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Abstract

Aminoglycosides (AG), including gentamicin (GM), are the most frequently used antibiotics in the world and are proposed
to cause irreversible cochlear damage and hearing loss (HL) in 1/4 of the patients receiving these life-saving drugs. Akin to
the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs) preferentially succumb to multiple HL
pathologies while inner hair cells (IHCs) are much more resilient. To determine if endogenous differences in IHC and OHC
mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in
mitochondrial reduced nicotinamide adenine dinucleotide (NADH) fluorescence during acute (1 h) GM treatment were
compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after
GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in
their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-
frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced
and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive
oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in
regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate
differences in HC fate during multiple HL pathologies.
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Introduction

According to the World Health Organization, deafness and

hearing impairments affect more than 278 million individuals,

indicating hearing loss (HL) is the most frequent sensory deficit in

global populations. Aminoglycoside (AG) antibiotics are frequently

used to treat life-threatening gram-negative infections but their

clinical utility is limited due to nephrotoxicity and ototoxicity [1].

Unlike AG-induced nephrotoxicity, AG-induced ototoxicity is

irreversible and proposed to cause HL and/or deafness in 25% of

patients receiving these life-saving antibiotics [1,2]. Of the two

types of cochlear sensory hair cells, outer hair cells (OHCs) reliably

succumb to a barrage of AG-triggered pro-apoptotic signals, while

inner hair cells (IHCs) display a truncated pro-apoptotic signaling

response and greater survival, relative to OHCs [3–6]. Addition-

ally, when compared to apical turn, low-frequency processing

OHCs, basal turn, high-frequency processing OHCs are prefer-

entially damaged.

Although there are numerous causes of HL and deafness,

reactive oxygen species (ROS) are now well-known instigators of

multiple HL pathologies including: aminoglycoside (AG)-induced

ototoxicity (recent review: [7]), noise-induced (NIHL, [8,9]), and

age-related HL (ARHL, review: [10]). ROS are normal bypro-

ducts of ATP synthesis that can rise to lethal levels when

mitochondrial metabolism is perturbed. AGs have been shown to

enter inner hair cells and outer hair cells (I/OHCs) at the apical

pole and preferentially accumulate in mitochondria [11–13].

Gentamicin (GM), a representative AG antibiotic, has also been

shown to directly inhibit protein synthesis in human mitochondrial

ribosomes [14,15] and trigger mitochondrial permeability transi-

tion pore opening in cochlear HCs [16]. Likewise, mitochondrial

mutations are commonly associated with sensorineural HL [17–

20] and in some individuals a profound susceptibility to AG-

induced HL [14,21–24]. Others have also shown that cellular ATP

concentration can dictate commitment to apoptotic or necrotic cell

fates for multiple cell types [25–27]. For cochlear I/OHCs,

succinate dehydrogenase (SDH) activity, a mitochondrial enzyme,

is a key arbitrator of HC fate during acoustic trauma and exposure

to various ototoxic agents [28–31]. As such, intrinsic differences in

I/OHC mitochondrial metabolism may explain why high-

frequency OHCs are profoundly sensitive to mitochondrial-

mediated damage during various cochlear pathologies.

Mitochondrial metabolism couples oxidative phosphorylation

(the electron transport chain) to the generation of ATP. During
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oxidative phosphorylation, free energy released from glucose

oxidation is harnessed by transferring electrons from the reducing

agents NADH, FADH2 and succinate through a series of electron

carriers, including ubiquinone, in the inner mitochondrial

membrane. NADH, the primary electron donor/reducing agent,

is fluorescent (Fl) when reduced (NADH) and non-fluorescent

when oxidized (NAD+). NADH Fl represents the net activities of

two opposing processes; Krebs cycle-mediated NADH reduction/

production (increases NADH Fl, NADH) and electron transport

chain-mediated NADH oxidation/utilization (decreases NADH Fl

by increasing NAD+). If metabolic demands increase, the NADH/

NAD+ ratio will, at least temporarily, decrease resulting in

a reduction in NADH Fl intensity. As such, mitochondrial

function can be evaluated by measuring real-time changes in

NADH Fl in intact cells [32,33]. Indeed, two-photon confocal

imaging of NADH Fl was recently used to observe real-time changes

in mitochondrial metabolism in living isolated cochlear prepara-

tions [34,35]. As indicated by a decrease in NADH Fl, these

studies revealed GM rapidly altered OHC, but not IHC,

mitochondrial metabolism. These results also suggested a GM-

induced decrease in ATP synthesis and presumably OHC

viability, occurred within minutes of GM exposure.

It is important to note that the Fl spectra of NADH and

nicotinamide adenine dinucleotide phosphate (NADPH) are

indistinguishable. NADPH is a reducing agent for lipid and amino

acid synthesis that is also capable of regenerating cellular

antioxidants (glutathione) and triggering free-radical production

in immune cells. As described in a previous study of NAD(P)H

metabolism in cochlear HCs, the contribution of NADH and

NADPH to the total NAD(P)H signal can be reasonably de-

termined by examining changes in NAD(P)H Fl during treatment

with the metabolic uncoupler FCCP and the metabolic poison

sodium cyanide [35]. By measuring NADH and flavoprotein Fl

during the aforementioned metabolic perturbations, Tiede at al.

confirmed NADH, not NADPH Fl, prevails in cochlear I/OHCs.

