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Abstract

The Gillespie t-Leaping Method is an approximate algorithm that is faster than the exact Direct Method (DM) due to the
progression of the simulation with larger time steps. However, the procedure to compute the time leap t is quite expensive.
In this paper, we explore the acceleration of the t-Leaping Method using Graphics Processing Unit (GPUs) for ultra-large
networks (w0:5e6 reaction channels). We have developed data structures and algorithms that take advantage of the unique
hardware architecture and available libraries. Our results show that we obtain a performance gain of over 60x when
compared with the best conventional implementations.
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Introduction

The Gillespie Stochastic Simulation Algorithm (GSSA) [1] and

its variants [2,3] are cornerstone algorithms for stochastic

simulation of chemical kinetics with very important applications

in modeling a variety of biological phenomena. The GSSA is

applicable where the small number of reactant molecules in the

system does not allow deterministic modeling using coupled

ordinary differential equations. The GSSA is essentially a random

walk over the set of reaction channels and exactly represents the

distribution of the chemical master equation [4].

The original formulation of the GSSA, called the Direct

Method (DM) [1], is prohibitively expensive to compute as it

advances the simulation one reaction at a time. Much work has

been done to improve the computational complexity. The next

reaction method [3] and Optimized Direct Method(ODM) [5]

improve performance by reducing redundant reaction propensity

calculation by using dependency graphs. Additionally, various

heuristics have been used to reduce the complexity of finding the

next reaction to be fired [6–8]. All these methods are exact

solutions.

The second approach to accelerating GSSAs is through

approximation, where several reaction-channels are simultaneous-

ly processed within a given update step under the assumption of

mutual independence in the computed time advancement. The

first effort in this direction was the t-Leaping Method [2]. Several

modifications to the original t-Leaping Method address various

optimization and correctness issues [9–12]. The ability to advance

the system by firing multiple reactions in a given update step

significantly reduces overall simulation time.

The third approach to accelerating GSSAs is through

parallelization. Coarse-grain parallelization, where several inde-

pendent runs of a given system are executed in parallel to generate

statistically dense data-sets, has been implemented on CPU

clusters [13], multi-core CPUs [14], and Graphics Processing

Units (GPUs) [15]. These efforts are limited by the fact that large

networks still take an inordinate time to compute. Fine-grained

parallelization efforts accelerate the simulation of a single run.

This type of parallelism is more complex due to synchronization

and communication issues. Such efforts have included newer

parallel hardware such as GPUs [16] and Field Programmable

Gate Arrays (FPGAs) [17]. The latter platform is inflexible due to

the level of programming complexity. Moreover, due to the

limited hardware resources, it cannot handle systems with greater

than 104 reaction channels.

Our work differs fundamentally from the first set of paralleliza-

tion efforts because we are concerned with fine grained

parallelization. To the best of our knowledge, no other fine-

grained parallelizations of the t-Leaping Method have been

reported in the literature. Thus our work is quite different from,

and cannot be directly compared with, other fine grained

parallelization efforts.

Results

We evaluated the performance of our system against StochKit

[18], a suite of efficient serial GSSA implementations. StockKit

was compiled with gcc4.4 with the appropriate optimization flags

and executed on Intel i7 930 with 6GB of RAM. The operating

system is Windows 7. Our parallel GPU code was run on a

consumer grade NVIDIA 480GTX GPU (Fermi architecture).

We used an in-house script capable of generating consistent

large synthetic networks (Appendix S1) to test our system. These

synthetic networks are square, i.e., the number of reactions N is

equal to the number of reactant species M. For accuracy tests, we

created a random synthetic network where M~N~1000. We
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chose to track the time trajectories of two reactants, namely,

S1,S111, and compare them with trajectories obtained from

StochKit. We ran 1000 runs to collect the data. Figure 1 shows the

results. The maximum deviation on the means is about 0.16% and

the maximum deviation on the standard deviations is about 4%.

