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Abstract
Copy number variants (CNVs) are widely distributed throughout the human genome, where they
contribute to genetic variation and phenotypic diversity. De novo CNVs are also a major cause of
numerous genetic and developmental disorders. However, unlike many other types of mutations,
little is known about the genetic and environmental risk factors for new and deleterious CNVs.
DNA replication errors have been implicated in the generation of a major class of CNVs, the
nonrecurrent CNVs. We have found that agents that perturb normal replication and create
conditions of replication stress, including hydroxyurea and aphidicolin, are potent inducers of
nonrecurrent CNVs in cultured human cells. These findings have broad implications for
identifying CNV risk factors and for hydroxyurea-related therapies in humans.

Introduction
In recent years, copy number variants (CNVs), defined as deletions or duplications of 50 bp
to over a megabase, have been found to be widely distributed throughout the human genome
[1-7]. The discovery of CNVs is tied to the advent of new genomic technologies that have
enabled high-resolution analysis, including oligonucleotide microarrays and next generation
sequencing approaches. With over 25,000 polymorphic CNVs, including nearly 1000 large
CNVs greater than 50 kb now described in normal individuals [8], it is clear that human
genetic variation is profoundly influenced by large-scale structural changes. It is also clear
that many CNVs have deleterious consequences. Spontaneous or de novo CNVs are an
important and frequent cause of genetic and developmental disorders, including severe
intellectual disability, autism, schizophrenia, heart defects and many others [9-13], and they
arise frequently in cancer cells. The frequency at which they arise suggests a high de novo
mutation rate.

Despite their importance, there is limited understanding of how many CNVs arise, and little
knowledge of risk factors involved. Like all mutation classes, it is certain that risk for new
and deleterious CNVs will be increased by exposures to precipitating environmental
mutagens as well as by inherited genetic predisposition. A key to predicting and identifying
these factors is a clear understanding of the underlying mechanisms by which CNVs are
formed. At least two distinct pathways are involved in the formation of most disease-
associated CNVs: unequal meiotic recombination and replication errors. We have found that
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agents that perturb replication induce a high frequency of CNVs in normal human cells that
resemble non-recurrent CNVs in humans in all aspects [14-16]. These agents include the
polymerase inhibitor aphidicolin and the ribonucleotide reductase inhibitor, hydroxyurea,
which is commonly used in the treatment of sickle cell disease and other disorders. These
data provide experimental support for replication error models for the origins of CNVs and
further suggest that many agents or conditions that lead to replication stress have the
potential to induce deleterious CNVs.

Classes of CNVs
As with all mutation types, the risk for new and deleterious CNVs will undoubtedly be
increased by inherited genetic predisposition and by exposure to precipitating environmental
mutagens. Understanding the mechanisms involved in their formation is key to defining
genetic and environmental risk factors for new and deleterious CNV mutations. However,
we know little about the molecular mechanisms involved in the formation of this important
class of CNVs. Most human CNV research to date has focused on cataloguing their
occurrence and association with various disease states [17-20], with few experimental
studies aimed at defining molecular mechanisms of formation. Mechanisms giving rise to
CNVs have therefore largely been inferred from the observed CNV breakpoint junction
sequences of normal and disease-associated CNVs and from the genetic architecture in the
vicinity of breakpoints. In addition to the large class of smaller CNVs created by
retrotransposition events or VNTR rearrangements, this approach has revealed two major
categories of both polymorphic and de novo, pathogenic CNVs with distinctly different
structures and cellular origins, frequently termed “recurrent” and “non-recurrent” CNVs,
respectively.

Recurrent CNVs
Approximately 20-40% of normal polymorphic CNVs and many de novo, disease-related
CNVs show recurrent breakpoints in low-copy repeats or segmental duplications
[3,5,6,8,17,19]. As one would expect, hotspots for these CNVs exist in regions containing
large segmental duplications. These variants include a growing number of recurrent CNVs
associated with distinct clinical phenotypes, such as those identified on chromosomes
16p11.2 and 17q11.2 in individuals with neurological disorders, including severe intellectual
disability, autism and schizophrenia [21-24].