In light of the fact that NaCN and FCCP specifically alter

mitochondrial metabolism and that the sum of the relative

oxidation and reduction percentages for cochlear HCs always

totaled 100%, the observed changes in I/OHC NADH indicated

NADH Fl predominantly originated from mitochondrial sources.

Given these findings, the NADH Fl described in this report is

considered to be principally mitochondrial and comparatively free

of NADPH.

The current report uses acutely-cultured perinatal cochlear

explants to further probe the nature of the rapid, GM-induced

decrease in mitochondrial metabolism (the GM NADH effect) and

to determine if OHC-specific decreases in the NADH Fl are due to

increased NADH oxidation or decreased Krebs cycle-mediated

NADH reduction. In the freshly-dissected adult cochlea imaging

technique previously used [34,35], calcified bone prevented

transmitted light imaging to verify HC morphology and viability.

By using acutely-cultured perinatal cochlear explants, transmitted

light imaging of cellular morphology and HC viability can be

obtained throughout each experiment. During the acute (24 h)

culturing period, viable HCs will maintain organized stereocilia,

non-granular cytoplasm and will appropriately restrict cellular

swelling, while traumatized HCs will show morphological abnor-

malities, including splayed stereociliary bundles, plasma mem-

brane blebbing, swelling, and granular inclusions in the cytoplasm.

Finally, freshly-dissected cochlear preparations remain viable for

no more than 2 h after opening of the cochlea. Cultured

preparations, on the other hand, can be maintained for hours to

over one week [36] permitting reporter dye uptake for functional

analyses, as well as time to apply and evaluate the effects of

putative I/OHC-saving treatments.

Given that basal turn, high-frequency OHCs are reliably lost

during GM treatment, identification of the process(s) responsible

for the rapid GM-induced decrease in NADH Fl is critical for

developing new HL prevention strategies. By transitioning to the

acutely cultured technique, a host of new studies examining the

metabolic mechanisms mediating GM ototoxicity are possible.

Furthermore, by uncovering fundamental metabolic differences

between cochlear I/OHCs and the mechanisms mediating OHC-

specific decreases in the NADH Fl, this report provides critical

data for the development of additional HL prevention and

treatment strategies targeting multiple HL pathologies.

Results

Endogenous Differences in Cochlear IHC and OHC
Metabolism
Recall that baseline NADH Fl represents the opposing actions

of Krebs cycle-mediated NADH reduction/production and

electron transport-mediated NADH oxidation/utilization. Puta-

tive intrinsic differences in I/OHC mitochondrial metabolism

were assessed by examining baseline NADH Fl intensities in low-

and high-frequency I/OHCs. IHC and OHC endogenous NADH

Fl intensities were significantly different (Fig. 1A,B, black bar).

Baseline, endogenous NADH Fl in apical turn OHCs was greater

than that of apical turn IHCs (t(62) = 4.31, p,0.001). The greatest

difference in endogenous NADH Fl intensity occurred between

basal turn IHCs (25.1960.93) and OHCs (39.7261.56,

t(64) = 8.11, p,0.001).

Next, NADH was maximally reduced using 10 mM NaCN

(10 min) or maximally oxidized using 10 mM carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP, 10 min) [35]. After

NaCN application, the absolute increase in NADH Fl was similar

for apical turn I/OHCs (Fig. 1A). In high-frequency regions of the

cochlea, OHCs displayed a larger increase in NADH Fl than

IHCs (Fig. 1B, t(14) = 1.86, p,0.05). After FCCP application,

decreases in NADH Fl were greater in OHCs than in IHCs in

both low- and high-frequency regions of the cochlea (t(10) = 2.7,

p,0.01, t(10) = 4.49, p,0.01), respectively). Given that baseline

differences in NADH Fl exist between I/OHCs, a relative redox

state scale was calculated for apical and basal turn I/OHCs during

maximum NADH reduction and oxidation (Fig. 1C,D). The

relative redox scale indicates NaCN-induced maximum NADH

reduction is similar in low- and high-frequency I/OHCs. On the

other hand, relative differences in FCCP-induced maximum

NADH oxidation were significant between apical I/OHCs

(t(10) = 2.22, p,0.05) and approached significance for basal turn

I/OHCs (p= 0.054).

Differences in functional mitochondrial densities were de-

termined by examining relative differences in Mitotracker Red

CM-H2XRos Fl intensity in high- and low-frequency I/OHCs

(Fig. 1E). In both apical and basal regions of the cochlea, OHC

mitochondrial densities were greater than IHC mitochondrial

densities (t(7) = 2.80, p,0.01, t(7) = 2.77, p,0.01, respectively).

GM Rapidly Decreases NADH Fluorescence (GM NADH
Effect)
Akin to a previous experiment using freshly-dissected adult

cochleae [34], 300 mg/ml GM rapidly decreased NADH Fl in

cochlear OHCs housed in acutely-cultured, intact organ of

Corti explants from postnatal day 661 day mice (Fig. 2).

NADH Fl in apical turn, low-frequency I/OHCs was not

significantly altered by acute GM treatment (Fig. 2A). Although
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a significant difference between control and GM-treated OHCs

was observed at 60 min, this result was transient and failed to

intimate any difference between control and GM-treated OHCs.