We checked the performance of our parallelized implementa-

tion against StochKit. Figure 2 shows the performance bench-

marks vs. StochKit. The break-even point between the serial CPU

version and GPU version is about 103 reaction channels. For

smaller systems, the computational resources on the GPU are

underutilized. The best speed-up we obtained was 60x where the

number of reactions was on the order of 0:5e6. The benchmark

time in both cases only involves computation of the actual

algorithm and not the problem set-up. In the case of StochKit, the

problem set-up phase is very slow and we observed end-to-end

speed-up of over 600x for systems with 0:5e6. Finally, we analyzed

relative computation times of various kernels in our GPU

implementation. Figure 3 shows the results for varying problem

sizes. It can be seen that for large systems, the t leap calculation

and poisson random number calculation dominates. For smaller

systems, when the GPU is underutilized, the dominant kernels are

the ones for computing propensities and finding the critical

reaction. The Intel i7 930 core is rated at about 30 GFlops per

core for single precision. The NVIDIA 480GTX is rated at 1.5

TFlops, i.e., a 506 advantage in raw computing power. At 606
gain in performance it is evident that our implementation

performs better than what the raw computing power advantage

of the GPU would suggest. While our memory access patterns may

not be ideal because of the stochastic nature of the algorithm, we

surmise is StochKit has the same exact problem. However, the

enhanced bandwidth of the GPU gives us the extra edge in

performance.

Discussion

In this paper we describe a data-parallel implementation of the t-

Leaping Method for parallel execution on GPUs. We have obtained

an order of magnitude performance gain over the StochKit serial

implementation. However, these performance gains are evident only

in the regime of very large networks with over 105 reaction channels.

Such large systems can occur in two types of scenarios. The first is

when the simulation includes a spatial component. Such simulations

are typically reaction-diffusion systemswhere space isdiscretized into

cells and diffusion of species between cells is modeled as a reaction.

The fundamental characteristic of such systems is that the basic

dynamics within each cell and its interactions with its neighbours are

identical for all cells. Using the t-Leaping Method, the whole system

can be treated as one large network. However, we believe that the

implementation of the Gillespie Multiparticle Method (GMP) on

GPUs by Vigelius et al. [19] is a more efficient approach for small

networks if it is possible to fit the cell network within the working

memory of a single GPU thread. In such situations, it is feasible to use

shared memory, thus reducing a significant memory overhead

compared with reading from global memory of the GPU. Of course,

since this memory is small, the networks simulated are quite small as

well. For networks that cannot fit in the memory of a single thread, the

implementation by Vigelius will not work. On the other hand, the

restriction on our implementation is the total size of the global

memory that is quite large (1.5GB is not uncommon on current

Figure 1. Output comparison with StochKit for accuracy. A
random synthetic network with M~N~1000 was used. Two species,
namely, S1,S111 were tracked and compared with StochKit output.
Figure 1a shows the comparison of means. Figure 1b shows the
comparison of standard deviations. Figure 1c shows the residuals

between StochKit outputs and GPU outputs. The maximum deviation
on the means is about 0.16%. The maximum deviation on standard
deviations is about 4%.
doi:10.1371/journal.pone.0037370.g001
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generation GPUs). The second scenario we envision occurs in multi-

scale modeling cell colonies. If these cells are mobile, then based on

their location, their interactionchanges.Figure4 illustrates thecaseof

two cells. The number of neighbours that each cell interacts with

would not only create a dynamically changing per cell network, but it

is unlikely that such networks would fit within the working memory of

a single thread. This scenario will require that we treat the entire

system as a single network. Of course, such interaction will entail

rebuilding the stoichometric data structure based on the spatial

configurationof thecellsateachupdatestep.However,givenourdata

structure, it is possible to do this in parallel on the GPU. This type of

modeling is a topic for future research that will be built on top of our

current implementation.

Another type of acceleration that we will investigate in the near

future is a combined parallelism across simulations and parallelism

within a simulation. As with all stochastic simulations, we have to

execute multiple runs to generate dense data sets for analysis. For

medium-sized networks, we can assign a thread block to a single

run. The low level parallelization will therefore be done at the

thread block level with the computation of a single run being

distributed across all threads in the thread block. At the same time,

multiple thread blocks running concurrently on the GPU can

execute multiple runs of the same simulation. Since the

stoichiometric matrix is common across all simulations, a single

copy will be held either in global or constant memory (depending

on the network size).

