
Reduced Surface Expression of Epithelial E-Cadherin
Evoked by Interferon-Gamma Is Fyn Kinase-Dependent
David Smyth, Gabriella Leung, Maria Fernando, Derek M. McKay*

Gastrointestinal Research Group, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary,

Alberta, Canada

Abstract

Interferon gamma (IFNc) is an important regulatory cytokine that can exert a pro-inflammatory effect in the gut, where it
has been shown to increase epithelial permeability via disruption of the tight junctions. Here we investigated the potential
for IFNc to regulate the adherens junction protein E-cadherin, an important mediator of normal epithelial tissue function,
using the model T84 human colonic epithelial cell line. IFNc (10 ng/ml) stimulated increased internalization of E-cadherin as
assessed by immunofluorescence microscopy; internalization was reversed when cells were treated with PP1 (125 nM), a Src
kinase-selective inhibitor. Immunoprecipitation studies demonstrated loss of E-cadherin from membrane fractions following
IFNc treatment and a corresponding increase in cytosolic E-cadherin and its binding partners, p120-catenin and beta-
catenin: effects that were Src-kinase dependent. E-cadherin and p120-catenin phosphorylation was increased by IFNc
treatment and siRNA studies showed this was dependent upon the Src-kinase isoform Fyn. E-cadherin ubiquitinylation and
subsequent proteasomal degradation stimulated by IFNc was found to be dependent upon Fyn and the E-cadherin-
selective ubiquitin ligase, Hakai. Use of Fyn and Hakai siRNA inhibited the internalization of E-cadherin as shown by
immunoblotting and confocal fluorescence microscopy. Finally, IFNc treatment resulted in a more fragile T84 cell monolayer
with increased cell detachment in response to physical stress, which was prevented by PP1 and siRNA targeting Fyn or
Hakai. Collectively, these results demonstrate a Fyn kinase-dependent mechanism through which IFNc regulates E-cadherin
stability and suggest a novel mechanism of disruption of epithelial cell contact, which could contribute to perturbed
epithelial barrier function.
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Introduction

The integrity of the intestinal epithelial monolayer constitutes

an important regulated barrier that controls access of the gut

microflora, an abundant population of commensal and potentially

pathogenic microbes, to the mucosa and thus is a key modulator of

immune-mediated inflammatory activity within the intestinal

submucosa [1]. Furthermore, increases in enteric epithelial

permeability often parallel the onset of inflammatory disease and

also potentially colorectal cancer [2]. As the association between

microbial-driven inflammation and cancer becomes more appar-

ent, a greater awareness of mechanisms of altered gut epithelial

function during inflammatory responses may lead to additional or

improved treatment strategies.

Interferon-gamma (IFNc) is a key inflammatory cytokine

primarily secreted by T cells and natural killer (NK) cells that

has a well-described role during intestinal inflammation [3,4].

IFNc stimulates increased intestinal epithelial permeability by

reducing tight junction stability (paracellular permeability) [5], and

our work, and that of others, has shown that IFNc signalling

through phosphatidylinositol 3-kinase (PI3K) and the Src-kinase

family member, Fyn, promotes increased epithelial uptake of

commensal bacteria and macromolecules in in vitro model systems

[6–8]. Thus, IFNc may serve to exacerbate inflammatory

responses via its effects on the epithelial barrier.

Src kinase activity has been widely-associated with epithelial

dysfunction. Src kinases have been linked to epithelial to

mesenchymal transition (EMT) in response to growth factors or

oxidative stress [9,10]. c-Src-mediated epithelial cell scattering has

been suggested as an important step during acquisition of

a transformed phenotype [11], and the Src-family Fyn kinase

has recently been identified as a potential catalyst for the

development of prostate cancer [12,13]. However, extensive

studies of Fyn kinase participation in the intestinal epithelial

response to IFNc have not been conducted.

A key mediator of the stability of the intestinal epithelium is the

adherens junction. E-cadherin is a critical intercellular junctional

protein that is maintained at the cell surface by interactions with

p120-catenin, beta-catenin and additional proteins mediating

adhesion to the actin cytoskeleton [14]. Loss of E-cadherin

function is associated with development of chronic inflammatory

diseases including Crohn’s disease [15]. E-cadherin is also

considered a tumour suppressor, as loss of E-cadherin expression

or activity is highly correlative to the onset of epithelial-derived
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cancers [16]. Fyn kinase has been reported to induce E-cadherin

internalization following epithelial cell exposure to acidic pH or

growth factors in vitro [17,18], and p120-catenin, whose key

function is to bind and stabilize E-cadherin, is known to be a Fyn

kinase substrate [19]. Thus, we sought to determine whether

IFNc-stimulated Fyn kinase activity affected epithelial adherens

junction stability, specifically the expression and location of E-

cadherin.

Here we show that IFNc stimulates increased internalization of

E-cadherin in the human colonic T84 epithelial cell line. E-

cadherin internalization was reduced by treatment with the Src

inhibitor PP1 and siRNA targeting Fyn, and by siRNA targeting

Hakai, which has been characterized as a Src-dependent, E-

cadherin-specific ubiquitin ligase. Blockade of Fyn or Hakai

reduced the fragility of cell-cell adhesion in IFNc-treated plastic-

grown T84 cell monolayers. The data illustrate that an adherens

junction-destabilizing pathway involving Fyn kinase and Hakai

can be activated by IFNc in T84 epithelia, and we speculate that

this could be relevant to epithelial cell-cell adhesion and

communication, and potentially enteric inflammatory disease.