In contrast to low-frequency, apical turn I/OHCs, basal turn,

high-frequency OHCs displayed a significant decrease in

NADH Fl intensity within 10 min of 300 mg/ml GM applica-

tion (t(7) = 2.00, p,0.05, Fig. 2B). Basal turn OHCs maintained

a 10–12% decrease in NADH Fl intensity throughout the GM

exposure period while NADH Fl in basal turn IHCs remained

unaltered.

Figure 1. Endogenous differences in I/OHC NADH metabolism. A) Steady-state, endogenous NADH Fl in apical turn OHCs is greater than
apical turn IHCs (black line, t(62) = 4.31, p,0.001, n = 32). Absolute increases in NADH Fl during maximum NADH reduction (NaCN, n = 8) were similar
for apical I/OHCs while maximum NADH oxidation (FCCP, n = 6) caused a greater decrease in NADH Fl in apical OHCs than in apical IHCs (t(10)= 4.49,
p,0.01). B) Steady-state, endogenous NADH Fl in basal turn OHCs is greater than basal turn IHCs (black line, t(64) = 4.15, p,0.001, n = 33). C)
Normalized increases in NADH Fl during maximum NADH reduction (NaCN, n = 8) were similar for apical turn I/OHCs while decreases in NADH Fl
during maximum NADH oxidation (FCCP, n = 6) were greater in OHCs than in IHCs (t(10) = 2.22, p,0.05). D) Normalized increases in NADH Fl during
maximum NADH reduction and decreases in NADH Fl during maximum NADH oxidation were similar in basal turn I/OHCs. E) Relative differences in
Mitotracker Red Fl intensity indicated OHCs in both cochlear location contained more functional mitochondria than IHCs at each location (napex = 7,
nbase = 7). * = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0038471.g001
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In contrast to apical turn GM-exposed I/OHCs, which

maintained similar NADH Fl intensities throughout the GM

exposure period, NADH Fl in GM-exposed basal turn OHCs was

significantly lower than in GM-exposed basal turn IHCs within

20 min (IHCs= 1.02560.054, OHCs= 0.89660.01, t(8) = 3.014,

p,0.01). The significant suppression of NADH Fl in GM-exposed

basal turn OHCs, relative to GM-exposed basal turn IHCs,

remained after 1 h (IHCs= 0.99760.063, OHCs= 0.90060.051,

t(8) = 1.897, p,0.05). Figures 2C and D represent basal turn I/

OHC NADH Fl before and after GM-exposure, respectively.

GM NADH Effect: NADH Oxidation Assay
If the GM NADH effect observed in basal turn OHCs was due

to an increase in energetic demand, NADH oxidation would

exceed NADH reduction resulting in a net decrease in NADH Fl.

Therefore, if the concentration of reduced NADH in I/OHCs was

significantly increased prior to GM application, the GM NADH

effect ought to be diminished. As described in Materials and

Methods, the baseline modified Tyrodes imaging buffer (T1), in

which the GM NADH effect was initially observed (Fig. 2),

contained 5 mM glucose. To increase NADH levels, a high-

glucose (10 mM) Krebs cycle-substrate modified (3 mM gluta-

mate, 2 mM pyruvate) imaging buffer (T2) was applied to the

cochlear preparations. T2 buffer significantly increased NADH Fl

in cochlear I/OHCs (Fig. 3A,B). Significant increases in NADH Fl

intensity in apical turn I/OHCs were observed at multiple time

points (Fig. 3A). A prolonged and large increase in NADH Fl

intensity occurred in basal turn OHCs (Fig. 3B) within 10 min of

T2 exposure (OHCsT1 = 1.02360.017, OHCsT2 = 1.13760.009,

t(7) = 6.22, p,0.001). Basal turn OHCs maintained a ,15%

elevation in NADH Fl intensity throughout T2 exposure.

To determine if GM increases NADH oxidation (increased

energetic demand), 300 mg/ml GM was applied to cochlear

preparations pretreated (10–15 min) and subsequently maintained

in T2 buffer. Despite the previously described T2-mediated

increase in NADH (Fig. 3A, B), the GM NADH effect was still

observed (Fig. 3C, D). When bathed in T2 buffer, apical turn I/

OHCs displayed significant, yet transient decreases in NADH Fl

30 min after GM application (IHCcontrol = 1.09960.013,

IHCGM=0.94160.027, OHCcontrol = 1.06260.048,

OHCGM=0.93660.043, Fig. 3C). A significant and prolonged

decrease in NADH Fl was observed in basal turn OHCs while

Figure 2. Acute GM exposure decreased NADH Fl in basal turn OHCs bathed in T1 imaging buffer. A) I/OHCs in apical, low-frequency
regions of the cochlea do not show significant alterations in NADH Fl during acute GM exposure (nGM= 5, nCont = 4). A transient difference was
observed in OHCs at 60 min (t(7) = 1.96, p,0.05). B) Although basal turn, high-frequency IHCs were unaltered by GM, basal turn OHCs displayed
a significant decrease in NADH Fl within 10 min of GM exposure (t(7) = 2.0, p,0.05, nGM= 5, nCont = 4). C) Representative image of NADH Fl intensity in
basal turn I/OHCs before and after (D) GM exposure. The location of the IHC row and OHC rows are indicated by circling an individual HC from each
location. T1 imaging buffer contained 5 mM glucose. Scale bar = 10 mm. * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0038471.g002
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basal turn IHCs did not display a significant decrease in NADH Fl

(Fig. 3D). The basal turn GM NADH effect was substantial and

prolonged, while the decrease in apical turn I/OHC NADH Fl

was transient. Apical turn, GM-exposed I/OHCs maintained

similar NADH Fl levels throughout the duration of the GM

exposure, while NADH Fl levels in GM-exposed basal turn OHCs

were significantly lower than GM-exposed IHCs within 10 min

(OHCsbase = 0.97860.024, IHCsbase = 1.04660.024, t(8) = 1.99,

p,0.05).