Methods

The GSSA assumes a well-stirred system (spatially homoge-

neous) of M molecular species s1,s2:::sM and N reaction channels

R1,R2:::RN , in a fixed volume, at a constant temperature. The

system evolves over time with one or more reaction channels being

applied to the system at each time step. The state of the system is

given by X(t)~fx1(t),x2(t):::::::::::xM (t)g, where xi(t) is the

number of molecules of si. Each reaction channel Ri, has a

reaction propensity ai(X) and an associated state change vector

vi~fv1i,v2i::::::::::vMig, where vki is the change in the number of

molecules of species sk if the reaction channel Ri is fired once.

Given X(t)~x, the quantity ai(X)dt gives the probability that

reaction Ri will occur once in the next infinitesimal time interval

(t,tzdt).

In the DM, the system advances by firing one reaction at a time.

The reaction m to be fired next is given by the equation:

r1a0v min
m

Xm

i~0

ai ð1Þ

The time increment dt is given by:

dt/
1

am
ln(

1

r2

) ð2Þ

where r1,r2 are uniform random numbers and a0 is the sum of all

propensities. Finally, the state is updated as:

X(tzdt)/X(t)zvm ð3Þ

Because DM advances one reaction at a time, it is not very

scalable. The t-Leaping Method [20] addresses the scalability by

Figure 2. Performance comparison with StochKit.
doi:10.1371/journal.pone.0037370.g002

Figure 3. Relative computation times of various kernels.
doi:10.1371/journal.pone.0037370.g003

GPU Accelerated t-Leaping Method

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e37370



processing multiple reactions in a given step. It assumes a certain

amount of de-coupling between reactions determined by the leap

condition that bounds the relative changes in reactant populations

in the given time t The leap condition is given by:

EDtxiEƒ maxfeixi,1g Vi[½1:::::::M� ð4Þ

The values ei are chosen such that changes in propensity functions

are at least bounded by E. The values ei are given by:

Ei~
e

gi

ð5Þ

The values gi~gi(xi) are given by:

gi~

1 if si is part of 1st order reaction channel

2 if si is part of a 2nd order reaction channel

2z
1

xi{1

� �
if si is part of a 2nd order reaction channel

consuming 2 molecules of si

8>>>>><
>>>>>:

ð6Þ

Given the leap condition, the state update is given by:

X(tzt)~X(t)z
XN

j~1

vijkj(t,x,t) ð7Þ

where kj is the number of times a reaction j is fired. It can be

approximated by the poisson random variable P(aj(x)t) with the

expected number of occurrences given by aj(x)t.

The selection of t compatible with the Leap Condition is

governed by the formula:

ti~
maxfExi=gi,1g

Dmi(x)D
,
maxfExi=gi,1g

Ds2
i (x)D

� �
ð8Þ

t
0
~ min

i[M
ti ð9Þ

The parameters mj and s2
i are given by the formulae:

mi ~
X
j[Inc

vijaj(x) ð10Þ

s2
i ~

X
j[Inc

v2
ijaj(x) ð11Þ

In these equations i[½1:::M�, where M is the total number of

reactants and Inc is the set of non-critical reactions. To avoid

negative populations due to excessive firing of reaction channels,

reactions are classified as critical and non-critical reactions.

Critical reactions are defined as those that do not have enough

molecular count in reactants to handle nc firings. Typically

nc~10. They are simulated using an adapted version of the DM.

Graphics Processing Units
Originally built for speeding up graphics computation, GPUs

have evolved over the years into powerful processors enabling the

democratization of high performance scientific computing [21].

GPU vendors have developed application protocol interfaces

(APIs) to ease programming efforts [22,23]. All elements necessary

for scientific computing, such as error correction code, support for

double precision, etc., are available on the latest generation GPUs.

The basic execution unit is a thread. Threads are grouped into

thread blocks. Threads in a thread block can communicate with

each other because they share a user-controlled cache called

shared memory. At the hardware level, threads are grouped into

warps. All threads in a warp execute in lock step, i.e., the same

instruction at the same time. The program that is executed by

every thread in a single parallel invocation is called a kernel.

Figure 5 illustrates the computing model for NVIDIA GPUs.

