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Purpose: Accurately segmenting breast tumors in ultrasound (US) images is a difficult problem

due to their specular nature and appearance of sonographic tumors. The current paper presents a

variant of the normalized cut (NCut) algorithm based on homogeneous patches (HP-NCut) for the

segmentation of ultrasonic breast tumors.

Methods: A novel boundary-detection function is defined by combining texture and intensity infor-

mation to find the fuzzy boundaries in US images. Subsequently, based on the precalculated bound-

ary map, an adaptive neighborhood according to image location referred to as a homogeneous

patch (HP) is proposed. HPs are guaranteed to spread within the same tissue region; thus, the statis-

tics of primary features within the HPs is more reliable in distinguishing the different tissues and

benefits subsequent segmentation. Finally, the fuzzy distribution of textons within HPs is used as

final image features, and the segmentation is obtained using the NCut framework.

Results: The HP-NCut algorithm was evaluated on a large dataset of 100 breast US images (50

benign and 50 malignant). The mean Hausdorff distance measure, the mean minimum Euclidean

distance measure and similarity measure achieved 7.1 pixels, 1.58 pixels, and 86.67%, respec-

tively, for benign tumors while those achieved 10.57 pixels, 1.98 pixels, and 84.41%, respectively,

for malignant tumors.

Conclusions: The HP-NCut algorithm provided the improvement in accuracy and robustness com-

pared with state-of-the-art methods. A conclusion that the HP-NCut algorithm is suitable for ultra-

sonic tumor segmentation problems can be drawn. VC 2012 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4718565]
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I. INTRODUCTION

Breast cancer is one of the most common malignancies in

women. Its incidence and mortality are on the top of the list

in female diseases.1 Early diagnosis and treatment are crucial

to improve the survival rate. X-ray mammography and ultra-

sonic examination have been widely used for early diagnosis

and treatment. Compared with mammography, ultrasonic ex-

amination has unique advantages in breast cancer detection

and classification because of its low cost and minimal ioniz-

ing radiation. However, due to its low-image resolution and

signal-to-noise ratio (SNR), the interpretation of ultrasound

(US) images is more difficult and highly dependent on expert

clinical experience. This setback entails the development of

computer-aided diagnosis (CAD) systems that can help

experts recognize abnormal regions in US images. As an im-

portant component of the CAD system,2 US image segmen-

tation has been the focus of extensive research recently.3–23

An intensive review was conducted by Ref. 2.

Manual segmentation is time consuming and varies from

case to case, so automatic or semiautomatic segmentation of

ultrasonic images is clinically desired. In the segmentation

of ultrasonic breast tumors, there are two types of difficulties

that should be considered:2–4,24,25 (1) The existence of inher-

ent artifacts, such as attenuation, shadows, speckle, and so

on, makes the tumor region less distinguishable in the image.

For instance, posterior acoustic shadowing usually presents a

black region below the tumor and tends to merge with the
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tumor region. The intensity inhomogeneity caused by attenu-

ation leads to blurry boundaries, and speckle noise seriously

decreases the SNR of the image. All these findings make the

segmentation of lesions more difficult.3–5,24 (2) Handling

tumor-like structures in images is difficult, e.g., glandular

tissue, Cooper’s ligaments, and subcutaneous fat,3,25 which

always present similar appearances to tumors and are hard to

differentiate from true lesions by traditional image features.

In this section, we will review the state-of-the-art algo-

rithms of US image segmentation and present motivations for

developing a novel algorithm to overcome current limitations.

I.A. Related work

Several approaches have been reported in the literature for

US image segmentation. These approaches can be roughly

categorized into three groups, namely, random field-based

methods, active contour-based methods, and normalized cut

(NCut) based methods.

Markov random field (MRF) based methods are used to

segment US images due to their capability of coping with

noise in images.5–7 For instance, Cheng et al.7 introduced a

MRF-Gibbs random field-based framework to segment breast

tumors in US images. To suppress noise, a four-neighbor

system with a newly defined local energy was adopted to cap-

ture the pixel correlations. Furthermore, the expectation–

maximization (EM) method was utilized to obtain optimal

parameters of the model. Unfortunately, the attenuation field

was not considered in this model. Xiao et al.5 presented a

combined maximum a posteriori (MAP) and a MRF model

to eliminate the effect of attenuation artifact. The attenuation

field and labels of image regions can be estimated simultane-

ously under this framework. However, the proposed model

seemed invalid in the case of severe artifacts, and the authors

pointed out that an accurate segmentation of the object of in-

terest cannot be guaranteed for some cases. The main limita-

tion of random field-based approaches is the difficulty of

integrating high-dimension image features aside from pixel

intensity into their segmentation framework, whereas inten-

sity feature is not sufficiently descriptive to distinguish the

lesion from the background due to the high amounts of arti-

facts in US images.

Active contour supplies another popular framework for US

image segmentation. According to the type of adopted image

features, the active contour models can be divided into region-

driven models8,9,13 and edge-driven models.10–15 For region-

driven models, energy function is constructed using the

region-based image features, i.e., some kinds of statistics of

the primary image features in a region. Liu et al.9 formulated

an energy function based on probability density functions of

intensities in lesions and background regions. The authors sug-

gested that a good segmentation could be obtained even if the

apparent edge between the target and background is missed.

Obviously, the larger region leads to more reliable statistics;

thus, it is more robust to the noise. However, the localization

capability of region-based features decreases along the

enlarged region and the accuracy of segmentation would be

affected. Alternatively, edge-driven models depend on edge-

based image features, i.e., local intensity gradients, outputs of

edge indicator, and so on. Traditional edge extraction methods

are commonly sensitive to noise, so appropriate denoising and

edge detection methods are usually necessary for edge-driven

models. For example, anisotropic filters for speckle noise

reduction and phase-based edge indicator functions were used

in Refs. 10 and 12 and Refs. 14 and 15, respectively. Chang

et al.10 took an anisotropic filter, a stick operation and an

automatic threshold method as the preprocessing steps. Subse-

quently, they applied active contour method to extract con-

tours of a breast tumor from US images and finally extended

their work to three dimensional case. Alternatively, Chang

et al.11 used stick operation followed by morphologic process

as preprocessing steps before applying active contour. In addi-

tion to noise, the intensity inhomogeneity caused by the

attenuation artifacts often occurs in US images. To overcome

this problem, Belaid et al.14 presented a phase-based level set

(PBLS) method to segment the left ventricle from US images.

In their approach, phase-based image features that are inten-

sity invariant were adopted. The results showed that PBLS is

robust to attenuation artifact and speckle noise and captures

the missing boundaries well. Gao et al.15 extended this work

to the segmentation of breast US images, by extracting phase-

based edge feature and then using it to calculate the general-

ized gradient vector flow. Their method achieved good tumor

segmentations but was tested on a limited dataset. In sum-

mary, region-based features and edge-based features have

their own advantages and disadvantages. A new feature-

extraction scheme that can combine region and edge informa-

tion together should supply more descriptive clues and would

benefit the segmentation of US images. Moreover, the

intensity-invariant nature of image features is an important

factor that should be taken into account emphatically. Liu

et al.13 presented a combined region and edge-based active

contour method where global information was extracted from

the original image for modeling tissues and edge information

was extracted from a denoised and edge-enhanced image for

capturing boundaries of breast tumors. This work can segment

breast tumors efficiently and automatically, however, did not

explicitly account for intensity-invariant nature.

The location and shape information of tumors are usually

introduced into the segmentation framework as priors to pre-

vent tumor-like structures from being erroneously merged

with the tumor region. For instance, Horsch et al.16,17 pro-

posed a breast lesion-segmentation method that can exclude

the subcutaneous fat from the lesion region by manually

defining the lesion center and subsequently cropping the top

part of the image. Madabhushi and Metaxas3 integrated em-

pirical domain knowledge, including shape, intensity, tex-

ture, and so on, into a deformable model to eliminate the

effects of gland tissue, subcutaneous fat, and shadowing on

the segmentation. In the previous works,3,16,17 the authors

showed that their methods can segment cysts, benign masses,

and malignant masses from US images.

Notably, as graph-based method, NCut,26,27 extensively

used for nature image segmentation,28,29 has been applied in

US image segmentation.18–20 NCut-based approaches mainly

include two steps. First, a weighted graph is constructed,
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where nodes of the graph correspond to image pixels, and

the weight of the edge reflects the similarity between two

joined nodes. A graph can be represented by a weight matrix.

Second, the image segmentation is performed by solving the

eigenvectors and eigenvalues of the weight matrix. This step

follows a partitioning criterion that maximizes the total simi-

larity within groups and minimizes the total similarity

between different groups. Using NCut-based approaches, an

image is usually segmented into several distinct regions

rather than the target and the background, and the pixels

have high similarity within each region. A priori knowledge

is usually introduced into the segmentation process through

manual interactions to obtain the complete target.29 As a

semiautomatic segmentation method, it has received signifi-

cant attention.20,30,31 Another way to separate the target

from the background is to combine multiple segmentation

methods. For example, Huang et al.21 used the graph-based

method as the initial contour estimation for active contour to

find breast tumor boundaries in US images. The biggest

innovation of NCut is that the similarity and the spatial rela-

tionship of pixels are taken into account simultaneously dur-

ing the segmentation. Through NCut, an optimal solution

can be calculated elaborately by solving the eigenvectors

and eigenvalues of the weight matrix. NCut is a very flexible

segmentation framework where appropriate image feature-

extraction methods and similarity metrics can be selected

according to the specific segmentation task. At the same

time, it is convenient to integrate priors into the framework

by simple manual interactions. These advantages motivate

us to develop a NCut-based method to segment tumors from

breast US images.