GM NADH Effect: NADH Reduction Assay
Given that increased NADH oxidation did not appear to

mediate the GM NADH effect in the previous experiment, the

GM NADH effect may arise from a GM-induced decrease in

NADH reduction/production. If so, NADH Fl should decrease

when NADH production is dramatically decreased and NADH

oxidation (conversion to non-Fl NAD+) is maintained.

NADH production was assessed in control and GM-treated

cochleae after NADH oxidation was inhibited with NaCN

(10 mM). NaCN increases NADH Fl in cochlear I/OHCs bathed

in T1 buffer (see controls, Fig. 4A, B). Similar to the dramatic and

distinct T2-mediated increase in NADH Fl observed in basal turn

OHCs, the largest NaCN-induced increase in NADH Fl was

observed in basal turn OHCs (Fig. 4B). Specifically, NADH

production capacity, measured as NADH Fl intensity when

NADH oxidation is inhibited, was greater in basal turn OHCs,

relative to apical turn OHCs (at 30 min: OHCsapex = 1.0660.014,

OHCsbase = 1.15660.032, t(7) = 2.514, p,0.05).

If GM limited NADH production, NaCN-mediated increases

in NADH Fl would be similarly limited in GM pretreated I/

OHCs. Pretreatment with 300 mg/ml GM (30 min) limited

NADH production capacity in apical and basal turn I/OHCs

(Fig. 4A, B). Although NADH Fl in apical turn I/OHCs was

significantly decreased by GM, GM-pretreated apical I/OHCs

were similar to controls after 30 min. In contrast, NADH Fl in

Figure 3. T2 buffer increased NADH reduction/production but failed to prevent the GM NADH effect. A) Apical turn I/OHCs display
transient, significant increases in NADH Fl when bathed in T2 buffer (nT1 = 5, nT2 = 4). B) Basal turn OHCs display a significant and prolonged increase
in NADH Fl in T2 buffer while basal turn IHCs do not (nT1 = 5, nT2 = 4). C) T2-bathed, apical turn I/OHCs display moderate decreases in NADH Fl during
acute GM exposure (nGM=4, nCont = 5). D) T2-bathed basal turn OHCs, not basal turn IHCs, display significant and prolonged decreases in NADH Fl
during GM exposure (nGM= 5, nCont = 5). T2 imaging buffer contained 10 mM glucose, 3 mM glutamate and 2 mM pyruvate. * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0038471.g003
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basal turn I/OHCs was significantly limited throughout the

NaCN exposure period (p,0.001). Suppression of NADH Fl

after GM exposure was similar for apical turn low-frequency I/

OHCs (Fig. 4C). In contrast, suppression of NADH Fl was

greater in GM-exposed, basal turn high-frequency OHCs than in

basal turn IHCs (Fig. 4D, p,0.01) during the initial 20 min of

the NaCN exposure period.

GM Suppresses NADH Fl via Krebs Cycle Inhibition
Succinate dehydrogenase (SDH), the only dual-role enzyme in

mitochondrial metabolism, participates in both the Krebs cycle

(NADH reduction) and electron transport chain (NADH oxida-

tion). With subunits A and B facing the mitochondrial matrix and

subunits C and D bound to inner mitochondrial membrane, SDH

couples the oxidation of succinate to fumarate in the Krebs cycle

and the reduction of ubiquinone to ubiquinol in the electron

transport chain [37]. SDH histochemistry is a long standing, semi-

quantitative method for determining if cochlear I/OHC are

metabolically compromised [31]. As a second assessment of GM’s

capacity to decrease NADH production, Krebs cycle activity,

indicated by SDH activity, was measured in cochlear I/OHCs

after acute GM exposure (1 h, 300 mg/ml, T1 buffer). In apical

turn, low-frequency regions of the cochlea, IHCs maintained SDH

activity after GM treatment. In apical OHCs SDH activity was

significantly decreased by GM (OHCscontrol = 178.5563.21,

OHCsGM=159.1165.947 arbitrary units, t(15) = 2.659, p,0.01,

Fig. 5A). An OHC-specific decrease in SDH activity was also

observed in basal turn, high-frequency regions of the cochlea

(OHCscontrol = 170.3967.652, OHCsGM=148.1567.56 A.U.,

t(15) = 2.019, p,0.05, Fig. 5B).