Non-recurrent CNVs
These CNVs have unique breakpoints that are not dependent on segmental duplications. In
most cases, they are characterized by microhomologies with a smaller number having blunt
ends or short insertions at the breakpoint junctions. The majority of normal CNVs and a
large percentage of pathogenic CNVs fall into this class [19]. Many of these CNVs are
unique, though overlapping CNVs with widely variable breakpoints can be clustered in
regions. These CNV-prone regions are often ascertained by disease association, such as the
MBD5 gene region, which harbors deletions in humans with autism and other neurological
abnormalities [25]. Most non-recurrent CNVs are simple deletions or tandem duplications,
but some are more complex and are interrupted by normal sequences or inversions and can
contain both deleted and duplicated segments within the same interval. Some non-recurrent
CNVs are highly complex, with dozens of events clustered in a single genomic region [26],
similar to a phenomenon termed chromothripsis (for “chromosome shattering”), recently
described in cancer cell genomes [27]. It is likely that the observed incidence of these
complex events is currently underestimated because of the difficulty in obtaining accurate
sequence data at the breakpoints of such events.
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Mechanisms of CNV formation
Recurrent CNVs with common breakpoints are deletions and reciprocal duplications that are
thought to arise by meiotic unequal or non-allelic homologous recombination (NAHR),
typically mediated by misalignment of large flanking segmental duplications or repeated
sequences. These CNVs therefore arise in the same manner as was first elegantly described
two decades ago for human microdeletion/micorduplication syndromes such as Charcot-
Marie Tooth and Prader-Willi syndromes [28], and recurrent CNV disorders can therefore
be considered an extension of this class of syndromes.

Less is known about the origins and molecular mechanisms leading to non-recurrent CNVs.
Interestingly, data from breakpoint sequences and experimental systems all point to a
mitotic, rather than meiotic, cell origin. Errors in DNA replication, rather than meiotic
homologous recombination are predicted to give rise to the observed breakpoint junctions
(Figure 1). In addition, inhibitors of replication that create conditions of “replication stress”
can induce similar CNVs experimentally [14-16], as discussed in detail below. The simplest
model that is consistent with both breakpoint sequence data and induction by replication
stress is one whereby there is aberrant restoration of stalled replication forks. The molecular
mechanisms involved thus undoubtedly include pathways such as cell cycle checkpoints to
restore normal replication and prevent CNV formation, as well as DNA replication and
repair factors that create the CNV lesion. A number of pathways have been suggested for the
latter. These possible mechanisms include simple rejoining of two or more double strand
breaks by nonhomologous end-joining (NHEJ) or the related microhomology-mediated end-
joining (MMEJ) pathway, and mechanisms involving template switching events
[14,15,18,29-31]. Most notable of the latter are the models of “Fork Stalling and Template
Switching” (FoSTeS) of Lee et al. [30] and a modification termed microhomology-mediated
break-induced replication (MMBIR) proposed by Hastings et al. [29]. These models are
based on template switching mechanisms proposed for stress-induced amplifications in E.
coli [32] and at sites of stalled replication in yeast [33-35] and BIR events principally
described in yeast [36]. In the FoSTeS model, replication forks encountering low-copy
repeats or areas that are difficult to replicate are prone to stalling, leading to a switch to
another active fork to bypass the DNA lesion or to resume replication. The MMBIR model
invokes template switching repair of single-sided DSBs formed at collapsed replication
forks into regions of microhomology rather than the longer homology typically observed at
BIR-mediated events [36]. These models provide an appealing explanation of the molecular
mechanisms involved in non-recurrent CNV formation. However, most of the data to
support these models come from observations of breakpoint junction sequences of CNVs
found in normal genomes and arising in patients. There is a clear need for rigorous
experimental testing of the possible models explaining CNV formation.

Replication stress induces CNVs
Our laboratory has published direct experimental evidence that aberrant replication can
induce a high frequency of CNVs in cultured mammalian somatic cells. We found that
inhibiting replication with the DNA polymerase inhibitor aphidicolin (APH) induces a high
frequency of de novo CNVs that mimic non-recurrent human CNVs in size, distribution and
breakpoint structures [14,16]. This finding arose from studies of aberrations induced by
replication stress at chromosome fragile sites. Treatment of cells with low doses of APH is
highly effective in inducing expression of common fragile sites. We found that treatment of
a human chromosome 3 somatic cell hybrid cell line with doses of APH used to induce
fragile sites gave rise to a high frequency of CNV-like deletions of tens to hundreds of kb in
the FRA3B fragile site that mimic those frequently found in tumor cells [16]. The
breakpoints of these APH-induced CNVs all showed microhomologies, blunt ends or short
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insertions, which were concurrently being found in human non-recurrent CNVs. When this
approach was applied to normal human fibroblasts, we found that APH induced CNVs
across the human genome that resembled human non-recurrent CNVs in size, structure and
breakpoint sequences. These CNVs were distributed throughout the genome with most
(81%) found in regions containing genes [14].