Materials and Methods

Reagents and Antibodies
Cell culture supplements and pharmacologic inhibitors, were

purchased from Sigma-Aldrich (Oakville, Ontario, Canada) unless

otherwise indicated. The Src inhibitor PP1 was purchased from

Biomol (Enzo Life Sciences, Plymouth Meeting, PA, USA).

Recombinant human IFNc was from Ebioscience Inc. (San

Diego, CA, USA). Mouse anti-E-cadherin and mouse anti-beta-

catenin antibodies were purchased from BD Transduction Labs

(Mississauga, ON, Canada). Mouse anti-p120 catenin and mouse

anti-phosphotyrosine (clone 4G10) antibodies were purchased

from Upstate/Millipore (Billerica, MA, USA). Rabbit anti-

occludin was purchased from Zymed/Invitrogen (Carlsbad, CA).

Rabbit anti-zonula occludens (ZO-1) antibody was purchased

from Invitrogen. Goat anti-actin antibody, rabbit anti-CBLL/

Hakai, mouse anti-Fyn antibody and HRP-conjugated secondary

antibodies were from Santa Cruz Biotech (Santa Cruz, CA, USA).

AlexaFluor goat anti-mouse 488 and goat anti-rabbit 594

fluorescent secondary antibodies were purchased from Molecular

Probes/Invitrogen (Carlsbad, CA, USA).

Cell Culture
The immortalized human colon-derived T84 epithelial cell line

(ATCC, Manassas, VA, USA) was cultured at 37uC/5% CO2 in

1:1 Dulbecco’s modified Eagle’s Medium/Ham’s F-12 medium

supplemented with 2% (vol./vol.) penicillin-streptomycin, 1.5%

HEPES, 5% NaHCO3, 1% L-glutamine, 1% sodium pyruvate (all

from Invitrogen, Burlington, ON, Canada) and 10% fetal bovine

serum (PAA Laboratories, VWR International, Edmonton, AB,

Canada). All cytokine stimulations with IFNc were conducted

using 10 ng/ml recombinant cytokine (equivalent to 250 biological

units of activity/ml cell culture medium).

Transient Transfection of T84 Cells with Small Interfering
(si) RNA
siRNAs targeting Fyn and Hakai were created using the Stealth

siRNA oligomer design platform (Invitrogen). Target oligomer

sequences used in this study are as follows:

Fyn 59-GAGCGACAGCTATTGTCCTTTGGAA. Hakai 59 -

CAACATGTGCCACATGAGCA CTATA. The control siRNA

sequence used was 59-GAGACATCGTTACTGTTCGGAA.

Transfections were performed as previously described [8]. Briefly,

20 pM of siRNA in Lipofectamine 2000/Opti-MEM (500 mg/ml)

(Invitrogen) was added to suspension cultures of T84 cells (16106/

ml) in antibiotic-free FBS-containing culture medium. The cells

were then either seeded onto filter supports or 12-well culture

dishes and following an overnight incubation, adherent cells were

washed and transferred to antibiotic-containing culture medium.

Immunoprecipitation and Immunoblotting
One million T84 cells were seeded onto 12 mm2 permeable

filter supports (Greiner Bio-One) in 12-well plates and cultured

until confluent as assessed by phase-contrast microscopy and

electrical confluence (transepithelial resistance (TER)$1000

V.mm2 as measured by voltmeter and paired electrodes (Millipore)

was accepted as an electrically confluent monolayer). As indicated,

cell lysates were prepared following two washes with ice-cold

phosphate-buffered saline (PBS). For low-salt, detergent-free lysate

generation, cells were scraped into hypotonic Buffer A as described

in [20] supplemented with protease and phosphatase inhibitors

(CompleteH protease inhibitor cocktail (Roche/Mannheim),

1 mM sodium orthovanadate, 1 mM sodium fluoride). Lysates

were incubated with gentle agitation at 4uC for 30 min,

centrifuged at 10,0006g and supernatants were collected and

stored at -80uC. Protein concentrations were determined by

Bradford assay (Bio-Rad, Hercules, CA, USA). For isolation of

membrane or cytoskeletal components, T84 monolayers were

lysed in 1% sodium dodecyl sulphate (SDS)/PBS supplemented

with protease inhibitors as above. Isolation of equivalent quantities

of cell material was assured by adjustment to Triton X-100 protein

lysate concentrations of identically plated cell cultures. For

immunoprecipitation experiments, monolayers were extracted

using radioactive immunoprecipitation assay (RIPA) buffer

(100 mM NaCl, 24 mM Tris-Cl, 1% (vol./vol.) NP-40, 0.5%

sodium deoxycholate, 0.1% SDS) supplemented with CompleteH
protease inhibitor cocktail, sodium orthovanadate and sodium

fluoride). Four hundred mg of clarified cell lysates were incubated

in 2 mg/ml anti-E-cadherin antibody overnight at 4uC with gentle

agitation. Immune complexes were isolated by incubation with

EZ-link protein A-agarose beads (Sigma) at 4uC for 90 mins,

followed by two washes in RIPA buffer and one wash with PBS.