Discussion

Examination of baseline NADH Fl intensities in high- and low-

frequency I/OHCs revealed endogenous differences in I/OHC

mitochondrial metabolism. Specifically, OHC NADH Fl was

greater than IHC NADH Fl in both apical and basal regions of the

cochlea (Fig. 1A,B). The largest difference in baseline NADH Fl

occurred between basal turn IHCs and OHCs. Since baseline

NADH Fl represents the balance between NADH reduction and

oxidation, absolute differences in NADH Fl during maximum

NADH oxidation and reduction were also measured. Absolute

changes in NADH Fl in basal turn OHCs were significantly larger

than the changes observed in basal turn IHCs. Relative changes in

Figure 4. Acute GM exposure decreases NADH reduction/production capacity. A) NaCN-induced increases in NADH Fl in apical turn I/OHCs
are significantly diminished when I/OHCs are pretreated with GM (300 mg/ml, nGM= 8, nCont = 6). B) GM pretreatment (300 mg/ml) abolishes NaCN-
induced increases in NADH Fl in basal turn I/OHCs (nGM=7, nCont = 6). C) Mean changes in NADH Fl between control and GM-exposed I/OHCs were
similar in apical turn I/OHCs and D) greater in basal turn OHCs, relative to basal turn IHCs. Experiments conducted in T1 buffer. * = p,0.05,
** = p,0.01.
doi:10.1371/journal.pone.0038471.g004
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NADH redox state were similar for I/OHCs in both apical and

basal regions of the cochlea. For the purposes of the current

report, the I/OHC relative redox scale represents the maximum

range of NADH Fl capable of occurring in cochlear HCs. This

scale will be used to assess the relative oxidative and reductive

impact of elevated glucose and GM on I/OHC mitochondrial

metabolism.

The current report shows basal turn, high-frequency OHCs are

metabolically responsive to GM and elevated glucose concentra-

tions while high-frequency IHCs and low-frequency I/OHCs are

substantially less sensitive. Basal turn OHCs displayed a robust

increase in NADH Fl when exposed to high glucose, Krebs cycle

substrate modified media (Fig. 3A, B). Likewise, the GM NADH

effect was preferentially observed in basal turn OHCs (Fig. 2A, B).

This metabolic predisposition may bias basal turn OHC responses

to a variety of cochlear insults, particularly those directly involving

energy metabolism and ROS production.

GM was shown to rapidly and preferentially inhibit mitochon-

drial metabolism in basal turn, high-frequency OHCs (Fig. 2A, B).

The observed decrease in mitochondrial function is consistent with

the well-known enhanced susceptibility of high-frequency basal

turn OHCs to preferentially undergo apoptosis after AG exposure.

In light of the relative redox scale of maximum NADH oxidation

(,30% decrease in NADH Fl) in basal turn OHCs, the ,12%

decrease in NADH caused by GM suggests that up to a third of

the utilizable NADH pool was oxidized during GM exposure. This

basal turn, OHC-specific effect suggests high-frequency OHCs

may undergo as much as a 33% decrease in ATP production

during acute GM treatment while ATP production in apical turn

I/OHCs and basal turn IHCs is relatively undisturbed. This high-

frequency OHC-specific decrease in NADH, and presumably

ATP production capacity, is consistent with other studies

indicating diminished ATP availability triggers apoptosis while

large-scale losses of ATP trigger necrosis in a variety of cell types

[25,26,38]. Given that ototoxic HC death is frequently attributed

to apoptosis [39–42] rather than necrosis or caspase-independent

mechanisms [7,43], the decrease in NADH Fl described in the

current report is consistent with a moderate decline in ATP

production capacity subsequent commitment of cochlear HCs to

undergo apoptosis.

Although one other report has described a rapid decrease in

OHC metabolism during acute GM exposure [34], this is the first

report to describe a mechanism for the observed decrease in

NADH Fl. As previously mentioned, steady-state NADH Fl

represents the net activities of two opposing processes; Krebs

cycle-mediated NADH reduction and electron transport chain-

mediated NADH oxidation. T2 buffer-produced a 10–15%

increase in NADH Fl in basal turn OHCs which approached

the maximum NADH reduction capacity for basal turn OHCs (,
20%). Surprisingly, the GM NADH effect remained undeterred.

Furthermore, apical turn I/OHCs, which failed to display

significant GM-induced changes in NADH Fl in T1 buffer

(baseline), displayed transient, yet significant, decreases in NADH

Fl when exposed to GM in T2 buffer (Fig. 3A). The observed T2-

mediated increase in NADH production in apical turn I/OHCs

indicates apical low-frequency HCs assumed activated metabolic

profiles similar to those observed in high-frequency OHCs. As

a result, the GM NADH effect was only observed in apical turn I/

OHCs bathed in T2 buffer.

These findings also suggest that, if apical turn I/OHCs assume

activated high-frequency OHC-like metabolic profiles, GM-

triggered ROS production in apical turn I/OHCs would be

enhanced. Specifically, the coupling of oxidative phosphorylation

and ATP synthesis is not absolute. During normal respiration, 2–

3% of the oxygen utilized by a given cell will form ROS after

electrons prematurely exit the electron transport chain [44]. When

the NADH/NAD+ ratio and/or the reduced/oxidized ubiquinone

pool are altered, the fidelity of ‘appropriate’ electron transfer

decreases resulting in ROS production [45–47].