There are four different types of memory: constant memory - is

used for data that is static over the life of the simulation, global

Figure 4. Multi-scale modeling of cells. In this simulation there are two cells. Each has two types of reactants of species type A, B. Internally there
is a single reaction A?B for each cell. Figure 4a shows the configuration at time t when there is no physical overlap (therefore no interaction)
between the cells. The size of the total reaction network is 2. Figure 4b shows overlap between the cells. This sets up diffusion (due to cell membrane
paths that may open) of species between the two cells, thus increasing the size of the total reaction network to 6. This sets up a problem where there
is a dynamic rearrangement of the total chemical network based on cell configuration.
doi:10.1371/journal.pone.0037370.g004
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memory - is equivalent to CPU random access memory, shared

memory - is equivalent to CPU cache but is user controlled, and

registers. Algorithms and data-structures have to be designed to

match this computational architecture. Moreover, there must be

enough parallelism to fully use all computational resources on the

GPU. Several textbooks provide an excellent overview of GPU

architectures and the related programming models/paradigms

[24,25].

We make extensive use of the Thrust library from NVIDIA for

our parallelization [26]. In particular, we use efficient implemen-

tations of the generic parallel reduction and scan algorithms

combined with transform iterators. Transform iterators are special

iterators that take in a vector of data elements and apply a user-

defined transform to each element in the input vector. The user-

defined transforms are programmed by using functors. For

example, given a vector a0,a1::::aN½ �, we can find the sum

a2
0za2

1::::a
2
N

� �
in a single kernel call by using a transform functor

that transforms each element as ak?a2
k and then using a reduction

operation on the transformed entries.

Implementation Details
The data structures we use in our implementation can be

divided into three groups, namely, stoichiometry data, reactant

data, and reaction data. The stoichiometry data represents the

matrix vij , i[½0::M�, j[½0::N�. The rows of this matrix indicate

reactants, and the columns indicate reactions. This matrix is very

sparse, with each column having at most four entries. This is

because, at most, each reaction can only affect four reactants.

Furthermore, the values vij can only be one of ½{2,{1,1,2�. We

use a linear array to store the stoichiometric information. Each

element of the stoichiometric array is 32 bits wide, with the first 29

bits indicating the reaction index and the next three bytes

indicating the change in molecular count. An additional array of

indices stores the start index into the stoichiometric array for each

reactant. Figure 6 illustrates a case with three reactions R1,R2,R3

and 5 species s1,s2,s3,s4,s5. This data structure enables parallel

access of data on a per reactant basis both for updating the

molecular count, as in equations 3,7, and for computing m and s,

as in equations 10, 11.

The reaction data consist of an array of integers (X) that hold

the molecular counts of various reactants (system state) and an

array of integers (o) that classifies the reactant based on its higher

order reaction (HOR). The reaction data consist of the following

10 arrays: an array (t) of integers that classify the reactions (as uni-

molecular, bi-molecular, and bi-molecular with a single reactant),

an array of boolean values (Q) that classifies reactions as critical/

non-critical, an array of integers indicating the index of the first

reactant (s0), an array of integers indicating the index of the

second reactant (s1), an array of floats to hold the reaction rate

constants (r), an array of floats (a), that holds the computed

reaction propensities, an array of floats(as) that holds the partial

Figure 5. CUDA computing model.
doi:10.1371/journal.pone.0037370.g005
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sum of propensities, an array of floats (as
c) that holds the partial

sum of propensities of critical reactions, an array of integers (k)

that holds the number of times each reaction is fired, and finally,

an array of unit4 that holds the state for the random number

generator for each reaction.

All data are initialized on the CPU and transferred to the GPU

in the beginning. To enable improved cache hit rates on the latest

GPUs, we sort the list of reactions using the reactant indices as key.

This places reactions sharing reactants near each other in

memory. Depending on the specifications in the input file, either

the entire trajectory of certain reactants over the total simulation

time or the final state of the system can be retrieved at the end of

the execution. Data collection and processing is done on the GPU

itself to avoid costly CPU-GPU data transfer. As with most GPU

parallelizations, the CPU does very little computation and mostly

manages the overall execution.