I.B. Our contributions

In the current paper, we present a novel semiautomatic

NCut-based method (referred to as HP-NCut) to segment

tumors from breast US images. Our methodology is novel in

the following ways:

(1) In Refs. 26–28 and 32 and 19 and 20, a fixed window

is used to extract local region-based image features.

Traditional fixed window-based feature extraction suf-

fers from the fact that the narrow window bears poor

statistical information and the wide window yields poor

boundary localization. Our goal is to overcome the cur-

rent tradeoff and propose a novel feature-extraction

scheme. To this end, we constructed a kind of adaptive

neighborhood, i.e., homogeneous patch (HP). The

boundary information is used to determine the shape

and size of HP, which guarantees that HP cannot spread

across the strong edges and is limited within the same

tissue region. Thus, the statistics of primary features

within the HP is more reliable in distinguishing different

tissues, and this helps to avoid including tumor-like

structures as part of the tumor region. Obviously, HP

plays an important role in improving the accuracy and

robustness in tumor segmentation.

(2) A new boundary-detection function is proposed to create

the boundary map for HP construction. Unlike traditional

edge detector methods, such as Sobel and Canny detec-

tors33,34 where the intensity gradient information is

mainly used for edge extraction, we incorporate the tex-

ture and intensity information into the detector function,

and the experiment shows that proposed boundary-

detection approach can find the fuzzy boundaries of the

target object in US images.

(3) In view of the importance of intensity-invariant features

for US image segmentation as described in Sec. I.A, the

outputs of intensity invariant-oriented filters bank are

adopted as primary features in the currently proposed

method. Based on these primary features, a texton-like

scheme is explored to describe the texture information.

Furthermore, each HP is considered as a fuzzy set, and

the fuzzy distribution of textons within the HP is used as

image feature for the segmentation. The proposed

feature-extraction scheme ensures the intensity-invariant

nature of the final-used features and has the capability of

coping with the inhomogeneity problems caused by

attenuation artifact in US images. Meanwhile, the

denoising property of the oriented filters is helpful to

suppress the speckle noise.

The presented method was evaluated on a database of 100

breast US images (50 benign and 50 malignant). The results

are promising and show that the current approach can seg-

ment breast tumors from US images accurately and efficiently

compared with other semiautomatic segmentation methods,

i.e., the well-studied interactive NCut tool of Yu and Shi29

and the recently published PBLS method of Belaid et al.14

The remainder of the current paper is organized as fol-

lows: Sec. II briefly describes the background of NCut and

introduces the HP-NCut algorithm. Experimental results are

presented and discussed in Sec. III. Finally, conclusions are

given in Sec. IV.

II. METHODS

II.A. Background of normalized cut

The HP-NCut algorithm is based on NCut. In this section,

we briefly describe the principle of NCut. NCut is an unsuper-

vised segmentation method proposed by Shi and Malik26,27

that casts image segmentation as a graph-partitioning prob-

lem. In the NCut framework, a given image is represented as

a weighted undirected graph G¼ (V,E,W), where V is the set

of nodes and E is the set of edges connecting the nodes.

W¼fw(p, q)g is a weight matrix, and one of its elements,

w(p, q), is a function of the similarity between the nodes p
and q, and usually defined as

wðp;qÞ¼ e
�
kFðpÞ�FðqÞk2

2

r2
I

� e
�
kXðpÞ�XðqÞk2

2

r2
x ifkXðpÞ�XðqÞk2<r

0 otherwise

;

8><
>: (1)
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where F(p) is the image features of the node p and X(p) is

the spatial location of that node. rI and rX are two positive

scaling factors that determine the similarity in the feature

and spatial domains, respectively. Meanwhile, k�k2 repre-

sents the Euclidean metric and r is a threshold. When the

spatial distance between nodes p and q is larger than r,
w(p,q) is set as zero.

In the graph theory, a graph can be partitioned into dis-

joint sets A and B, satisfying A | B¼V, A \ B¼U. The

degree of similarity between these two sets is commonly

called cut26,27

cutðA;BÞ ¼
X

p2A;q2B
wðp; qÞ: (2)

The above graph partitioning can be achieved by minimizing

the cut function. To find a balanced partition, the disassocia-

tion measure was defined as26,27

NcutðA;BÞ ¼ cutðA;BÞ
assoðA;VÞ þ

cutðA;BÞ
assoðB;VÞ ; (3)

where A represents the set of all pixel nodes, asso(A, V) and

asso(B, V) are defined similarly as the total connection from

nodes in A to all nodes in the graph.

To maximize the total dissimilarity and total similarity

between and within sets A and B, Eq. (3) can be transformed

into the following generalized eigensystem:

ðD�WÞx ¼ kDx; (4)

where D denotes a diagonal matrix with diagonal elements

Dðp; pÞ ¼
P

q wðp; qÞ and k and x are the eigenvalue and the

eigenvector, respectively.

As mentioned in Sec. I, NCut supplies a flexible segmen-

tation framework where the appropriate image feature-

extraction method can be selected according to the specific

segmentation task. The current study mainly focuses on a

novel HP-based feature extraction, which is very different

from the fixed window-based feature extraction usually

adopted by traditional NCut-based methods.

II.B. Overview of the proposed HP-NCut algorithm

The HP-NCut algorithm consists of five components,

namely, primary feature extraction, boundary detection, HP

construction, HP-based feature extraction, and manual inter-

action. The flowchart of the method is illustrated in Fig. 1,

and the corresponding implementations are briefly described

in the succeeding paragraphs.

First, by fully considering the necessity of the intensity-

invariant nature of the features for US image segmentation,

the oriented filter is adopted for the primary feature extrac-

tion. The outputs of the oriented filter bank are used to cap-

ture the intensity variation at local points, and then, the

texture information is represented using a texton-like scheme.

These two types of features are all intensity invariant and

treated as primary features for the following boundary detec-

tion and segmentation. Second, a boundary-detection method

is proposed to find the potential boundaries of the target

objects. Here, the intensity and texture features are combined

by introducing a novel boundary-detection function. Third,

based on the precalculated boundary map in the previous

step, a search algorithm is proposed for the HP construction.

In this step, the adaptive neighbor of each pixel, which is spa-

tial homogeneous, is determined. Fourth, the histograms of

the textons within the HPs are calculated as final image fea-

tures for the segmentation. Last, a rectangle region of interest

(ROI), which includes the tumor region in the image, is inte-

grated into the algorithm by manual interaction. Final seg-

mentation is obtained using the NCut framework. The details

of each component are described in the rest of this section.

II.C. Primary feature extraction

For breast US images, texture information is associated

with internal echo pattern and can provide important clues

for distinguishing different tissues. Accordingly, the texture

features are used in the proposed methods as primary fea-

tures for boundary detection and segmentation.

To describe the local texture information, a variable of fil-

ter banks, such as Gabor filter bank23 and oriented filter

bank,28,35 are available. In the current research, the outputs

of the oriented filter bank are used for its simplicity and

effectiveness. The used filter bank is the same as the pa-

per.28,35 This filter bank contains a set of even-symmetric

and odd-symmetric filters at six orientations, coupled with a

center-surround filter. The even-symmetric filter is a second

derivative of a two-dimensional Gaussian function, and the

odd-symmetric one is its Hilbert transform. The center-

surround filter is a difference of Gaussians (DoG). Mathe-

matically, three types of filters can be formulated as follows:

FIG. 1. Flowchart of the HP-NCut algorithm.
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f e
ht
ðx; yÞ ¼ d2

dy2

1

C
exp

~y2

r2
y

 !
exp

~x2

r2
x

� � !
;

f o
ht
ðx; yÞ ¼ Hilbertðf e

ht
ðx; yÞÞ;

f DoGðx; yÞ ¼ 1

C
exp

x2 þ y2

r2
x

� �
� exp

x2 þ y2

r2
y

 ! !
; (5)

where ~x¼ x cosht� y sinht, ~y¼ x sinhtþ y cosht, ht¼ np=N,

n¼ 0, 1, …, N� l, and N is the total number of orientations.

In the current paper, we use the same parameter settings as

Ref. 35, where rx:ry¼ 3:1, C¼ 2, N¼ 6, and rx¼ 0.7% of

the image diagonal. We have tested other parameters and

found that the current setting yields the best results. The

filters defined by Eq. (5) are plotted in Fig. 2(a).

By convolving a breast US image I with the above filter

bank, for one pixel located at (x,y), we can get a feature vec-

tor Ffilter(x,y), as follows:

Ffilterðx;yÞ¼fFo
ht
;Fe

ht
;FDoGg; ht¼np=6;n¼0;1;…;5; (6)

where

Fo
ht
ðx; yÞ ¼ ½I � f o

ht
�ðx; yÞ;

Fe
ht
ðx; yÞ ¼ ½I � f e

ht
�ðx; yÞ;

and

FDoGðx; yÞ ¼ ½I � f DoG�ðx; yÞ;
where Fo

ht
ðx; yÞ, Fe

ht
ðx; yÞ, and FDoGðx; yÞ represent the out-

puts at location (x,y) by convolving the image with the filters

f o
ht

, f e
ht

, and fDoG, respectively. Notably, in the current imple-

mentation, six orientations are considered; thus, Fo
ht
ðx; yÞ and

Fe
ht
ðx; yÞ are vectors containing six elements, respectively.