The GM-NADH effect was essentially doubled in high-

frequency basal turn OHCs bathed in T2 buffer (Fig. 3D), relative

to T1 buffer (Fig. 2B). If maximum NADH oxidation causes

a ,30% decrease in NADH Fl in basal turn OHCs, the observed

,20% GM-induced decrease in NADH in high-frequency OHCs

bathed in T2 buffer suggests nearly two thirds of the utilizable

NADH pool may be oxidized during GM exposure. This also

suggests a large decrease in ADP phosphorylation potential and

consequently ATP production capacity in OHCs. As indicated

above, ROS production is predicted to also increase in T2-bathed,

relative to T1-bathed high-frequency I/OHCs. The appearance of

Figure 5. Acute GM exposure decreased succinate dehydrogenase activity OHCs. A) Apical turn OHCs display significant decreases in SDH
activity during acute GM exposure, while apical turn IHCs do not (nGM=9, nCont = 8). B) Basal turn OHCs, not IHCs, display significant decreases in SDH
activity during GM exposure (nGM= 9, nCont = 8). * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0038471.g005
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the GM NADH effect in low-frequency I/OHCs and enhanced

GM NADH effect observed in basal turn OHCs suggests

increasing NADH production acutely promotes compensatory

increases in NADH oxidation. Akin to the difference in distances

required to stop a slow-moving or rapidly-moving car, GM-

induced decreases in NADH production capacity would produce

a larger, yet transient decrease in NADH in I/OHCs with elevated

baseline NADH reduction and oxidation.

To determine if the GM NADH effect is caused by diminished

NADH reduction, NADH production capacity was evaluated.

Given that NaCN inhibits NADH oxidation, NADH production

capacity, or the amount of NADH capable of being produced at

any given time can be assessed. NADH production capacity was

diminished in I/OHCs pretreated with GM (Fig. 4). Although

NADH production capacity was significantly decreased in apical

and basal turn I/OHCs, a profound and prolonged decrease in

NADH production capacity was observed in high-frequency

OHCs. Notably, NADH production capacity in GM-treated

apical turn I/OHCs reached control levels after 30 min. I/OHCs

also maintained similar NADH levels throughout the experiment.

In stark contrast, high-frequency, basal turn OHCs displayed

a robust decrease in NADH production capacity after GM

treatment. Unlike low-frequency I/OHCs, high-frequency I/

OHCs did not recover from GM-induced decreases in NADH

production capacity. In concert, the above experiments clearly

indicate a GM-induced decrease in NADH production capacity

occurs within minutes of GM application. Furthermore high-

frequency OHCs, known to be preferentially damaged by GM,

display the greatest decline in NADH and NADH production

capacity. To this end, the GM NADH effect is not likely to be due

to an increase in NADH oxidation. However, this is difficult to

confirm when NADH reduction is compromised. Further studies

will need to be performed to confirm this observation.

As an additional verification of the observed GM-induced

decrease in NADH production capacity, SDH activity was

measured in GM-treated cochlear I/OHCs. In light of the fact

that SDH participates in both the Krebs cycle and electron

transport chain, assays of SDH activity assays must be cautiously

interpreted. Although the activity of other enzymes in the Krebs

cycle can be measured (citrate synthase, aconitase, to name just

two), SDH is the only Krebs cycle enzyme that can be assayed in

intact tissues. Likewise, accurate measurements of cell-specific

oxygen consumption, an additional method for measuring

metabolic activity, are difficult in heterogeneous cell populations.

Recall that the current study investigates metabolic differences

between cochlear I/OHCs. Given that 1) cochlear I/OHCs reside

within the cochlear partition which contains both sensory and

supporting cells, 2) OHCs are nearly three times more numerous

than IHCs (see Fig. 1C,D) and 3) there is no way to isolate large

quantities of unperturbed IHCs and OHCs for IHC- and OHC-

specific mitochondrial analyses, SDH activity is the best assay for

IHC- and OHC-specific Krebs cycle analyses. Likewise, a recent,

extensive review of the actions of SDH indicates SDH/Complex II

of the mitochondrial respiratory system is ‘the central mediator’ of

most pathologies involving oxidative damage [45]. Akin to the

observed GM-induced alterations in NADH, SDH activity is also

shown to modulate NADH/NAD+ ratios in multiple cell types.

In the current report, acute GM exposures decreased SDH

activity in OHCs (Fig. 4). Although others have shown that longer

GM exposures ($4 h) decrease SDH activity in I/OHCs [48], this

is the first report to show GM rapidly (1 h) decreases SDH activity.

When the observed decrease in SDH activity is considered in

conjunction with GM-induced decreases in NADH Fl intensity,

a GM-induced deficit in NADH reduction is indicated. One

function of SDH is to donate electrons, from succinate, to the

ubiquinone pool in the electron transport chain. NADH also

donates electrons to of the electron transport chain (complex I).

Therefore, NADH could continue to donate electrons to the

electron transport chain in the absence of succinate oxidation.

Recall, however, that NADH is the primary reducing equivalent

generated in the Krebs cycle. If SDH is no longer capable of

oxidizing succinate to fumarate, NADH production and Krebs

cycle activity would be significantly impeded. Given that the

amount of NADH generated during b-oxidation and glycolysis or

regenerated via the malate-aspartate shuttle is significantly less

than Krebs cycle-produced NADH [49], a net decrease in NADH

would occur when SDH activity is decreased. As such NADH

oxidation (complex I, electron transport chain) could continue

while NADH reduction (Krebs cycle) is reduced. Once the NADH

pool is exhausted, as indicted by the net decrease in NADH Fl,

electron transport dysfunction and decreased ATP production

would ensue.