Immune complexes were eluted with 2X Laemmli buffer and set

aside for immunoblotting. Protein lysate immunoblotting was

performed by addition of 20 mg of lysates to Laemmli buffer,

which were subsequently boiled and resolved on 8% SDS-PAGE.

Separated proteins were blotted to Immobilon nitrocellulose

membranes (Millipore), and blots were blocked at room temper-

ature for 1 h in 5% non-fat milk/wash buffer (0.15% Tween-20/

Tris-buffered saline (TBS/T)). Primary antibodies (see Results)

were incubated in 1% bovine serum albumin/TBS/T (for

phosphoprotein analysis) or 5% non-fat milk/TBS/T (total

proteins) overnight at 4uC with gentle rocking. Blots were washed

three times in TBS/T and species-appropriate, HRP-conjugated

secondary antibodies were applied with gentle rocking for 1 h at

room temperature. Blots were washed, subjected to chemilumi-

nescence (Western LightningH PLUS, PerkinElmer, Waltham,

MA, USA) and subsequently exposed to Kodak XB-1 film

(Eastman Kodak, Rochester, NY, USA).

Densitometric quantification of phospho-E-cadherin and ubiqui-

tinylated-E-cadherin chemiluminescencewas performed by analysis

of 16-bit JPEG blot images with Image J (version 1.45, NIH open

access software, W. Rasband). Measurement was conducted on

three replicate experimental immunoblots. Levels of phospho-E-

cadherin or ubiquitinylated-E-cadherin were normalized to total E-

cadherin immunoprecipitated per sample, and measurements

presented as relative ratios compared to non-stimulated control
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(scored as a value of ‘1’). As controls, input lysate levels of E-cadherin

were assessed and actin levels from unbound, or flow-through lysate,

were also verified.

Immunofluorescence Microscopy
T84 cells were plated (36105 cells/ml) onto glass coverslips in

12 well culture plates and grown to 70% confluent, at which time

IFNc6PP1 (125 nM) was added for 48 h. Coverslips were washed

three times in 4uC PBS, fixed in 4% paraformaldehyde (PFA),

washed three times in PBS and then blocked with 10% goat serum

for 1 h at room temperature. Monolayers were then incubated for

24 h at 4uC with mouse anti-E-cadherin (1:350) or anti-ZO-1

(1:100) antibody in PBS containing 10% goat serum and 0.1%

Tween. Following three washes with 1X PBS, monolayers were

incubated for 1 h at room temperature with AlexaFluor 488 goat

anti-mouse secondary antibody (1:500). DAPI (1:500) was added

for 1 min followed by 2 washes with 1X PBS, and coverslips were

mounted onto slides with Fluorosave (Calbiochem), allowed to dry

and stored in dark at 4uC. For visualization, slides were analyzed

using an Olympus 4100BX epifluorescence microscope (Olympus)

using the 40X objective lens: regions of monolayer were randomly

selected based on DAPI-identification of nuclei and then specific

immunofluorescence observed and images captured of that area.

Confocal laser scanning microscopy. For some experi-

ments, T84 cells were transfected with control, Fyn or Hakai

siRNA and seeded onto 6 mm2 filter supports at 16105 cells/ml.

Following 72 h, cells were either left untreated or stimulated with

IFNc for 48 h, and then washed and fixed as above. Subsequently,

cells were stained with anti-E-cadherin antibody or anti-occludin

antibody (1:350) then with appropriate AlexaFluor secondary

antibodies (1:500), mounted and images captured on an Olympus

FV1000 confocal scanning fluorescent microscope (40X objective).

Images were collected and analyzed using FV10-ASW2.1 imaging

software (Olympus). As described above, cell viability and

localization were verified by nuclear DAPI staining. Determina-

tion of plane depth for analysis of occludin and E-cadherin was

Figure 1. The Src inhibitor PP1 blocks IFNc -stimulated E-cadherin internalization but does not affect the focal loss of zonula
occludens-1 (ZO-1). T84 cells were grown on glass coverslips and stimulated with IFNc (10 ng/ml, 48 h)6the Src inhibitor PP1 (125 nM). Left
panels: immunofluorescence microscopy of epithelial monolayers probed with a C-terminal-specific anti-E-cadherin antibody showed IFNc caused
increased E-cadherin internalization (*), which was inhibited by PP1 co-treatment, whereas in contrast (right panels) the focal discontinuities in the
distribution of ZO-1 induced by IFNc (arrows) was unaffected by PP1 co-treatment. Images collected are representative of two independent
experiments each using replicate epithelial cell monolayers per treatment, the junctional pattern with E-cadherin reflects the more diffuse adherens
junction which is in contrast to the more localized tight junction and associated plaque proteins (i.e. ZO-1). Scale bar = 10 mm.
doi:10.1371/journal.pone.0038441.g001
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carried out using occludin-immunoreactivity as the indicator of the

apical aspect of the epithelial layer. For each captured image E-

cadherin was imaged 0.2 mm deeper than the z-plane slice selected

for occludin localization.