Accordingly, Ffilter(x,y) is a vector that lies in a 13D feature

space.

Building the statistics of features directly in a high-

dimension feature space is difficult. On the other hand, tex-

ture usually has spatially repeated properties, so it is possible

to represent the texture feature vectors approximately using

some conspicuous prototype vectors.28 In the proposed

method, we introduce a texton-like scheme to obtain a con-

cise representation of the texture feature. First, the feature

vectors are clustered into a small set of groups using K-means

algorithm. Each group center is called a texton, and all

textons compose a dictionary. Then, each feature vector is

mapped to the nearest texton and assigned a label according

to the precalculated dictionary, i.e., K group centers. Thus, a

high-dimension feature vector can be represented just by a

label, which is convenient in the local distribution estima-

tions of textons. The difference between the currently pro-

posed scheme and the traditional texton scheme28 is that we

use only the feature vectors extracted from the image under

segmentation rather than an image dataset for training to cre-

ate the dictionary. This setup makes the created dictionary

more image-specific, namely, with the same dictionary size,

an image-specific dictionary makes a better representation of

the feature vectors of the image under segmentation than a

universal dictionary.

The proposed feature-extraction scheme offers several

advantages. First, the responses of the oriented filter band

reflect intensity variation along a specific direction, thus, it is

intensity invariant. This attribute is very important in US

image segmentation. Furthermore, the multiorientation rep-

resentation of the filter bank is capable of edge orientation

detection and benefits the subsequent boundary detection.

Second, the filtering operation can suppress the effect of

noise in images. With the Gaussian factor in the filter bank,

the noise in US images, such as speckle, can be smoothed or

removed.22

An experiment was performed to test and compare the

texton maps derived from image-specific dictionary and uni-

versal dictionary. Figure 2(b) illustrates a breast US image

of a malignant tumor that has heterogeneous internal echo.

The texton maps created using universal dictionary and

image-specific dictionary are shown in Figs. 2(c) and 2(d),

respectively. In Figs. 2(c)–2(e), different gray colors are

assigned to textons for better display, and a zoom-in view

of the region inside the square in Fig. 2(d) is shown in

Fig. 2(d). In this example, the number of texton channel,

K¼ 20 is used. Our training dataset contained 20 breast US

images to construct a universal dictionary. From Figs. 2(d)

and 2(e), we can see that the texton map derived from

image-specific dictionary can accurately capture the internal

echo pattern of the tumor. In fact, for most breast US images,

our experiments in Sec. IV show that the extracted texton

feature is sufficient in characterizing image textures. In

FIG. 2. The illustration of filter bank and texton map (a) first to sixth rows: even f e
ht

and odd f o
ht

filter bank consisting of one scale and six orientations; seventh

row: center-surround filter fDoG. (b) The original image. (c) The texton map derived from a universal dictionary. (d) The texton map created using the proposed

approach. (e) Zoom-in view of the region inside the white square outlined in (d). The ground truth tumor boundary indicated in dark color (green in online ver-

sion), is overlaid to all texton maps.
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addition, from Figs. 2(c) and 2(d), we can see that two texton

maps derived from image-specific dictionary and universal

dictionary, respectively, present the visually similar appear-

ances, which indicates that the image-specific dictionary is

compared powerful to universal one for capturing the texture

information of images at least. Furthermore, the root mean

square errors (RMSEs) between the original feature vectors

and their corresponding words in the dictionaries of 20

images are calculated to quantify the accuracy of the two

dictionaries for representation of the original feature vectors.

The results show that, compared to universal dictionary, the

image-specific dictionary improves the RMSE from 0.0503

to 0.0488 with 2.83% gains. These results reveal that using

the proposed approach leads to the improved feature-

extraction behavior.

II.D. Boundary detection

An appropriate boundary map that can accurately capture

the boundary of the target object is necessary for the con-

struction of the HP. The boundaries of tumors in US images

are usually fuzzy, so intensity gradient-based edge detectors,

such as the Sobel detector, become invalid [Fig. 4(a)]. Previ-

ous reports19,22,23,36 indicate that the abrupt changes of tex-

ture and intensity play critical roles for US image edge

detection. Thus, in the proposed method, the texture features

described in Sec. III.A and the oriented energy (OE) captur-

ing local intensity variation28,35 are integrated into a novel

boundary-detection function and used to find the boundaries

of the tumors in US images.

II.D.1. Detection function

Suppose there exists a boundary at a point, and its neigh-

borhoods are divided into two subregions along the bound-

ary, the image information (intensity and texture) should

have big differences between these two subregions. These

differences can indicate the strength of the boundary. In the

proposed method, a detection function is introduced to mea-

sure these differences.

At a pixel point p in an image, its circular neighborhood

NP with radius r1 is selected and divided along the direction

ht. The left and right half-disc neighborhoods are denoted as

Lp and Rp, respectively (Fig. 3).

Naturally, the boundary-detection function is designed

by comparing the energies associated with the image

information of two half-disc neighborhoods. Accordingly,

the boundary-detection function is defined as

Eðp; htÞ ¼
PK

k¼1 jEL
k ðp; htÞ � ER

k ðp; htÞj
part I

þ

PK
k¼1

ðEL
k ðp; htÞ � ER

k ðp; htÞÞ2

EL
k ðp; htÞ � ER

k ðp; htÞ
part II

; (7)

where E(p,ht) is the boundary energy at p with the direction

ht. The larger value of E(p,ht) indicates the stronger bound-

ary in the direction ht. Two elements, EL
k ðp; htÞ and ER

k ðp; htÞ,
represent the image energies of Lp and Rp at the kth texton

channel, respectively. Texton channels refer to the collection

of discrete pixel point sets with the same texton labels. Part I

of Eq. (7) is the Manhattan distance, whereas part II is the v2

distance for measuring the difference between the energies

of Lp and Rp. The combination of these two types of distance

metrics is expected to improve the robustness of the pro-

posed function.

In Refs. 28 and 35, the distributions of textons, i.e., the tex-

ton histograms within Lp and Rp, are used as energies directly.

Accordingly, EL
k ðp; htÞ and ER

k ðp; htÞ are formulated as

EL
k ðp; htÞ ¼ gL

k ðp; htÞ ¼
P

P02LP
dðTðp0Þ; kÞ

countðLPÞ
(8)

and

ER
k ðp; htÞ ¼ gR

k ðp; htÞ ¼
P

P02RP
dðTðp0Þ; kÞ

countðRPÞ
; (9)

where T(p0) refers to the texton label of a pixel point p0.
Count (LP) and count (RP) are the numbers of pixel points in

LP and RP, respectively. d(�) is the Kronecker’s delta func-

tion given by

dðTðp0Þ; kÞ ¼ 1 if Tðp0Þ ¼ k
0 otherwise

�
: (10)

In the proposed method, besides the above-mentioned tex-

ture information, abrupt intensity changes are considered as

well. Thus, the new energies are defined as

EL
k ðp; htÞ ¼ gL

k ðp; htÞ � dkðp; htÞ (11)

and

ER
k ðp; htÞ ¼ gR

k ðp; htÞ � dkðp; htÞ: (12)

The new terms dk(p, ht) are designed to integrate the effects

of intensity changes into the energies. The definition of

dk(p, ht) is mainly based on the following assumption: For a

certain direction, once the abrupt intensity change occurs

only at a candidate point but seldom appears in its neigh-

borhood, there exists a boundary with high probability. In

other words, the discontinuity of OEht
can provide useful

clues for boundary detection. Based on this idea, dk(p, ht)

are defined in following way.

First, OE is introduced to capture intensity changes in the

images. Given an image I, OE can be expressed as

OEht
¼ ðI � f e

ht
Þ2 þ ðI � f o

ht
Þ2; (13)FIG. 3. An illustration of partitioning neighborhood.
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where the filters f e
ht

and f o
ht

are defined in Eq. (5). Intensity

edges in direction ht can be captured by OEht
, with OEht

being strongly positive.28,35

Second, for a point p, the average OEht
of its neighbor-

hood Np with respect to the kth texton channel is defined as

AOEk
ht
ðpÞ ¼

P
P02Np

OEht
ðp0ÞdðTðp0Þ; kÞP

P02Np
dðTðp0Þ; kÞ ; (14)

where d(T(p0), k) is defined in Eq. (10).

Finally, dk(p, ht) is formulated as

dkðp; htÞ ¼ jOEht
ðpÞ � AOEk

ht
ðpÞj: (15)

Actually, in Eq. (15), dk(p, ht) is designed to measure discon-

tinuity of OEht
by comparing current point p and its neigh-

borhood. Larger dk implies stronger boundary, accordingly,

it is reasonable to assume that the texton channels associated

with higher dk should be emphasized by adjusting their cor-

responding weights according to Eqs. (11) and (12).

Finally, to extract the final result, oriented nonmaximal

suppression can be used.28 Mathematically, the final bound-

ary map can be given as

E�ðpÞ ¼ maxfEðp; htÞjt ¼ 1;…; 8g: (16)

E* is normalized to 0–1.

The Sobel operator and texton histogram-based

approaches28,35 and the proposed approach were tested on a

US image with malignant tumor [Fig. 4(a)]. The results are

shown in Fig. 4. As can be seen, the Sobel operator using the

default parameter setting performed poorly. A large number

of tumor boundaries were missed and there were spurious

edges inside the tumor region. The texton histogram-based

approach yielded better result, but failed in some regions, for

example, the region outlined by a red rectangle in the images.