A number of groups have shown a decrease in HC viability,

cytochrome c release, AIF release, and mitochondrial permeability

transition pore (MPTP) opening using similar AG exposures

(recent reviews [50–53]). Of particular importance, Dehne et al.

[16] observed opening of the MPTP in cochlear outer (not inner)

HCs required $4 h of exposure to GM at considerably higher

concentrations (500–1000 mM) than what was used in the current

report (300 mg/ml , 150 mM). Furthermore, cyclosporin A,

a MPTP inhibitor, did not significantly increase OHC survival

within this time frame, although an increase was observed. Given

that rapid opening of the MPTP would cause a decrease in NADH

Fl, the 300 mg/ml GM dose used in the current study was

purposely chosen to 1) be closer to a physiologically relevant range

and 2) avoid rapid opening of the MPTP. MPTP opening, an

event that is certainly not requisite for excess ROS production, is

the end result of gross perturbations in mitochondrial metabolism.

As such, we do not predict opening of the MPTP in the acute GM

exposures utilized in the current report. Rather the current studies

describe how AGs directly and differentially alter IHC and OHC

mitochondrial metabolism in the absence of MPTP opening. To

this end, it is fully anticipated that sustained GM-induced

alterations NADH metabolism (.4 h) would reduce hair cell

viability, increase the probability of MPTP opening and trigger the

release of mitochondrial-specific pro-apoptotic signaling factors as

observed in other cell populations [54]. Indeed, our findings are

also consistent with the work of Alharazneh et al. [13], who

showed that exposure to 0.25 mM GM for 1 h followed by a 48 h

recovery period resulted in a tonotopic loss of OHCs in the basal

and middle turns while HC loss was negligible immediately

following GM exposure. When considered in conjunction with the

results described in the current study, 1 h of exposure to GM

(250–300 mg/ml) preferentially produces metabolic dysfunction in

high-frequency, basal turn OHCs that appear to be sufficient to

trigger a pro-apoptotic cascade of events which ultimately lead to

the demise of high-frequency OHCs.

Given that the density of functional mitochondria (Fig. 1E) is

greater in OHCs than IHCs regardless of cochlear location,

elevated baseline NADH Fl may be due to differences mitochon-

drial densities. This explanation does not, however, seem sufficient

to explain why 1) T2 buffer preferentially enhanced NADH Fl in

high-frequency, not low-frequency OHCs, 2) why low-frequency

I/OHCs exhibit similar responses to GM and, 3) why the GM-

NADH effect was greatest in high-frequency, basal turn OHCs.

These results indicate the endogenous metabolic profiles of I/

OHCs are fundamentally different. As such, high-frequency basal

turn OHCs appear to be metabolically biased to rapidly respond
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to alterations in their microenvironment including increased

glucose and GM exposure. This report identifies endogenous

differences in I/OHC NADH metabolism and a GM-mediated

decrease in NADH production capacity and Krebs cycle activity

within minutes of GM application. Multiple ROS production

mechanisms have been proposed in studies using prolonged AG

exposures ($24 h) [55–57]. Given that AGs have been shown to

alter mitochondrial protein synthesis [14,15], any study of AG

ototoxicity must differentiate between immediate and long-term

alterations in mitochondrial function. Of particular significance,

the results described herein occur on a timescale too short to

include GM-induced changes in mitochondrial protein synthesis

and turnover. Instead these results strongly suggest GM directly

alters mitochondrial function in cochlear I/OHCs.

Although SDH and NADH are involved, the exact nature of

this interaction awaits further study. As such, the novel and

intriguing findings of the current report will undoubtedly function

as a catalyst for future studies aimed at deciphering the true

mechanism(s) by which GM disrupts mitochondrial metabolism

and presumably triggers mitochondrial ROS production. Notably,

the NOX family of NADPH oxidases is another recognized source

of ROS in cochlear HCs [58–60]. NOX-mediated redox signaling

is, however, unlikely to trigger ROS production during the early

stages of GM exposure described in the current report. Specifi-

cally, several groups have shown NOX-dependent ROS pro-

duction in HCs requires NOX activation, a process requiring over

6 h to trigger significant increases in ROS [58,60,61]. Therefore,

the endogenous metabolic biases observed in the current report

indicate AG-mediated ROS production in cochlear HCs is likely

the result of direct mitochondrial alterations and rapid metabolic

dysfunction.

Given that AG-induced ROS production is a well-documented

trigger for AG ototoxicity and irreversible HC loss (recent reviews

[50,55]) and decreased NADH levels are associated with profound

mitochondrial ROS production (recent review [45]), the current

study highlights a need to further elucidate the role(s) mitochon-

dria in mediating AG ototoxicity and, potentially, numerous other

HL pathologies including ARHL and NIHL.

Materials and Methods

Cochlear Explants
All experiments were performed using acutely-cultured, intact

cochlear (organ of Corti) explants. Cochleae obtained from CO2

asphyxiated postnatal day 6 (P661d) FVB mice were dissected in

HEPES-buffered L-15. Intact explants were acutely cultured (24–

30 h) at 37uC and 5% CO2 in Dulbecco’s modified Eagle’s

Medium/F12 medium (Invitrogen, Carlsbad, CA., USA) supple-

mented with 10% FBS (Invitrogen). The number of cochlear

explants examined in each experiment and condition is indicated

in the respective figure caption. Cochlear preparations with intact,

viable HCs were maintained at 3264uC in one of two modified

Tyrodes buffers (see below) throughout imaging. During each

experiment I/OHCs located in apical, low-frequency (20% of

cochlear length) and/or basal, high-frequency (80% of cochlear

length) regions were compared. Unless otherwise noted, reagents

and solutions were obtained from Sigma-Aldrich (St. Louis, MO.,

USA). Animal care and use procedures were approved by the

Creighton University Animal Care and Use Committee.