Cell Detachment Assays
T84 cells were seeded on 12 mm2 permeable filter supports as

described previously and grown to confluence and indicated by

TER$1000 V.cm2. Where indicated, cells were transfected with

control, Fyn or Hakai targeted siRNA. Control siRNA-

transfected cells were either left untreated or treated with

IFNc6125 nM PP1. Fyn and Hakai siRNA-treated T84 cells

were also stimulated with IFNc. Following 48 h cytokine

treatment, TER was measured, the cells washed twice with

1 ml of 1X PBS and incubated for 15 minutes at 37uC in 500 ml
serum-free PBS. Subsequently, epithelial monolayers were rinsed

gently by pipeting with PBS (ten passes per monolayer) and

detached cells were collected into 1.5 ml Eppendorf tubes, placed

on ice, and centrifuged for 2 min at 30006g. Cell number was

assessed in two ways: (1) cells were re-suspended in 100 ml PBS
and were deposited onto slides (50 ml/preparation) by Cytospin,

stained with Cresyl violet, and then counted at 206 magnifica-

tion on a bright field inverted microscope. Counts were made for

each filter-grown epithelial monolayer, with a minimum of

triplicate filters used per treatment condition; (2) cell number was

approximated by quantification of total protein from the lysis of

collected detached cells (using 100 ml RIPA buffer/filter collect-

ed) using the Bradford assay. Protein was measured according to

a standard concentration curve using bovine serum albumin and

results were plotted graphically as mg of detached cell protein

isolated per filter; cell detachment was plotted as a percentage of

detachment relative to non-stimulated control (which was

assigned a percentage value of 100).

Statistical Analysis
Quantitative data are presented as mean6standard error of the

mean (SEM), with n values given as the number of epithelial

observations from replicate experiments. Single group compar-

isons were performed using Student’s t test and multiple group

statistical analysis was by a one-way analysis of variance (ANOVA)

followed by pair-wise post-hoc statistics. For cell detachment

studies, sample sizes were: non-stimulated (control), n = 5; IFNc,
n = 6; IFNc+PP1, n= 5; IFNc+Fyn siRNA, n= 5; IFNc+Hakai,

n = 4. In all analyses a p,0.05 was accepted as a level of

statistically significant difference.

Results

E-cadherin Internalization is Increased Following IFNc
Treatment in a Src-dependent Manner
Previous research indicates that IFNc is a potent modulator of

intestinal tight junction form; however, relatively little attention

has focused on the role of IFNc in the regulation of the adherens

junction. IFNc has been reported to reduce surface expression of

E-cadherin in intestinal epithelial cells [21], but the intracellular

mechanism(s) responsible for this was not determined. Given our

data identifying a key role for the Src kinase Fyn in IFNc-evoked
increases in epithelial barrier function [8], we sought to determine

if Src activity was required for IFNc-evoked changes in E-cadherin

expression and localization in T84 epithelia. Initial studies used

epifluorescence microscopy to obtain a view of the global impact

of IFNc treatment on E-cadherin expression. Forty-eight hours

after IFNc treatment (10 ng/ml), there was a marked accumula-

tion of E-cadherin in cytosolic punctate structures and loss from

Figure 2. Increased solubilization of E-cadherin, p120-catenin
and beta-catenin by IFNc is Src-dependent. A) Representative
immunoblot showing differential solubility of E-cadherin, but not

IFNg Regulates Epithelial E-Cadherin
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the peri-junctional area, that was reduced by co-treatment with

the pan-Src inhibitor PP1 (Figure 1). As a comparison with tight

junction structure, a 48 h treatment with IFNc resulted in the

expected focal discontinuities in ZO-1 [21], that was unaffected by

PP1 co-treatment (Figure 1).

IFNc Treatment Stimulates Increased Adherens Junction
Protein Accumulation in a Soluble Cytoplasmic Isolate
E-cadherin typically localizes to a highly insoluble cellular

fraction enriched with cytoskeletal components. We hypothesized

that IFNc stimulation would provoke a release of E-cadherin and

interacting proteins from the cell membrane to the cytosol, where

it would be extractable under less stringent isolation conditions.

Lysis of equivalent-density cell cultures in either detergent-free,

hypotonic conditions (termed low-salt buffer) or 1% SDS buffer (a

highly disruptive, anionic detergent buffer) indicated that the

majority of E-cadherin remained insoluble in non-stimulated T84

cells (Figure 2A). Conversely, equivalent amounts of the tight

junction protein occludin were identified by immunoblotting of

extracts retrieved by the low-salt and SDS buffers. Analysis of T84

cell extracts obtained with the low-salt buffer revealed increased E-

cadherin after 6 h of IFNc treatment, indicative of movement out

of the membrane and into the cytosol (Figure 2B). Similarly, co-

immunoprecipitation experiments employing a monoclonal anti-

body raised against a C-terminal E-cadherin epitope revealed

increased amounts of detectable p120-catenin and beta-catenin,

two binding partners of the C-terminal domain of E-cadherin, in

the low-salt extract: suggestive of the E-cadherin/p120 catenin/

beta-catenin disengagement from the cell membrane. No detect-

able E-cadherin, p120 catenin or beta-catenin could be recovered

from control, non-immune IgG immunoprecipitated samples (data

not shown). Inhibition of Src kinases with PP1 (125 nM,

a concentration that targets Fyn) reduced the solubility of all

three proteins following IFNc stimulation. In contrast to low-salt

extracted conditions, immunoprecipitation of high-salt lysis buffer-

extracted E-cadherin showed a minor and insignificant increase in

protein levels of both E-cadherin and p120-catenin following IFNc
treatment (Figure 2C).