In addition, spurious edges inside the tumor region still

remained. The proposed method performed best among these

three methods in that it correctly extracted tumor boundary

while eliminating spurious detection in the tumor region.

II.E. HP construction

As described in Sec. I, for the traditional region-based

image feature-extraction schemes,26–29,32 fixed neighbor-

hood windows with the same size and shape are usually

used to gather statistical information around the candidate

points. The drawback of fixed window-based feature

extraction is that the narrow window bears poor statistical

information, whereas the wide window yields poor bound-

ary localization. The larger window corresponds to the

stronger ability to hold reliable information. Conversely,

the smaller window leads to the stronger ability to localize

boundary. Obviously, fixed window-based feature-extrac-

tion scheme is not an appropriate way to handle this trade-

off problem. In this section, we propose the concept of HP,

i.e., a novel type of adaptive neighborhood consisting of

similar neighboring pixels. The boundary map described in

Sec. III.B is used to construct the HPs, which guarantees

that a HP cannot spread across the strong boundaries and is

limited within the same tissue region. Thus, the statistics of

primary features within the HPs is more reliable in distin-

guishing different tissues and benefits the subsequent seg-

mentation. The details of HP construction are discussed in

the rest of this section.

The basic idea of the construction of HPs is to look for

the homogeneous pixels in terms of a boundary map in a

large search window centered on the current pixels. At the

same time, the system demands these pixels compose a con-

nective region that includes the current pixels. The construc-

tion of HP includes three stages, namely, search window

determination, energy reassignment, and HP determination.

II.E.1. Search window determination

The square windows are used to search for the homogene-

ous pixels in the proposed method. For a pixel point p at

location (x, y), the search window is defined as

wp ¼ fp0ðu; vÞ : x� R � u � xþ R; y� R � v � yþ Rg;
(17)

where R is the size of window. Figure 5 gives some demon-

strations of the search windows, where the yellow and blue

squares represent the search windows for some pixels.

II.E.2. Energy reassignment

The boundary energy calculated according to Eq. (17)

needs to be reassigned for every point in the search window

to guarantee that a HP cannot spread across the boundaries.

FIG. 4. Boundary map comparison of different methods. (a) Original image. (b) Boundary map obtained by Sobel operator. (c) Boundary map obtained using the

texton histograms. (d) Boundary map obtained by the proposed approach. The ground truth tumor boundary indicated in light color (green in online version), is

overlaid to all boundary maps. Three dark color (red in online version) rectangles are drawn to indicate the differences among the detected boundary maps.
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Given a point p0 within wp, i.e., p0 [ wp, its maximal bound-

ary energy with respect to point p, noted as Ep
maxðp0Þ is calcu-

lated and assigned to point p0. The definition of Ep
maxðp0Þ is

similar to that in Ref. 28 and formulated as

Ep
maxðp0Þ ¼ maxq2Lðp;p0Þ E�ðqÞ; (18)

where L(p,p0) represents the set of points lying on the line

pp0 between the pixel points p and p0, and E* is the boundary

energy defined in Eq. (16). Ep
maxðp0Þ represents the maximal

boundary energy that needs to be conquered when the HP

spreads from points p to p0. Accordingly, a point with a

higher Emax should have lower potential to be incorporated

into the HP.

II.E.3. HP determination

HP is considered a fuzzy set, where each point in the

search window belongs to a HP according to a fuzzy

membership. The membership reflects the probability of

being integrated into the HP for a point, and is defined as

follows:

mpðp0Þ ¼ 1� EP
maxðp0Þ; p0 2 wp: (19)

Reasonably, a point p0 with higher mp(p0) which associates

with a lower EP
maxðp0Þ has a higher potential to belong to the

HP of point p, and vice versa. Furthermore, to reduce the

computation cost for the following feature extraction, a

threshold method is introduced to remove the points that have

low memberships from the HP. Given a threshold s, the points

with memberships lower than s are removed from the HP

directly. Mathematically, HP denoted as Xp is defined below.

Definition I (HP):
Given a point, its HP Xp is

Xp ¼ fðp0;mpðp0ÞÞ : mpðp0Þ � s; p0 2 wpg: (20)

FIG. 5. Examples of HPs on a breast US image. Eight search windows located in smooth region (outlined with light color (yellow in online version) squares)

or nonsmooth region (outlined with dark color (blue in online version) squares) are listed in a test image. The specified area inside each search window is

zoomed and displayed above the images. The corresponding HPs are displayed on the right and shown in color-coding. Along with the increase of the member-

ship, the color varies from blue to darker red as shown by the color bar displayed at the top of the figure (available in online version).
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HPs have something similar to the superpixels37–39 in that

they are both representative forms of homogeneous and

spatially coherent regions. However, the main differences

between the superpixels and HPs include the following

aspects. First, HP is an adaptive neighborhood system

according to image location for the image feature extrac-

tion, and HPs of adjacent pixels usually have the overlap.

Otherwise, a superpixel is a collection of the adjacent pixels

that have the similar intensity, and superpixels have no

overlap with each other. Second, HP imposes the soft ho-

mogeneity constraint during its construction, which is fun-

damentally different from the superpixel. Namely, a HP is

defined as a fuzzy set of pixels rather than the traditional set

as the superpixel.

Some examples of HPs are shown in Fig. 5. The previ-

ously constructed HPs are adaptive to different regions

with varying sizes and shapes. In the smooth regions, the

sizes of the HPs are relatively large because there are more

homogeneous points in the search windows. In the non-

smooth regions, the sizes of the HPs are relatively small

as there are more boundary points in the search windows.

In addition, the homogeneities in the large regions are

maintained. At the same time, the small-scale details are

preserved.

II.F. HP-Based feature extraction

A novel feature-extraction scheme is proposed in this sec-

tion. In the proposed methods, the distributions of textons

within HPs are used as the final features for the segmenta-

tion. To obtain the features at one point, only the textons

located in its HP rather than the fixed windows of the tradi-

tional scheme are accumulated to build the texton histogram.

In addition, the fuzzy memberships of points are used to

adjust the importance of textons for the histogram calcula-

tion. The points with higher membership in HP play a more

important role for histogram calculation. Accordingly, a HP-

based texton histogram can be defined as

hpðkÞ ¼
P

p02Xp
mpðp0ÞdðTðp0Þ; kÞP

p02Xp
dðTðp0Þ; kÞ ; k ¼ 1;2; � � � ;K; (21)

where hp(k) is the kth bin of the histogram and d(T(p0),k) is

defined in Eq. (10). This histogram which describes the

fuzzy distributions of the textons within a HP is called fuzzy

histogram in current paper.

v2 distance is introduced to measure the differences

between the features. The difference between image features

extracted from points p and q can be defined as

dðp; qÞ ¼ 1

2

XK

k¼1

hpðkÞ � hqðkÞ
� �2

hpðkÞ þ hqðkÞ
: (22)

Finally, the weight function of NCut described in Sec. II can

be rewritten as

wðp; qÞ ¼ e
�

dðp; qÞ
r if kXðpÞ � XðqÞk2 < r

0 otherwise

:

8<
: (23)

As described above, an attractive aspect of the HPs is that

image features extracted from them are more discriminative

in distinguishing different tissues in US images. We give an

example to illustrate this point. A test was performed in a

breast US image with a malignant tumor, as shown in

Fig. 6(a). Point p in the normal tissue region and point q in

the tumor region were selected for comparison. The texton

histograms of the fixed round neighborhoods (outlined in Fig.

6(a) with white circles) and HPs [as shown in Figs. 6(b) and

6(c) with yellow color] of these two points are calculated and

displayed in Fig. 7. As can be seen, the large overlap of these

two round neighborhoods makes their texton histograms very

similar, as illustrated in Fig. 7(a). This finding implies that by

relying on such texton histograms, points p and q would have

been mistakenly assigned to the same object, i.e., either tumor

or normal tissues. Conversely, two HPs of p and q overlap

less. Accordingly, the texton histograms computed based on

the HPs [Fig. 7(b)], show a significant difference, and there-

fore, can help to separate p and q effectively.

II.G. Manual interaction

As described in Sec. I, prior knowledge is very helpful in

US image segmentation. The location and shape information

of the tumor are usually integrated into the segmentation

framework to prevent tumor-like structures from being erro-

neously merged with the tumor region. In the proposed

method, the location of the tumor is introduced into the

NCut by manual interaction. Manual determination of the

ROI is required using a rectangle in the image. The ROI as

spatial information is a region that contains the breast tumor,

as shown in Fig. 8(a). Automatic segmentation only func-

tions in the ROI. By setting the number of categories as 2,

the proposed NCut-based algorithm can give the final seg-

mentation directly.

FIG. 6. An illustration of the major challenge of using textures for successful segmentation of tumor from breast US images. (a) The two white arrows indicate

two points located in the tumor and normal tissue regions, respectively. The white circles represent their round neighborhoods. (b) The HP of point p. (c) The

HP of point q.
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III. RESULTS AND DISCUSSIONS

III.A. Data acquisition

The clinical study was carried out at the Shanghai Sixth

People’s Hospital in China. Patients who received biopsy or

surgery were recruited in the study. Informed consent to the

protocol was obtained from all patients. Patient information

about age, menopausal status, number of pregnancies or year

of first full-term pregnancy, and personal and family history

of breast cancer were acquired from a self-reporting patient

FIG. 7. For the points p and q in Fig. 6, two texton histograms were computed over: (a) the fixed round neighborhoods and (b) the HPs.

