile. This is the second reason we chose a non-contact working condition. On the
other hand, coupling gel with index matching may improve the optical transmission and
reduce specular reflections on the OCT images. Therefore, there are signal-to-noise tradeoffs
that we have made with the current design. The probe length was easily modified to fit the
length between the surgeon’s hands and the imaging target. The frame rate of the imaging
probe was determined by both the scanning speed of the probe and the number of A-scans in
each frame set for the OCT system. From Fig. 4, it can be seen that the tube itself oscillates
with the fiber striking the wires and the movements of the fiber near the wires do not have
very good linearity, which may affect the imaging. Stiffer tube and new tube designs will be
implemented in the future to improve the robustness of the probe.

The probe offers high-resolution, depth resolved, blood vessel/anatomical layer detection
as well as the ability to measure blood flow dynamics. Structural and Doppler images of a
porcine femoral blood vessel demonstrate the intraoperative vascular imaging capability and
feasibility. Moreover, Doppler OCT imaging of the mode of blood flow and endolumenal
hemodynamics will enable the detection of blood flow and possible characterization of the
spatial and temporal variation of the wall shear stresses associated with pulsatile flows,
intraoperatively. A future objective of this OCT handheld probe includes real-time imaging
during open craniotomy procedures for pituitary tumors, cerebral aneurysms and
transsphenoidal neuroendoscopic treatment of pituitary tumors.
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