IFNc-stimulated Tyrosine Phosphorylation of E-cadherin
and p120 Catenin is Fyn-dependent
We subsequently focused on identifying potential mechanisms

responsible for the IFNc-evoked increase in E-cadherin solubility

(i.e. dissociation from the membrane). Studies of v-Src transformed

cell lines suggest that increased tyrosine phosphorylation of E-

cadherin results in its dissociation from the cell surface; while

p120-catenin phosphorylation has been shown to affect its ability

to stabilize membrane-bound E-cadherin [22]. Anticipating that

an increase in phosphorylation of total E-cadherin would reflect

the increased amounts of solubilised E-cadherin (Figures 1 and 2),

epithelial cell lysis was conducted using RIPA buffer followed by

SDS-PAGE and immunoblotting. IFNc treatment evoked a gen-

eral increase in tyrosine phosphorylation in T84 cells (Figure 3A).

Following 6 h of IFNc stimulation, there was increased tyrosine

phosphorylation of E-cadherin, as demonstrated by immunoblot-

ting of immunoprecipitated E-cadherin with the anti-phosphotyr-

osine antibody 4G10. Consistent with our observation of altered

E-cadherin solubility, the Src inhibitor PP1 treatment strongly

inhibited IFNc-stimulated E-cadherin phosphorylation (Figure 3B).

We had previously reported that use of PP1 at low concentrations

could exclude potential off-target inhibition of tyrosine phosphor-

ylation by receptor tyrosine kinases such as EGFR or by inhibition

of Janus kinases, and we showed that Fyn was a major Src family

member stimulated by IFNc in T84 cells [8]. Therefore, the effects

of Fyn siRNA upon E-cadherin phosphorylation were examined.

Consistent with the data from PP1, immunoprecipitates of E-

cadherin demonstrated reduced tyrosine phosphorylation follow-

ing IFNc treatment in the presence of Fyn siRNA as compared to

control siRNA-treated lysates (Figure 3C). Additionally, IFNc-
stimulated p120-catenin phosphorylation was also reduced in T84

cells treated with Fyn siRNA (Figure 3C). Consistent with the

results presented in Figure 2B and C, control (non-immune) mouse

IgG antisera did not immunoprecipitate E-cadherin, validating

immunoblot experiments (data not shown).

E-cadherin Ubiquitinylation is Stimulated by IFNc and is
Dependent upon Fyn and Hakai
Next we wanted to identify factors that may promote the

internalization of tyrosine phosphorylated E-cadherin. Research

examining the mechanisms of epithelial cell infection by the

enteric pathogen Listeria monocytogenes has indicated that the

internalization of E-cadherin may occur in part via ubiquitin-

dependent mechanisms. Here, we found increased ubiquitinyla-

tion in whole cell lysates at 6–24 h post-IFNc treatment

(Figure 4A). Immunoprecipitated E-cadherin from T84 cells

treated 24 h previously with IFNc was ubiquitinylated (Ub), but

this was only apparent in samples from epithelia in which

proteasome activity was inhibited by MG132 (Figure 4B).

Conversely, treatment of T84 cells with chloroquine, an inhibitor

of lysosomal activity, did not prevent the degradation of Ub-E-

cadherin induced by IFNc. As an indicator of chloroquine activity,

we observed a decreased amount of lysosomal-associated E-

cadherin fragmentation. Cleavage of lysosomal-targeted E-cad-

herin is evidenced by a marked E-cadherin C-terminal 30 kDa

peptide [23]. The lower panel of Figure 4B shows the soluble

cytoplasmic fragments of E-cadherin, including an approximately

85 kDa peptide fragment released by cleavage of the extracellular

domain and a 30 kDa fragment consistent with the size of the

lysosomal-generated E-cadherin peptide. IFNc-stimulated T84

cell lysates demonstrated greater levels of 30 kDa E-cadherin, but

less of the protein fragment was present in cell lysates from

IFNc+chloroquine treated cultures (Figure 4B). Additionally, only

Ub-E-cadherin, not ‘unmodified’ E-cadherin levels, were mark-

edly reduced by MG132. We then focused on candidate

ubiquitinylation mechanisms that could direct E-cadherin to the

proteasome for degradation. Hakai is a phosphorylation-de-

pendent RING-type E3 ligase with a reported specificity for E-

cadherin [24]. Hakai-mediated ubiquitinylation of E-cadherin is

Src-dependent and promotes the proteasomal degradation of E-

cadherin [24,25]. Thus, we sought to determine whether IFNc-
stimulated E-cadherin phosphorylation by Fyn was required for