FIG. 8. The segmentation of a breast US image with irregular shape and posterior acoustic shadowing. (a) The original image with a rectangular ROI placed

by user. (b) Manual segmentation. The segmentation results using (c) HP-NCut, (d) Interactive-NCut, and (e) PBLS after 380 iterations. (f) The edge detection

result of PBLS (the intensity value ranges from 0 to 1, with the values close to one indicating an edge pixel and the values close to zero indicating a back-

ground pixel).
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history datasheet. A radiologist determined whether the

breast mass is benign or malignant according to surgery and

pathological examinations or biopsy.

In the present paper, a set of breast US images of Chinese

women was built. The dataset contained 100 tumors, includ-

ing 50 benign and 50 malignant tumors. Histologically, most

of the benign tumors were fibroadenomas (FA) and most

malignant tumors were invasive ductal carcinomas (IDCs).

Table I presents the pathological type of each tumor. The

average tumor size was 31.6 mm (median size, 30 mm; size

range, 10–70 mm) for benign tumors and 37.8 mm (median

size, 40 mm; size range, 15–70 mm) for malignant tumors.

The patient ages ranged from 18 to 75 yr. The breast US

images were collected using three kinds of machines, i.e.,

ESAOTEDU8 (Esaote Medical Systems, Genoa, Italy),

SEQUOIA 512 (Siemens, Mountain View, CA), or ESAO-

TEMYLAB90 (Esaote Medical Systems, Genoa, Italy) with

5.5–12.5 MHz, 8–14 MHz, and 5.5–12.5 MHz linear trans-

ducers and freeze-frame capabilities during the period

2003–2009. We only selected images which did not contain

overlaid cursors and in which pathology was clearly avail-

able. For the images with heavy posterior acoustic shadow-

ing, the expert radiologist was unable to distinguish the

tumor region visually; thus, these images were excluded.

The images in the current study were captured at the largest

diameters of the masses.

Manual segmentation results outlined by a trained radiol-

ogist with more than 20 yr of clinical experience were con-

sidered the golden standard. They were performed using

specially designed software and saved for validating the

performance of the proposed method. The trained radiolog-

ist ensured that the segmented images covered the entire

tumor.

The images in our dataset included glandular tissue, sub-

cutaneous fat, and varying degrees of shadowing. In most of

the images, blurred boundaries existed between different

regions because of speckle noise. The complexity of breast

US images renders the correct tumor segmentation very

difficult.

III.B. Validation methods

In the current experiments, HP-NCut was compared with

two other well-studied approaches to validate its perform-

ance, which were the PBLS method proposed by Belaid

et al.14 and a close related interactive NCut approach pre-

sented by Yu and Shi.29 (Noted as Interactive-NCut in the

rest of current paper for simplicity).

We carefully considered the initialization and parameter

setting of PBLS and Interactive-NCut during our experi-

ments so that fair comparisons can be made. For PBLS, the

initial contours were placed manually according to the

author’s suggestion. They were placed close to the tumor

boundary. In addition, the critical parameters l, k, and v of

PBLS were well-tuned to obtain the best segmentation for

all images. For Interactive-NCut, we used the code down-

loaded from the website given in Ref. 40 for performance

testing. The same spatial prior (ROI) was introduced into

HP-NCut and Interactive-NCut. The parameter r defined in

Eq. (24) was set to 8 for these two methods. The parameter r
defined in Eq. (23) was set empirically, with the range from

0.1 to 0.15 for Interactive-NCut and the range from 0.03 to

0.1 for HP-NCut, to yield optimal segmentation results. A

summary of the parameter setting of HP-NCut is listed in

Table II.

III.C. Qualitative results

The advantage of the proposed HP-NCut algorithm is

most significant when handling highly corrupted images

with local intensity variations. Experiment 1 applied these

three methods to a breast US image that contains a malignant

(IDC) tumor with gradually changing intensity and irregular

shape, as show in Fig. 8(a). In particular, posterior acoustic

shadowing was observed, corresponding to the dark area in

the bottom section of the tumor. When initialized as a yellow

rectangle in Fig. 8(e), PBLS converged after 380 iterations

(with parameters l¼ 1, k¼ 0.6, and v¼�0.3). The result is

illustrated in Fig. 8(e). Although PBLS showed a certain

ability to cope with intensity inhomogeneity, it indicated an

inaccurate location of the part of tumor boundary. This result

can be partly understood by the essence of the PBLS model,

which is only dependent on the edge map. Figure 8(f) shows

the corresponding edge map where a large part of the tumor

boundary is missing in the region indicated by the yellow

arrows. Therefore, the PBLS model went beyond a large gap

TABLE I. The pathological type of breast tumors.

Lesion nature Pathological type Number of cases

Benign Fibroadenoma 30

Breast disease 12

Intraductal papilloma 3

Inflammatory 3

Normal breast tissue 1

Cyst 1

Subtotal 50

Malignant Invasive ductal carcinoma 37

Medullary carcinoma 3

Invasive lobular carcinoma 2

Ductal carcinoma in situ 4

Intraductal papillary carcinoma 3

Neuroendocrine carcinoma 1

Subtotal 50

Total 100

TABLE II. The summary of parameter setting of HP-NCut.

Parameter Description Setting

R Defined in Eq. (17) 12

r Defined in Eq. (23) 8

r Defined in Eq. (23) range from 0.03 to 0.1

K Number of the texton channels 16

r1 Radius of window used in

boundary-detection function

2% of the image diagonal

s Defined in Eq. (20) About one minus mean boundary

energies over the image domain.

Described in Sec. IV.E
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and incorrectly converged to the nontumor boundary. Using

the same ROI shown as a red rectangle in Fig. 8(a), the seg-

mentation results of the Interactive-NCut (with parameters

r¼ 0.15) and HP-NCut (with parameters r¼ 0.07 and

s¼ 0.36) are shown in Figs. 8(c) and 8(d), respectively.

Although both Interactive-NCut and the proposed method

are variants of the NCut, the image features used are very

different. Specifically, Interactive-NCut relies only on edge

information. That is, if a boundary consists of strong edges,

using this method can accurately extract the object bound-

ary. By contrast, HP-NCut integrates boundary information

and texture information due to the use of HPs. The differ-

ence between the tumor and the surrounding normal tissue is

sufficiently large, so the strong tumor boundary at the top

can be found by Interactive-NCut. However, this method

failed to detect the weak tumor boundary on the bottom due

to the slight difference between the tumor region and the

shadowing region. The HPs constructed in the proposed

method enabled the accurate extraction of the entire tumor

boundaries at the top and bottom, which proved very useful

in handling intensity inhomogeneity. In addition, the seg-

mentation result using HP-NCut was in agreement with the

manual segmentation [Fig. 8(b)].

Experiment 2 applied these methods to a breast US

image, as shown in Fig. 9. This image contained a malignant

tumor (papillary carcinoma) connected to the normal tissues

with similar texture distribution. In this experiment, we used

the following settings: l¼ 1, k¼ 1.5, and v¼�1 for PBLS;

r¼ 0.15 for Interactive-NCut; and r¼ 0.07 and s¼ 0.4 for

HP-NCut. In Fig. 9(e), the yellow rectangle represents the

initial contour of PBLS. When initialized close to the tumor

boundary, however, PBLS failed to find the boundary con-

cavities indicated by a yellow arrow after 240 iterations.

This behavior also occurs in the other types of level set mod-

els dependent on edge information or image gradient. The

reason is that these models could not converge into the top

of the U-shaped object, even when given good initialization.

Given an ROI indicated by red rectangle [Fig. 9(a)], the seg-

mentation results using HP-NCut and Interactive-NCut are

illustrated in Figs. 9(c) and 9(d). We can see that Interactive-

NCut failed to detect the true tumor boundary at the top.

This result can be partly explained by the essence of

Interactive-NCut, which relies on image edge information

alone. Therefore, when there are strong edges outside the tu-

mor, the Interactive-NCut incorrectly interprets them; thus,

an incorrect segmentation was achieved. In this situation,

integrating boundary and texture information are crucial in

improving the segmentation performance due to their com-

plementary effects. For HP-NCut, the edge information was

first used to define the HP centered at each pixel. Very often,

the sizes of HPs are relatively large in smooth regions and

relatively small near boundaries [Figs. 6(b) and 6(c)].

Accordingly, the interior texture statistics of the HPs are

adaptively changed according to pixel location [Fig. 7(b)]

FIG. 9. The segmentation of a breast tumor with similarity to the surrounding normal tissue. (a) The original image with a rectangular ROI placed by user.

(b) Manual segmentation. The segmentation results using (c) HP-NCut, (d) Interactive-NCut, and (e) PBLS after 240 iterations.
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and the weight matrix construction is consequently influ-

enced by these changing region information. Eventually, the

HP-NCut algorithm prevents the inclusion of the surround-

ing normal tissues and successfully extracts the tumor

boundary, as shown in Fig. 9(c).