Algorithm 1 (Figure S1) illustrates the general flow of the t-

Leaping method. It is clear that classifying reactions as critical and

non-critical reactions, computing propensities for each reaction

are per reaction computations that can be performed in parallel

(lines 7–8 in algorithm 1). A reaction Rj is labeled critical if the

molecular count of any reactant xi satisfied xi=EvijEvnc. Also,

computing the sum of propensities is a reduction operation with

the length equal to the number of reactions N and uses the results

from the previous two steps (line 9 in algorithm 1). We combined

these three operations into a single call to the parallel scan

algorithm. The transform functor, illustrated in algorithm 2

(Figure S2), acts on the reaction data arrays, scans the reactants’

data array using indices from the reaction data array, and,

classifies the reactions as well as computes the propensities. The

computed propensities are used by the inclusive scan algorithm to

compute the partial sums of all reaction propensities, as well as the

sum of all critical reaction propensities in the same call.

Computing the time leap t’ involves a per reactant computation

of mi and si followed by finding the minimum of ti among all

reactants. The latter is a reduction operation. The transform

functor (illustrated in algorithm 3 (Figure S3)) in this case reads the

stoichiometric data structure to find the reactions in which a

particular reactant participates. It then computes mi, si as in

equations 10 and 11. Furthermore, the functor computes i, gi and

finally ti as in equations 6, 5, 8 respectively. The resulting ti are

used by the reduction algorithm to finally compute t’ and in

equation 9.

The algorithm requires computing the DM, in certain cases,

over the entire set of reactions (lines 12–14 of algorithm 1), and in

other cases, only over the set of critical reactions (lines 16 of

algorithm 1). In the case of running the DM over the entire set of

reactions, we have implemented a GPU-based parallel version of

the Optimized Direct Method [5], which is illustrated in algorithm

4 (Figure S4). In the case of executing DM on critical reactions, we

already have the partial sums of the critical reaction in as
c. We only

execute lines 3,5 from algorithm 4. The dt calculated in line 5 is t’’
from line 16 in algorithm 1.

The next step in the algorithm is to calculate the number of times

ki each reaction is fired within the time leap t. There are two cases

here. One sets ki~0 for all critical reactions. The other sets km~1

for one critical reaction (the reaction to be fired from line 23 of

algorithm 1) and sets ki~0 for all other critical reactions. We use a

single kernel with an input parameter km that computes the two

cases. For non-critical reactions, kj~P(akt). Here P(akt) is a

poisson random number. For large akt (in our implementation we

use the limit aktw80), the Poisson distribution is well approximated

by a normal distribution with mean m~akt and standard deviation

s~
ffiffiffiffiffiffiffi
akt
p

. Each thread handling a reaction implements a serial

Poisson RNG. In the case of the normal distribution approximation,

we use the Box-Muller transform to generate the normal random

number from a uniform random number. Each thread runs its own

uniform random number generator (URNG). We use the combi-

nation Taustworthe-LCG URNG that has the advantage of speed

as well as a small state vector and a relatively large period. Each of

the Taustworthe-LCG URNG streams has four 32-bit state values

that give a period of 2121. If the three Tausworthe states are greater

than 128, and all four states are initialized using a separate random

number generator, each stream can generate up to 264 reasonably

uncorrelated random numbers [27]. This is more than sufficient for

the purposes of the t-Leaping Simulation. The small state of the

URNG means that we can effectively hold it in a thread’s registers

and generate an unspecified number of RNs without writing the

state back to global memory. We use a Mersenne Twister RNG

(MTRNG) implementation on the CPU to seed the Taustworthe-

LCG URNGs on the GPU.

The final step is to update the state vector X(t). One possible

option was to use the optimized sparse matrix multiply available

from CUBLAS [28]. However, we found that our algorithm has a

performance advantage of 50-70% because of the structure and

nature of the data. Since the molecule count of each reactant is

independent, this step can be parallelized on a per reactant basis.

We once again use our stochiometric matrix to accomplish this

step. A single thread is assigned to each reactant. The thread reads

the stoichiometric matrix to find the reactions that involve this

reactant and the related change in molecular count. It also reads

the number of times a given reaction is fired from the k array. It

then updates the molecular count for that particular reactant.

Algorithm 5 (Figure S5) illustrates this procedure.

Figure 6. GPU data-structure for stochiometric matrix.
doi:10.1371/journal.pone.0037370.g006
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