These results strongly suggested that replication fork stalling is mechanistically responsible
for these CNVs and, furthermore, that any agent that leads to replication stress could be a
risk factor for their induction. To begin to test this, we performed a series of experiments
using the mechanistically-distinct and clinically-relevant replication inhibitor, hydroxyurea
(HU). HU leads to replication stress via inhibition of ribonucleotide reductase and
perturbation of nucleotide pools [37], resulting in stalled replication and DNA double strand
breaks. In addition to its well-studied properties as a replication inhibitor, HU is an
important drug, especially for treatment of sickle-cell disease. Chronic HU treatment leads
to increased expression of fetal hemoglobin, possibly through direct stimulation of cellular
nitric oxide and cGMP signaling in erythroid progenitors [37-41], which results in reduced
erythrocyte sickling and amelioration of disease severity [42]. As a result, HU-treated
patients have fewer vaso-occlusive events and require fewer transfusions and
hospitalizations [42]. HU treatment is therefore an effective drug for long-term management
of sickle cell disease and it is effective for a number of other disorders, including certain
cancers, myeloproliferative disorders, thalassemias and HIV infection. Thus, in addition to
allowing a test of our replication stress hypothesis, HU is an important drug for many
thousands of individuals.

These experiments showed that HU, at doses equivalent to the peak serum levels achieved in
sickle cell patients, is also a potent inducer of CNVs in cultured normal human fibroblasts
[15]. The sizes, structures and breakpoint junction sequences of HU-induced CNVs were
consistent with APH-induced CNVs [14,16,43] and the non-recurrent class of normal and
pathogenic CNVs [5,8,17-19,30,44-46]. It is notable that the sizes of CNVs induced by APH
and HU are the same as those that arise spontaneously during culture, indicating that
exogenous replication stress is not inducing a new type of event, but rather increasing the
incidence of events that occur at a measurable frequency during normal cellular growth.
While replication stress induced CNVs throughout the genome in these experiments, there
were also hotspots where distinct overlapping CNVs were found. These include hotspots at
3q13.31 near the LSAMP gene, a deletion hotspot in cancers and cancer cell lines [47-49], at
16q23.3 in the WWOX locus, and at 7q11.2 spanning AUTS2, a gene deleted in some cases
of autism and other neurological disorders [50-52]. These hotspots coincide with the
location of chromosomal fragile sites [15,53,54], strongly suggesting a mechanistic link
between the events leading to fragile site expression and these CNVs. Notably, the most
significant CNV hotspot we observed in human fibroblasts, at 3q13.31, corresponds to a
fragile site that was recently shown by Le Tallec et al. [55] to be highly expressed in
fibroblasts, but not lymphoblasts, in a manner that correlated with reduced levels of
replication origin firing in this region and cell type.

HU is now the second agent experimentally shown to induce CNVs. Although HU and APH
impair DNA replication via different mechanisms, both agents induce CNVs with similar
frequencies and size distributions that are identical to many normal and pathogenic CNVs.
These results strongly support a common mechanism mediated by replication stress for the
formation of the non-recurrent class of CNVs found in vivo and those induced
experimentally. They also suggest that any agent or condition that leads to replication stress
has the potential to induce deleterious, de novo CNVs. They also have direct implications
for HU therapy. HU is FDA-approved for the treatment of sickle cell disease and has clear
benefits for the treatment of sickle cell patients, as well as those with some types of cancer,
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myeloproliferative disorders, thalassemias and HIV infection [56]. While HU is well-
tolerated and has low toxicity in patients, reproductive studies are limited and the long-term
effects of HU on the genomes of subsequent generations have not been evaluated. The
observation that HU induces CNVs in cultured cells, at concentrations equivalent to the peak
serum levels achieved in sickle cell patients [57,58] and does so in one or two cell divisions,
strongly suggests that further studies are necessary. In particular, the intergenerational,
germline effects of HU and other replication inhibitors should be determined to directly test
the replication stress hypothesis for CNV formation in vivo and to further assess the
potential risk for submicroscopic genomic structural changes in the genomes of HU-treated
patients and their future generations.

Risk Factors for CNV formation
Unlike other types of mutations studied for decades, our current knowledge of the
mechanisms involved in CNV formation only allow us to begin to identify potential genetic
and environmental risk factors (Table 1). For recurrent CNVs formed by NAHR during
meiosis I, the greatest risk factor thus far identified is variation in genomic architecture,
including the orientation and size of segmental duplications. Such structural polymorphisms
impact the likelihood that NAHR will create a de novo CNV in these regions [59,60]. There
does not appear to be a parental origin bias for recurrent CNVs [61] and the importance of
variation in genes involved in meiotic recombination is unknown. In addition, nothing is
known about environmental factors that could influence meiotic NAHR that could lead to
CNVs.