Experiment 3 applied these three methods to a relatively

smooth benign tumor (FA), as illustrated in Fig. 10(a). This

FA is encapsulated and has distinct boundaries, where the

transition of intensity from the inside of the tumor to the out-

side of the tumor is sharp but is associated with lateral

acoustic shadowing. The echo pattern is homogeneous inside

the FA. In this experiment, we used parameters l¼ 1,

k¼ 1.5, and v¼�1 for PBLS; r¼ 0.1 for Interactive-NCut;

and r¼ 0.1 and s¼ 0.45 for HP-NCut. Using the manually

placed initial contour shown as a yellow rectangle, PBLS

converged after 300 iterations and the result is illustrated in

Fig. 10(e). The segmentation results for HP-NCut and

Interactive-NCut are illustrated in Figs. 10(c) and 10(d),

respectively, using the manually chosen ROI on the original

image [Fig. 10(a)]. In this case, the texture and intensity of

the tumor differed from the surrounding gland breast tissue

region. Therefore, the edge between them is strong, except

for a small part of the weak edge on the left side of the

image. Therefore, Interactive-NCut and PBLS extracted a

large part of the tumor boundary but failed with the bound-

ary on the left. Interestingly, using the HPs, HP-NCut pro-

duced a correct segmentation, including the strong and weak

edges. The result is much closer to the manual segmentation

[Fig. 10(e)].

Based on Figs. 8–10, the segmentation results obtained by

the proposed algorithm are visually superior to those of the

other two methods. The proposed HP-NCut method produces

contours that are very close to the manual segmentation

results. More experimental results of the proposed system

support the same claims.

III.D. Quantitative results

We numerically evaluated our algorithm on a database of

100 breast sonograms to evaluate the effectiveness of the

proposed algorithm. Two boundary-based error metrics and

three overlapping area error metrics were used to evaluate

the accuracy of HP-NCut.

III.D.1. Boundary-based error metrics

Hausdorff distance (HD)41 and average minimum Euclid-

ean (AMED)42 were selected as boundary-based error met-

rics in the current experiments.

If A is a contour which has m points noted as fa1, …,

amg, and another contour B is defined the same way, HD

(A, B) and AMED (A, B) are, respectively, defined as

HDðA;BÞ ¼ maxfmaxi2f1;::;mgMEDðai;BÞ;
maxj2f1;::;ngMEDðbj;AÞ; (24)

FIG. 10. The segmentation of a breast tumor with regular shape. (a) The original image with a rectangular ROI placed by user. (b) The manual segmentation.

The segmentation results using (c) HP-NCut, (d) Interactive-NCut, and (e) PBLS after 300 iterations.
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AMEDðA;BÞ ¼
Pm

i¼1 MEDðai;BÞ
2m

þ
Pn

j¼1 MEDðbj;AÞ
2n

; (25)

where MED (a, B) is the minimum Euclidean distance

between point a and contour B

MEDða;BÞ ¼ mini2f1;…;ng ka� bik: (26)

AMED measures the average distance between two con-

tours, whereas HD measures the maximum distance between

two contours.

III.D.2. Overlapping area error metrics

We also used three overlapping area error metrics,43 the

true positive ratio (TP), the false positive ratio (FP), and the

similarity (SI), to measure the similarity between semiauto-

matic segmentation results and the golden standard. Defining

S as the set of points in the segmented region, G as the set of

points in the golden standard, and Area(G) as the area of G,

the three error metrics are

TP ¼ AreaðG \ SÞ
AreaðGÞ ; (27)

FP ¼ jAreaðG \ SÞ � AreaðGÞj
AreaðGÞ ; (28)

and

SI ¼ AreaðG \ SÞ
AreaðG [ SÞ : (29)

The higher the TP ratio, the more the true tumor regions are

covered by the segmented tumor regions. On the other hand,

the lower the FP ratio, the fewer the normal tissue regions

are covered by the segmented tumor regions. SI is a very in-

tuitive metric that ranges from 0 to 1. The higher the value

of SI, the better the overall performance of the segmentation

will be. SI equal to 1 suggests a good match between manual

and semiautomatic segmentation.

III.D.3. Experiment results

The experiments results of 100 breast US images are

listed in Tables III and IV.

For both benign tumors and malignant tumors, HP-

NCut gives the best accuracy among the three methods

tested (Table III). HP-NCut has the smallest average mean

error and the smallest average stand deviation in terms of

HD and AD. Concretely, compared with Interactive-NCut

and PBLS, for benign tumors, HP-NCut improved average

HD from 15.86 and 8.27 to 7.10, respectively. In addition,

the average AD is improved from 4.55 (Interactive-NCut)

and 2.21 (PBLS) to 1.58. For malignant tumors, the

average HD is improved from 22.34 (Interactive-NCut)

and 12.81 (PBLS) to 10.57, and average AD from 7.03

(Interactive-NCut) and 3.16 (PBLS) to 1.98. Evidently,

the tabulated results reveal better correlation between

the results of the HP-NCut algorithm and manual

segmentations.

For both benign tumors and malignant tumors, the TP

ratios of the above methods are higher than 90% (Table IV),

which means that most of the tumor regions can be seg-

mented by the above methods. The TP ratio of HP-NCut

(92.90% for benign cases and 90.91% for malignant cases) is

less than that of Interactive-NCut (96.98% for benign cases

and 97.07% for malignant cases) because there are many

blurry regions near the boundaries in most cases. Finding the

true boundaries in these blurry regions is very difficult, so

the manual segmentation results include some blurry

regions. However, with the HP, the HP-NCut algorithm can

deal with blurry regions well and locate true boundaries

accurately. Hence, some regions generated by the manual

segmentation are not in the tumor regions segmented by the

HP-NCut algorithm, leading to slightly lower TP ratios.

Using Interactive-NCut, many normal issues are misclassi-

fied as the tumors, including some blurry regions. The TP

ratios are higher, as well. However, its segmentation results

remain undesirable, as illustrated by the higher FP ratios.

TABLE III. Distance error metrics of three different image segmentation

methods.

Average HD (pixels) Average AD (pixels)

Benign

Interactive-NCut Mean¼ 15.86 Mean¼ 4.55

Std¼ 8.57 Std¼ 3.47

PBLS Mean¼ 8.27 Mean¼ 2.21

Std¼ 3.26 Std¼ 1.23

HP-NCut Mean¼ 7.10 Mean¼ 1.58

Std¼ 3.20 Std¼ 0.72

Malignant

Interactive-NCut Mean¼ 22.34 Mean¼ 7.03

Std¼ 11.08 Std¼ 4.64

PBLS Mean¼ 12.81 Mean¼ 3.16

Std¼ 4.75 Std¼ 1.81

HP-NCut Mean¼ 10.57 Mean¼ 1.98

Std¼ 3.96 Std¼ 0.59

TABLE IV. Overlapping area error metric of three different image segmenta-

tion methods.

TP ratio (%) FP ratio (%) SI (%)

Benign

Interactive-Ncut Mean¼ 96.98 Mean¼ 40.95 Mean¼ 72.81

Std¼ 4.14 Std¼ 41.29 Std¼ 14.56

PBLS Mean¼ 92.61 Mean¼ 11.74 Mean¼ 83.48

Std¼ 5.62 Std¼ 12.05 Std¼ 7.41

HP-NCut Mean¼ 92.90 Mean¼ 7.32 Mean¼ 86.67

Std¼ 3.92 Std¼ 4.17 Std¼ 4.73

Malignant

Interactive-Ncut Mean¼ 97.07 Mean¼ 65.01 Mean¼ 64.81

Std¼ 6.37 Std¼ 62.36 Std¼ 17.74

PBLS Mean¼ 91.35 Mean¼ 18.00 Mean¼ 78.73

Std¼ 7.22 Std¼ 20.21 Std¼ 9.90

HP-NCut Mean¼ 90.91 Mean¼ 7.99 Mean¼ 84.41

Std¼ 4.45 Std¼ 5.73 Std¼ 5.91
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Using Interactive-NCut, the FP ratio is very high (40.95%

for benign cases and 65.01% for malignant cases), as shown

in Figs. 8–10. Despite the fact that this method nearly covers

the whole tumor region, it simultaneously contains many

nontumor regions, which has an adverse effect on the

feature-extraction process for the CAD system. PBLS does

not deal with all the blurry boundaries and some normal

regions are included, so a relatively lower FP ratio (11.74%

for benign cases and 18.00% for malignant cases) is

obtained. Using HP-NCut, the lowest FP ratio (7.32% for be-

nign cases and 7.99% for malignant cases) is achieved. In

other words, few normal tissue regions are covered by the

segmented tumor regions, and more accurate segmentation

results are achieved.

HP-NCut achieves the highest similarity (86.67% for be-

nign cases and 84.41% for malignant cases). It is higher than

Interactive-NCut (72.81% for benign cases and 64.81% for

malignant cases) and PBLS (83.48% for benign cases and

78.73% for malignant cases), which supports the effective-

ness of HP. Remarkably, HP-NCut obtains the best perform-

ance among the three methods.

Tables III and IV reveal that the segmentation results of

HP-NCut are satisfactory. However, there are still some

cases that cannot be dealt with well by HP-NCut. Figure 11

shows the worst segmentation result of the proposed method.

In Fig. 11(a), a malignant (IDC) tumor is depicted with a

highly irregular shape, spiculation, ill-defined margins,

microclacification, and heterogeneous internal echo pattern.

This IDC is associated with posterior enhancement. The

manual segmentation includes the overall tumor region. Part

of the manual segmentation image covers blurry regions

between the tumor and normal tissue region, as shown in

Fig. 11(b). HP-NCut cannot get the whole tumor region, as

shown in Fig. 11(c). However, the other two methods did not

yield good segmentation results. Although the segmentations

of Interactive-NCut and PBLS included more tumor regions,

the compensation for them is a significant increase in the

false positives, as illustrated in Figs. 11(d) and 11(e). In this

extreme case, the performance of HP-NCut (SI¼ 86.51%) is

higher than that of Interactive-NCut (SI¼ 66.64%) and the

PBLS method (SI¼ 80.10%). On the other hand, this exam-

ple indicates that further research is required to improve the

proposed HP-NCut algorithm.