Hakai mediated ubiquitinylation of E-cadherin. The upper panels

of Figure 4C presented ubiquitinylation immunoblotting from

RIPA-isolated T84 whole cell lysates. Irrespective of treatment,

whole cell ubiquitin levels were only slightly modulated. However,

from E-cadherin immunoprecipitates (shown in the lower panels)

occludin, in low-salt buffer compared to high salt-1% SDS lysis buffer. B)
E-cadherin is associated with p120-catenin and beta-catenin and
complex solubility is increased by IFNc (10 ng/ml, 6 h) treatment as
shown by SDS-PAGE of detergent-free (low-salt) lysates immunopreci-
pitated with anti-E-cadherin antibody. Inclusion of PP1 (125 nM) inhibits
increased solubilization of E-cadherin/p120-catenin/beta-catenin
caused by IFNc. Data shown are representative of three independent
experiments. C) Immunoprecipitation of E-cadherin and p120-catenin
following lysis in high-salt-containing buffer shows only marginal
increase in expression in the IFNc treated epithelia. IgH and actin are
included as loading controls.
doi:10.1371/journal.pone.0038441.g002
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Figure 3. IFNc-stimulated phosphorylation of E-cadherin and p120-catenin is reduced by PP1 and Fyn kinase siRNA. A) Time course
analysis reveals a generalized increase in tyrosine phosphorylation in T84 whole cell lysates treated with IFNc (10 ng/ml). B) Tyrosine phosphorylation
of E-cadherin following IFNc stimulation (6 h) was reduced by PP1 (125 nM) as demonstrated in a representative immunoblot of E-cadherin-
immunoprecipitated T84 cell lysates and quantified by densitometric assessment conducted on the result of three representative experiments. C)
Increased E-cadherin and p120 catenin tyrosine phosphorylation evoked by IFNc was reduced in cells in which Fyn expression (lowest panels) had
been knocked-down by siRNA. Actin and IgH are included as loading controls. Graph depicts densitometry analysis of phospho-E-cadherin
immunoblots from three experiments (mean6SEM; *, p,0.05 compared to control (Unstim) and IFNc+Fyn siRNA treated epithelia).
doi:10.1371/journal.pone.0038441.g003
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we observed that levels of ubiquitinylated E-cadherin following

24 h IFNc exposure were significantly increased. In contrast,

IFNc-stimulated T84 cells treated with Fyn siRNA demonstrated

a significant reduction of ubiquitinylation, consistent with a re-

quirement for tyrosine phosphorylation of E-cadherin prior to

ubiquitinylation (Figure 4C). Hakai co-immunoprecipitated with

E-cadherin following IFNc treatment, and this association was

reduced in Fyn siRNA-treated epithelia. We then assessed the

effects of Hakai siRNA upon ubiquitinylation of E-cadherin

(Figure 4D). Similarly to Fyn siRNA treatment, whole cell lysate

immunoblots (upper panels) showed marginal changes to overall

ubiquitinylation levels, but immunoprecipitation of E-cadherin

(lower panels) indicated an IFNc-stimulated increase in Ub-E-

cadherin. Hakai siRNA-treated T84 epithelia displayed signifi-

cantly reduced levels of Ub-E-cadherin following IFNc treatment.

Fyn- and Hakai-specific siRNA Reduce IFNc-stimulated E-
cadherin Internalization
Initial studies indicated that IFNc treatment of T84 epithelia

resulted in a relatively rapid internalization of E-cadherin

(Figure 2B), but what of the effects, if any, in a longer time-

frame? To address this, we used the proteasome inhibitor,

MG132, to prevent the degradation of E-cadherin and so enhance

its detection. When using low-salt lysis buffer, we found that the

levels of soluble cytosolic E-cadherin were still elevated 48 h after

IFNc-treatment and that this was substantially reduced by Fyn but

not control siRNA treatment of the epithelia (Figure 5A). This

contrasted with the detection of E-cadherin in T84 cell extracts

produced by lysis with a high-salt, Triton X-100-based buffer,

where only slight increases in E-cadherin protein were observed

following IFNc treatment relative to either controls or IFNc+Fyn
siRNA-treated epithelia (Figure 5A, lower panel). Consistent with

the effects of Fyn, Hakai siRNA reduced the IFNc-stimulated

solubilisation of E-cadherin (Figure 5B). Again, there was only

a modest increase in E-cadherin detected in Triton X-100, high

salt lysis buffer-extracted lysates of IFNc-treated T84 cells.

Figure 5C presents representative confocal immunofluorescence

images showing membrane distribution of E-cadherin and

occludin (images were collected at a consistent z-plane depth for

E-cadherin and occludin, based on the first observable occludin

immunoreactivity). Treatment with Fyn or Hakai siRNA reduced

the loss of adherens junction-localized E-cadherin following 48 h

of exposure to IFNc. Conversely, IFNc-stimulated disruption of

tight junctions, indicated by dissociation of occludin, was neither

affected by Fyn nor Hakai siRNA.

T84 Cell Dissociation Stimulated Agitation of IFNc-
Treated Monolayer is Inhibited by Fyn and Hakai siRNA
A key functional measure of E-cadherin stability is the integrity

of cell-cell contacts. The drop in TER that is consistently observed

48 h after IFNc-treatment (measured before the gentle flushing)

was unaffected by PP1 co-treatment or knock-down of Fyn kinase

or Hakai with siRNA (Figure 6A), which is consistent with the

inability of either treatment to prevent the disruption in the

pattern of the tight-junction protein occludin by IFNc (Figure 5C)

and the inability of PP1 to prevent the subtle changes in ZO-1

distribution (Figure 1). However, while the monolayer remained

intact it was more fragile as demonstrated by the substantial

increase in cell detachment evoked by a gentle, consistent flushing

with warm PBS which could mimic some aspects of shear stress or

fluid transit along the intestine. As shown both by enumeration of

detached cells (Figure 6B) and quantification of total protein in

cells collected from the culture medium (Figure 6C), PPI inhibition

of Src kinases significantly inhibited IFNc-stimulated cell de-

tachment, as did siRNA knock-down of Fyn kinase or Hakai in

T84 epithelia.