Imaging Methods
Baseline modified Tyrodes imaging buffer (T1) contained 5 mM

glucose, 135 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM

CaCl2 and 20 mM HEPES. Enhanced modified Tyrodes imaging

buffer (T2) was generated by adding Krebs cycle substrates (3 mM

glutamate, 2 mM pyruvate) and increasing the glucose content of

T1 to 10 mM. Each solution was adjusted to 31065 mOsm and

a pH of 7.3560.05.

Endogenous NADH was excited using femtosecond pulses of

740 nm light from a MaiTai DeepSee laser (Newport, Irvine, CA,

USA) using an upright Zeiss LSM 510 META NLO scanning

confocal microscope and a 606, 0.9 N.A. water immersion lens

(Olympus, Center Valley, PA, USA). Successive focal planes

(2.5 mm apart) were imaged through each cochlear preparation. Z-

stack image series were obtained at 10 min intervals. Non-

descanned NADH Fl was collected using a 500 nm long pass

dichroic mirror (500 DCXR, Chroma, Bellows Falls, VT, USA)

and 460/80 bandpass (BP) filter. During NADH imaging, one

baseline image was obtained before application of 300 mg/ml GM.

Assays of Metabolic Activity
Endogenous, steady-state NADH Fl intensities were obtained by

imaging apical and basal turn I/OHCs under identical imaging

parameters using T1 buffer. To determine if absolute and/or

relative differences in I/OHC NADH oxidation and reduction

occur, 10 mM Carbonyl cyanide-p-trifluoromethoxyphenylhydra-

zone (FCCP) or 10 mM sodium cyanide (NaCN) were adminis-

tered, respectively. Others have shown these concentrations are

sufficient to cause maximum NADH reduction and oxidation in

cochlear HCs [35]. NADH Fl changes, calculated as the difference

in NADH Fl before and 10 min after each treatment, were

compared in apical, low-frequency and basal, high-frequency

regions of the cochlea. NaCN was also used to calculate NADH

production capacity before and after 300 mg/ml GM. By

specifically inhibiting cytochrome C oxidase (mitochondrial

complex IV), NaCN prevents NADH oxidation while Krebs

cycle-mediated NADH production remains active. The net result

is an increase in the NADH/NAD+ ratio indicated by an increase

in NADH Fl. Given that NADH oxidation (conversion to non-Fl

NAD+) is inhibited, NaCN-induced changes in NADH Fl are

indicative of the total amount of NADH produced, or the NADH

production capacity for each cell. NaCN was applied 30 min after

300 mg/ml GM.

Given that cochlear I/OHCs are 1) surrounded by supporting

cells in the cochlear partition and 2) are extremely difficult to

individually isolate in sufficient quantities to perform cell type

specific analyses of metabolic activity, options for measuring

metabolic activity are limited to those applicable to intact cells.

Succinate dehydrogenase (SDH) histochemistry is a long standing

technique used to measure metabolic activity and HC viability

[28–30,62–66]. SDH histochemistry performed similarly to pre-

vious reports [29,67], was used to semi-quantitatively measure

SDH/Krebs cycle activity in control and GM exposed (1 h)

cochlear preparations in conjunction with NADH Fl changes.

Cochlear preparations were exposed to a SDH staining solution

containing 1:1:2 parts of 0.2 M sodium succinate, 0.2 M

phosphate buffered saline (pH 7.6), 0.1% tetranitro-blue tetrazo-

lium, respectively. After 45 min of exposure to the SDH staining

solution at 37uC, cochlear cultures were fixed in 10% formalin for

2 h. Transmitted light images of the insoluble tetranitro-blue

precipitate, indicative of SDH activity, were obtained using the

transmitted light detector of the Zeiss confocal microscope

previously described.

Functional mitochondria were labeled with Mitotracker Red

CM-H2XRos (Invitrogen). Briefly, cochlear explants were in-

cubated in 200 nM Mitotracker Red in T1 buffer for 10 min at

37uC and 5% CO2. Next, cochlear explants were rinsed and

immediately imaged under identical conditions in T1 buffer.
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Images were acquired using 543 nm as the excitation wavelength

and collected using a 565–615 nm emission filter. Relative

differences in Mitotracker Red Fl were calculated and compared.

Image Analysis
As previously mentioned, successive focal planes (2.5 mm apart)

were collected throughout each preparation. To compensate for

differences in I/OHC volume, average NADH and Mitotracker

Red Fl in each I/OHC was calculated by measuring the respective

Fl in each consecutive focal plane. Individual values were averaged

to determine HC-specific Fl intensities. These intensities were

pooled to determine the mean I/OHC values for each cochlear

preparation. Individual transmitted light images of nitro-blue

tetrazolium accumulation were analyzed to determine SDH

activity in I/OHCs. Raw pixel data was analyzed using Image J

[68] and evaluated using Students t-test analyses performed in

Excel. Data were plotted using OriginLab (Northampton, MA,

USA).
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