III.E. Influence of parameter choices

The radius r1 of the circular neighborhood described in

Sec. III.B is a minor parameter for boundary detection. We

performed an experiment to show the effect of parameter r1

on a breast US image [Fig. 2(a)]. Figure 12 shows the bound-

ary maps using three different radius values r1¼f1%, 2%,

3%g of the image diagonal. The smallest radius size resulted

in spurious edges, but preserved continuity of boundaries.

The largest radius size lost the continuity of boundaries, but

FIG. 11. The worst segmentation result. (a) The original image with a rectangular ROI placed by the user. (b) Manual segmentation. The segmentation results

using (c) HP-NCut, (d) Interactive-NCut, and (e) PBLS.
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suppressed spurious edges. The intermediate radius size

gave a good detection result. In all the experiments, we fixed

r1 at 2% of the image diagonal.

The fuzzy membership threshold s (described in Sec.

III.C) is a major parameter for constructing HPs. For most of

the breast US images in the current dataset, the energy

threshold was usually determined as about one minus the

mean boundary energy over the entire image domain. For

example, given two breast US images with malignant tumors

[Fig. 13(a)], we first extracted the boundary maps using

Eq. (7), as shown in Fig. 13(b). Then, the corresponding his-

tograms of the boundary maps were constructed, where hori-

zontal axes gave boundary energies and vertical axes gave

the number of pixels at boundary energy level [Fig. 13(c)].

The mean boundary energy was 0.24 in the first histogram,

whereas the mean boundary energy was 0.1 in the second

histogram. Thus, we set the energy thresholds as s¼ 1

� 0.24¼ 0.76 and s¼ 1� 0.1¼ 0.9.

Furthermore, we tested the effect of threshold s for HP

construction. We took the two images in Figs. 9(a) and 2(a)

as examples. Figure 14 shows the results using three differ-

ent values, i.e., s¼f0.86, 0.76, 0.66g for row 1 and

s¼f0.95, 0.9, 0.8g for row 2. The areas enclosed by yellow

contours represent HPs in the smooth regions, whereas those

enclosed by blue contours are HPs in the nonsmooth regions.

Red dots are the central pixels. We observed that the smaller

the threshold, the larger the sizes of the HPs. Second, when

the largest or the smallest threshold was adopted, the shapes

of the HPs themselves did not adopt the local image contents

and the homogeneities of the HPs were violated. When the

FIG. 12. Examples of the boundary-detection function using three different radius values. From left to right r1¼f1%, 2%, 3%g of the image diagonal.

FIG. 13. (a) Original images. (b) The boundary maps. (c) The histograms of the boundary energies over the entire image domain.
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intermediate threshold was adopted, the shape of the HPs

changed in response to the geometry of the structure. Third,

the largest threshold resulted in incorrect HP representations,

which were too local for the task at hand. The smallest

threshold resulted in incorrect representations, which were

too global. This experiment demonstrated that the thresholds

that were too large or too small might lead to incorrect

results. In the present study, the thresholds that were set

to one minus the mean boundary energy [e.g., s¼ 0.76 for

Fig. 9(a) and s¼ 0.9 for Fig. 2(a)] were good candidates for

HP determination.

III.F. Robustness analysis

HP-NCut and Interactive-NCut used the same sampling

strategy to speed up the segmentation process. An important

factor in the two methods that may affect the segmentation

results was the sampling points. We fixed all the parameters

including the sample size to examine the robustness of the

two methods with respect to random samples. The sampling

rate can be very low (e.g., 1% of all pixels in an image or

even less).44 We obtained the sample size by setting the

number of samples to 1.5% of the number of image pixels.

Then, we repeatedly conducted 50 random experiments on

the same image. By varying the random samples and com-

paring the results with manual segmentation, we can get the

AMEDs for the two methods (Fig. 15). Out of 50 experi-

ments visually inspected, only ten segmentation results from

both Interactive-NCut and the proposed HP-NCut algorithm

are displayed in Figs. 16 and 17, respectively. Interactive-

NCut was observed to be sensitive to the random samples,

whereas the proposed algorithm is not. This finding could be

explained as follows. First, although the sampling strategy

applied to our algorithm was the same as that applied to

Interactive-NCut, they have quite different constructions in

weight matrix. The construction of the weight matrix in

Interactive-NCut is dependent on the image pixels. A pixel

contains limited image information and suffers from poor

quality of the breast US image, and the sampled image pixels

could barely reflect the original image well. However,

instead of using image pixels, the construction of the weight

matrix in the proposed algorithm depended on the HPs.

FIG. 14. Influence of the energy threshold s for HP construction. The areas enclosed by light color (yellow in online version) contours represent HPs in the

smooth regions, whereas those enclosed by dark color (blue in online version) contours are HPs in the nonsmooth regions. Gray (red in online version) dots

are the central pixels. From left to right threshold s¼f0.86, 0.76, 0.66g for row 1 and s¼f0.95, 0.9, 0.8g for row 2. The original images can be seen in

Fig. 9(a) in row 1 and Fig. 2(a) in row 2.

FIG. 15. The average minimum Euclidean error in the two methods after

repeating 50 experiments with different sampling points selected randomly.
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Local pattern was introduced into the HPs before sampling.

Each HP was constructed by the pixels with similar proper-

ties inside a large neighborhood, thus including more reli-

able image information than a single pixel and can

effectively reflect breast US image. Second, by binning the

neighboring pixels within the HP to the textons, the prob-

lem arising from small speckle noise and intensity inhomo-

geneity was avoided. Even if some pixels are mapped to

the wrong textons, it does not greatly influence the texton

histograms. Hence, feature difference between HPs is

larger and more robust than between the pixels after the

sampling process. These overcome the problem on sensi-

tivity. In addition, identical segmentation results were pro-

duced every time. The proposed HP-NCut algorithm

guarantees good stability and reproducibility with respect

to the random samples. From these results, the proposed

algorithm is deemed suitable for ultrasonic tumor segmen-

tation problems.

III.G. Runtimes

The run-times of the three methods, i.e., Interactive-

NCut, PBLS and the proposed HP-NCut, are listed in

Table V. All the methods were performed on a computer

with the following configuration: Intel Core 2 CPU 7200 at 2

GHz, 0.99 GB of RAM.

Comparing to Interactive-NCut and PBLS, the proposed

HP-NCut algorithm required more time consuming due to

the HPs computation and texture extraction. However, our

HP-NCut algorithm can achieve tumor segmentation more

accurately and efficiently. Moreover, the HP-NCut algorithm

is more robust than the Interactive-NCut.

FIG. 16. Ten segmentation results (a)–(j) on a breast US image using Interactive-NCut with different sampling points selected randomly.

FIG. 17. Ten segmentation results (a)–(j) on a breast US image using HP-NCut with different sampling points selected randomly.
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IV. CONCLUSIONS

We have developed a novel algorithm for segmenting

breast tumors in US images. Many of these tumors have tex-

tures and=or intensities similar to the surrounding structures

in the ultrasonic images, such as glandular tissue, subcutane-

ous fat, and so on. In the boundary-detection phase, a

boundary-detection function is designed by combining tex-

ture information and intensity information. By describing the

similar relationships between neighboring pixels in a local

neighborhood, the HP-NCut algorithm defines a HP for each

pixel using the boundary map from the boundary-detection

function. Based on the HPs, a novel feature-extraction

scheme is proposed. Using the HPs is equivalent to using

both the edge information and region statistical information.

The proposed HP-NCut algorithm yields better results in

cases where shadowing artifacts are encountered.

The proposed algorithm has been evaluated using a large

number of breast US images. The results show that the pro-

posed method achieves more accurate segmentation results

compared with Interactive-NCut and PBLS. Nevertheless,

the proposed HP-NCut algorithm cannot deal well with the

cases where the tumors have highly irregular contours (e.g.,

deep lobulation or spiculation) or very blurry boundaries.

Thus, further study on the proposed algorithm is recom-

mended. Moreover, future work will consider optimizing our

codes to speed up the algorithm. As some parts of our algo-

rithm, e.g., the HPs computation, can be decomposed into a

parallel framework and achieved by using GPU, we hope the

parallel processing technique will render our algorithm more

appropriate for real-time application.
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12M. Alemán-Flores, L. Álvarez, and V. Caselles, “Texture-oriented aniso-

tropic filtering and geodesic active contours in breast tumor ultrasound

segmentation,” J. Math. Imaging Vision 28, 81–97 (2007).
13B. Liu, H. D. Cheng, J. H. Huang, J. W. Tian, J. F. Liu, and X. L. Tang,

“Automated segmentation of ultrasonic breast lesions using statistical tex-

ture classification and active contour based on probability distance,” Ultra-

sound Med. Biol. 35, 1309–1324 (2009).
14A. Belaid, D. Boukerroui, Y. Maingourd, and J. F. Lerallut, “Phase-based

level set Segmentation of Ultrasound Images,” IEEE Trans. Inf. Technol.