Discussion

The enteric epithelial layer is an important active participant in

mucosal immunity through the secretion of anti-microbial

peptides, promotion of oral tolerance and formation of a barrier

to the entry of lumen-derived material [1,26]. Epithelial injury can

contribute to the exacerbation of inflammatory responses and

affect the rate of restoration of homeostasis following infection,

potentially leading to prolonged inflammation [1]. Indeed,

disruption of the integrity of the gut epithelium (or its function)

is associated with chronic inflammatory diseases, such as Crohn’s

disease and ulcerative colitis [27]. In addition to the direct effects

of long-term injury to the epithelium, chronic inflammation can

contribute to the development of cancer, a relationship that is

increasingly recognized in the context of inflammatory bowel

diseases and colorectal cancer [28]. Thus, there is considerable

value in understanding the full impact of inflammatory signals

such as IFNc on the control of enteric epithelial cell-cell contacts.

The molecular and cellular mechanisms that program the gut to

remain in a chronic diseased state are poorly defined. IFNc is an

established immune effector molecule associated with intestinal

inflammation in humans and animal models. Aside from its key

function as an immune-stimulatory cytokine, in vitro study (and

a lesser number of in vivo observations [3,29]) indicate that IFNc
can significantly disrupt epithelial barrier function [30], thereby

potentially exacerbating inflammation by facilitating a breach of

the epithelial layer and entry of antigen and microbes into the

mucosa. Therefore, IFNc is of particular interest since elucidation

of the signal transduction pathways that promote immune function

as opposed to those which elicit alterations in cell-cell interactions

and decrease epithelial barrier function may uncover unique

targets for therapeutic intervention. Extensive research efforts are

revealing the molecular assembly of the epithelial tight junction,

the structure primarily responsible for restricting the movement of

material between adjacent cells, and how pro-inflammatory

cytokines, including IFNc, affect the tight junction [26,30,31].

Comparatively little attention has been directed towards assessing

Figure 4. Ubiquitinylation of E-cadherin stimulated by IFNc is inhibited by siRNA targeting Fyn kinase and Hakai. A) Representative
immunoblot showing a time-dependent increase in total ubiquitinylation induced in T84 epithelial cells treated with IFNc (10 ng/ml). B) Upper panels
demonstrate that treatment with the proteosome inhibitor, MG132 (500 nM), but not chloroquine (CQ, 5 mM; reduces lysosomal acidification)
prevents the IFNc-evoked degradation of E-cadherin as shown by the presence of ubiquitinylated E-cadherin. Lower panels show cytoplasmic
cleavage products of E-cadherin. Levels of the 30 kDa lysosomal fragment (arrowhead) were increased following IFNc treatment but were reduced in
IFNc+chloroquine-treated samples. C) Immunoprecipitated E-cadherin demonstrated ubiquitinylation following IFNc stimulation which was reduced
following Fyn siRNA. E3 ubiquitin ligase Hakai is co-immunoprecipitated with E-cadherin following IFNc stimulation but is reduced in Fyn siRNA
treated epithelia. Densitometric analysis (performed in triplicate) is shown below a representative immunoblot. Whole lysates (input) demonstrate
knockdown of Fyn by siRNA. D) Hakai siRNA inhibits E-cadherin ubiquitinylation; whole cell lysates indicate Hakai knockdown achieved by siRNA.
Densitometry is shown below a representative immunoblot (mean6SEM; *, p,0.05 compared to controls (Unstim) and IFNc+Fyn (or Hakai) siRNA
treated epithelia; actin and IgH are included as loading controls).
doi:10.1371/journal.pone.0038441.g004
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cytokine regulation of the adherens junction. Positioned directly

beneath the tight junction, the formation of the adherens junction

is considered as a critical forerunner to development of the tight

junction and hence epithelial monolayer formation.

Here, using a series of molecular analyses and the human T84

epithelial cell line (a model often used to define principles of the

control of epithelial permeability [32–34]), we have confirmed that

E-cadherin expression is affected by IFNc [21] and provide

evidence in support of a requirement for Fyn kinase in IFNc-
evoked loss of E-cadherin from the adherens junction. These data

add to growing awareness that Src-kinase, including Fyn, activity

affects the stability of E-cadherin at the cell surface: Src kinases

promote the phosphorylation of E-cadherin at C-terminal residues

associated with removal of E-cadherin from the cell membrane

Figure 5. Hakai siRNA inhibits IFNc-stimulated internalization of E-cadherin. Low salt, detergent-free lysis of MG132 (500 nM)-pretreated
T84 cells reveal that IFNc-stimulated (10 ng/ml, 48 h) internalization of E-cadherin is reduced in presence of A) Fyn and B) Hakai siRNA. High-salt
lysates do not demonstrate as dramatic an increase in solubility relative to low-salt lysis (lower panels). Data are representative of two experiments for
each lysis preparation. C) Confocal photomicrographs of immunofluorescent detection of E-cadherin and occludin localization. IFNc treatment
disrupts the pattern of E-cadherin (adherens junction) and occludin (tight junction) distribution, and treatment with Fyn kinase and Hakai siRNA
partially abrogates the displacement of E-cadherin but not occludin from the peri-junctional region. Data shown are representative of three
experiments for Fyn, two experiments for Hakai. Scale bar = 10 mm.
doi:10.1371/journal.pone.0038441.g005
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[35,36]; Src has been shown to regulate p120-catenin binding to