For non-recurrent CNVs, the mitotic cell origin hypothesis has important implications for
the genetic and environmental factors involved in their formation. For example, males
complete ongoing mitotic divisions leading to mature germ cells throughout adulthood while
females do so during fetal development. We thus predicted a male sex bias in risk for de
novo, non-recurrent CNVs, coupled with a possible age effect [14,15]. The recent studies of
Hehir-Kwa et al. [62] and Sibbons et al. [61] support this prediction. These two groups
determined the parent of origin of rare CNVs associated with intellectual disability and
found that the majority of non-recurrent CNVs, or CNVs not mediated by segmental
duplications, originated on the paternal allele. In addition, agents that perturb replication
may be a factor in producing CNVs in the maternal grandchildren of females exposed during
pregnancy. The mitotic origin hypothesis also predicts that CNVs will arise frequently in
post-zygotic somatic cells, leading to somatic mosaicism within or between tissues. Indeed,
substantial evidence exists for somatic mosaicism of pathogenic CNVs, such as in the NF1
and DMD genes [44,63,64], and for apparently benign CNVs in identical twins [65], and
different tissues within individuals [66,67].

Because the precise molecular mechanisms involved in producing non-recurrent CNVs are
not well understood, it is more difficult to precisely predict genetic risk factors, other than
parental origin. If NHEJ is mechanistically involved, the genetic factors are well known and
variation in those genes could be tested. However, the genetic factors involved in MMEJ
and template switching in mammalian cells have not been identified. Thus, tests for the
influence of variation in these genes are not currently possible. We can speculate that
variation in genes in DNA damage checkpoint pathways that respond to replication stress to
prevent CNV formation can potentially influence non-recurrent CNV risk. Based on our
current knowledge, we can also predict from our findings in a cell culture model that agents
or conditions leading to replication stress are good candidates for risk factors for inducing
non-recurrent CNVs in both the germline and somatic cells in vivo. Nevertheless, aside from
a handful of well-characterized laboratory reagents, we currently have a very poor
understanding of what these agents are and the scope of the risk for de novo CNVs resulting
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from environmental agents since, unlike direct DNA damaging agents, comprehensive
genomic studies defining agents that cause replication stress and their effects are lacking.
These results demonstrate the importance of identifying and studying the effects of such
agents on our genomes, both in experimental models and directly in human populations in
order to better understand the risks of replication stress for de novo CNVs.

Conclusions and Perspectives
The development and implementation of high resolution, genome-wide analyses over the
past decade has revealed that the human genome contains much more structural variation
than previously realized. Major progress has been made showing that CNVs are important
factors in human genomic variation and in genetic disease. From these studies, we have
learned that there are distinct classes of CNVs, as defined by the molecular mechanisms
responsible for their formation, and which therefore dictate the risk factors involved for new
mutation. Recurrent CNVs have been shown to be the result of NAHR, a well-understood
mechanism resulting in rearrangements during meiosis. Surprisingly, the large class of non-
recurrent CNVs appears to have a mitotic cell origin, associated with replication stress.
While several models have been proposed to explain this class of CNV, there is little
experimental evidence to explain how they are formed. Current challenges include
experimentally defining these mechanisms and beginning to identify the risk factors for all
classes of CNVs.
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Figure 1.
Possible mechanisms involved in the prevention and formation of nonrecurrent CNVs.
Exposure of cells to conditions that cause replication stress will result in stalled replication,
which in turn might lead to fork collapse and result in a single-ended double strand break
(Top). Either of these structures will activate a number of DNA damage checkpoint and
repair pathways, which should faithfully restore replication at the site of the stalled or
collapsed fork (Left). These checkpoint and repair pathways serve to protect the integrity of
the genome, preventing the formation of CNVs and other structural variants. However,
stalled replication or collapsed replication forks could also lead to restart or repair via
alternate pathways. A stalled fork may be inaccurately restarted at a distant site, using a
template switching or MMBIR pathway, giving rise to a CNV. Long range end-joining of
two distant DNA breaks could also lead to deletions of large amounts of intervening
sequence, resulting in a CNV (Right). It is expected that mutations that inhibit a cell’s ability
to properly respond to a stalled or collapsed fork will result in an increased CNV frequency
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