Biomed. 15, 138–147 (2011).
15L. Gao, X. Y. Liu, and W. F Chen, “Phase- and GVF-based level set

segmentation of ultrasonic breast tumors,” J. Appl. Math. 2012, 22

p. (2012).
16K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Automatic seg-

mentation of breast lesions on ultrasound,” Med. Phys. 28, 1652–1659

(2001).
17K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Computerized

diagnosis of breast lesions on ultrasound,” Med. Phys. 29, 157–164

(2002).
18X. Liu, Z. M. Huo, and J. W. Zhang, “Automated segmentation of breast

lesions in ultrasound images,” in Proceedings of IEEE Annual Interna-
tional Conference on Engineering in Medical Biology (IEEE Comput.

Soc., Shanghai, China, 2005), pp. 7433–7435.
19C. M. Zhu, G. C. Gu, H. B. Liu, J. Shen, and H. L. Yu, “Segmentation of

ultrasound image based on texture feature and graph cut,” in Proceedings
of International Conference on Computer Science Software Engineering
(IEEE Comput. Soc., Hubei, China, 2008), pp. 795–798.

20S. Y. Chen, H. H. Chang, S. H. Hung, and W. C. Chu, “Breast tumor iden-

tification in ultrasound images using the normalized cuts with partial

grouping constraints,” in Proceedings of IEEE International Conference
on Biomedical Engineering and Informatics (IEEE Comput. Soc., Sanya,

China, 2008), pp. 28–32.
21Q. H. Huang, S. Y. Lee, L. Z. Liu, M. H. Lu, L. W. Jin, and A. H. Li, “A

robust graph-based segmentation method for breast tumors in ultrasound

images,” Ultrasonics 52, 266–275 (2012).
22D. G. Shen, Y. Q. Zhan, and C. Davatzikos, “Segmentation of prostate

boundaries from ultrasound images using statistical shape model,” IEEE

Trans. Med. Imaging 22, 539–551 (2003).
23Y. Q. Zhan and D. G. Shen, “Deformable segmentation of 3-D ultrasound

prostate images using statistical texture matching method,” IEEE Trans.

Med. Imaging 25, 256–272 (2006).
24C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans.

Sonics Ultrason. 25, 1–6 (1978).
25W. Leucht and D. Leucht, Teaching Atlas of Breast Ultrasound, 2nd ed.

(Thieme Medical, Inc., New York, 2000).
26J. B. Shi and J. Malik, “Normalized cuts and image segmentation,” in Pro-

ceedings of IEEE Conference on Computer Vision Pattern Recognition
(IEEE Comput. Soc., San Juan, Puerto Rico, 1997), pp. 731–737.

TABLE V. Average run-time of three different image segmentation methods.

Interactive-NCut (s) PBLS (s) HP-NCut (s)

57.35 77.34 191.75

3317 Gao et al.: Segmentation of ultrasonic breast tumors 3317

Medical Physics, Vol. 39, No. 6, June 2012

http://dx.doi.org/10.1109/72.641462
http://dx.doi.org/10.1109/TMI.2006.877092
http://dx.doi.org/10.1109/TMI.2002.808364
http://dx.doi.org/10.1016/j.patcog.2009.06.002
http://dx.doi.org/10.1109/42.981233
http://dx.doi.org/10.1016/S0167-8655(02)00181-2
http://dx.doi.org/10.1109/TUFFC.2005.1504017
http://dx.doi.org/10.1109/TUFFC.2005.1504017
http://dx.doi.org/10.1016/j.patcog.2010.01.002
http://dx.doi.org/10.1109/TITB.2003.816560
http://dx.doi.org/10.1016/S0301-5629(03)00992-X
http://dx.doi.org/10.1016/S0301-5629(03)00992-X
http://dx.doi.org/10.1007/s10851-007-0015-8
http://dx.doi.org/10.1016/j.ultrasmedbio.2008.12.007
http://dx.doi.org/10.1016/j.ultrasmedbio.2008.12.007
http://dx.doi.org/10.1109/TITB.2010.2090889
http://dx.doi.org/10.1109/TITB.2010.2090889
http://dx.doi.org/10.1155/2012/810805
http://dx.doi.org/10.1118/1.1386426
http://dx.doi.org/10.1118/1.1429239
http://dx.doi.org/10.1016/j.ultras.2011.08.011
http://dx.doi.org/10.1109/TMI.2003.809057
http://dx.doi.org/10.1109/TMI.2003.809057
http://dx.doi.org/10.1109/TMI.2005.862744
http://dx.doi.org/10.1109/TMI.2005.862744
http://dx.doi.org/10.1109/T-SU.1978.30978
http://dx.doi.org/10.1109/T-SU.1978.30978


27J. B. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000).
28J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis

for image segmentation,” Int. J. Comput. Vis. 43, 7–27 (2001).
29X. Yu and J. B. Shi, “Segmentation given partial grouping constraints,”

IEEE Trans. Pattern Anal. Mach. Intell. 26, 173–183 (2004).
30X. Wu, C. W. Ngo, and A. G. Hauptmann, “Multimodal news story

clustering with pairwise visual near-duplicate constraint,” IEEE Trans.

Multimedia 10, 188–199 (2008).
31K. Bria, B. Sugato, D. Inderjit, and M. Raymond, “Semi-supervised graph

clustering: A kernel approach,” Mach. Learn. 74, 1–22 (2009).
32J. Carballido-Gamio, S. J. Belongie, and S. Majumdar, “Normalized cuts

in 3-D for spinal MRI segmentation,” IEEE Trans. Med. Imaging 23,

36–44 (2004).
33W. K. Pratt, Digital Image Processing, 3rd ed. (John Wiley & Sons, Inc.,

New York, 1978).
34J. Canny, “A computational approach to edge detection,” IEEE Trans.

Pattern Anal. Mach. Intell. 8, 679–698 (1986).
35D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural

image boundaries using local brightness, color and texture cues,” IEEE

Trans. Pattern Anal. Mach. Intell. 26, 530–549 (2004).
36K. Somkantha, N. Theera-Umpon, and S. Auephanwiriyakul, “Boundary

detection in medical images using edge following algorithm based on in-

tensity gradient and texture gradient features,” IEEE Trans. Inf. Technol.

Biomed. 58, 567–573 (2011).

37X. Ren and J. Malik, “Learning a classification model for segmentation,”

in Proceedings of IEEE International Conference on Computer Vision
(IEEE Comput. Soc., Nice, France, 2003), pp. 10–17.

38A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and

K. Siddiqi, “Turbopixels: Fast superpixels using geometric flows,” IEEE

Trans. Pattern Anal. Mach. Intell. 31, 2290–2297 (2009).
39S. M. Xiang, C. H. Pan, F. P. Nie, and C. S. Zhang, “Turbopixel segmenta-

tion using eigen-images,” IEEE Trans. Image Process. 19, 3024–3034

(2010).
40http://www.eecs.berkeley.edu/Research/Projects/CS/vision/stellayu/code.

html
41D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing

images using the Hausdorff distance,” IEEE Trans. Pattern Anal. Mach.

Intell. 15, 850–863 (1993).
42B. Sahiner, N. Petrick, H.-P. Chan, L. M. Hadjiiski, C. Paramagul,

M. A. Helvie, and M. N. Gurcan, “Computer-aided characterization

of mammographic masses: Accuracy of mass segmentation and its

effects on characterization,” IEEE Trans. Med. Imaging 20, 1275–1284

(2001).
43J. K. Udupa, V. R. LaBlanc, H. Schmidt, C. Imielinska, P. K. Saha, G. J.

Grevera, Y. Zhuge, P. Molholt, Y. P. Jin, and L. M. Currie, “A methodol-

ogy for evaluating image segmentation algorithms,” Proc. SPIE 2,

266–277 (2002).
44Q. Wang, G. R. Wu, P.-T. Yap, and D. G. Shen, “Attribute vector guided

groupwise registration,” Neuroimage 50, 1485–1496 (2010).

3318 Gao et al.: Segmentation of ultrasonic breast tumors 3318

Medical Physics, Vol. 39, No. 6, June 2012

http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1023/A:1011174803800
http://dx.doi.org/10.1109/TPAMI.2004.1262179
http://dx.doi.org/10.1109/TMM.2007.911778
http://dx.doi.org/10.1109/TMM.2007.911778
http://dx.doi.org/10.1007/s10994-008-5084-4
http://dx.doi.org/10.1109/TMI.2003.819929
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.2004.1273918
http://dx.doi.org/10.1109/TPAMI.2004.1273918
http://dx.doi.org/10.1109/TPAMI.2009.96
http://dx.doi.org/10.1109/TPAMI.2009.96
http://dx.doi.org/10.1109/TIP.2010.2052268
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/stellayu/code. html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/stellayu/code. html
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.1109/42.974922
http://dx.doi.org/10.1117/12.467166
http://dx.doi.org/10.1016/j.neuroimage.2010.01.040

	s1
	s1A
	s1B
	s2
	s2A
	E1
	E2
	E3
	E4
	s2B
	s2C
	F1
	E5
	E6
	s2C
	F2
	s2D
	s2D1
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	F3
	E14
	E15
	E16
	s2E
	s2E1
	E17
	s2E2
	F4
	E18
	s2E3
	E19
	E20
	F5
	s2F
	E21
	E22
	E23
	s2G
	F6
	s3
	s3A
	F7
	F8
	s3B
	s3C
	T1
	T2
	F9
	s3D
	s3D1
	E24
	F10
	E25
	E26
	s3D2
	E27
	E28
	E29
	s3D3
	T3
	T4
	s3E
	F11
	F12
	F13
	s3F
	F14
	F15
	s3G
	F16
	F17
	s4
	cor1
	cor2
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	T5
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44