the juxtamembrane domain of E-cadherin, a critical cytoplasmic

region that mediates E-cadherin membrane localization [36]; the

E-cadherin binding partners, p120-catenin and beta-catenin, are

phosphorylated by Src kinases [19]; and p120-catenin, a factor

required for stable integration of E-cadherin into the cell

membrane, is phosphorylated by Fyn [37]. In addition, phos-

phorylation of p120-catenin facilitates the association of E3-like

ligase Hakai. Consistent with these findings, our data support

a model whereby IFNc causes removal of E-cadherin from the

epithelial surface via the mobilization of Fyn kinase and sub-

sequent targeting for degradation via the E3-like ligase, Hakai.

Thus, these novel data highlight an additional mechanism through

which epithelial cell-cell adhesion may be disrupted during

ongoing inflammatory reactions involving IFNc.
The impact of destabilization of the adherens junction on an

epitheliums barrier function once tight junctions have formed is

unclear [38]. Certainly TER is a direct reflection of the tight

junction as perseverance of E-cadherin did not ablate the ability of

IFNc to reduce TER; however, E-cadherin does provide a level of

cell-cell stability since its loss leads to a more friable monolayer.

Structural components of the tight junction, such as claudins and

occludin, cycle rapidly into and out-of the epithelial cell

membrane and are anchored to the cytoskeleton via adaptor

proteins, principally isoforms of zonula occludens (ZO) [39]. ZO-1

and the adherens junction proteins can interact and both play

important roles in establishing cell polarity [40], which is essential

for proper function of the enteric epithelium. For example, E-

cadherin can physically interact with polarity-promoting and

regulatory factors, such as the tumour suppressing phosphatase

PTEN [41,42] and Par3/Bazooka [43], respectively. Consequent-

ly reduced surface expression of E-cadherin may affect the

maintenance of the epithelial tight junction, the ability of

enterocytes to spread and heal a wound, and to restore a polarized

monolayer with the ability to vectorially transport electrolytes.

An intriguing alternative possibility is that IFNc-stimulation of

E-cadherin internalization might have a protective function. For

instance, the bacterial pathogen Listeria monocytogenes can use E-

cadherin as a receptor for entry into the enterocyte and hence

removal of E-cadherin from the adherens junction could limit L.

monocytogenes invasion [44].

Src-family kinases possess oncogenic properties: Src-mediated

destabilization of E-cadherin has been presented as a molecular

mechanism for malignancy in tissues including the colonic

epithelium [9,16,45] and emerging data suggest that Fyn kinase

participates in the malignant transformation of prostate epithelium

[13,46]. Further, though unrelated to its ubiquitin ligase activity,

Hakai may be considered an oncogenic factor via its ability to

modify RNA splicing [47]. Also, Hakai, C-terminal fragments of

E-cadherin, p120-catenin and beta-catenin have been localized to

the nucleus in in vitro cell systems [47,48]. So while focusing on

IFNc regulation of structural elements of the epithelial barrier we

should not overlook IFNc-Fyn-Hakai activity in the contexts of cell

signalling, gene regulation and cancer. As the field of inflamma-

tion-driven cancer (e.g. colorectal cancer) gains momentum we

speculate that IFNc regulation of E-cadherin and associated

signalling molecules, such as beta-catenin, is worthy of substantive

investigation and has the potential to yield key insights into the

regulation of the malignancy.

Figure 6. Increased cell detachment evoked by fluid shear in
IFNc-treated T84 epithelial cell monolayers is reduced by
siRNA knock-down of Fyn kinase and Hakai. A) Electrically
confluent T84 cell monolayers treated with IFNc (10 ng/ml, 48 h,
control siRNA) displayed the expected drop in transepithelial resistance
(TER) that was unaffected by PP1 (125 nM) co-treatment or by siRNA
knockdown of Fyn kinase or the E3-like ligase, Hakai. In contrast, cell
detachment from the monolayer caused by gentle fluid shear stress
evoked by IFNc, and assessed by (B) cell counts and (C) total protein
from suspended cells was statistically significantly reduced by PP1, and
to a lesser extent by siRNA targeting Fyn kinase or Hakai (measurement
of cell detachment as detected by amount of cellular protein from
washed cells (mean6SEM; n = 426 monolayer preparations from 2
experiments; * and #, p,0.05 compared to control (Unstim) mono-

layers and IFNc treatment (+ control siRNA), respectively; data are
representative of three experiments).
doi:10.1371/journal.pone.0038441.g006
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In conclusion, our data suggest the Src kinase Fyn acts as

a pivotal signal in specific aspects of IFNc control of epithelial

function. Not only is it central to the regulation of macromolecular

permeability [8], but via its affect on E-cadherin it can modify cell-

cell interactions, intracellular signalling pathways and possibly also

oncogenic processes as well. These effects contrast with the

accepted role of IFNc as an anti-cancer factor due to its activation

of anti-tumour cell types, namely cytotoxic T cells, macrophages

and natural killer cells [49]. Thus, we propose that Fyn kinase

could be exploited to inhibit many of the pathological effects of

IFNc on intestinal epithelial cells, and possibly epithelia in general.
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